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Abstract 

Nowadays, biodiesel is used as one of the alternative renewable energy due to the increasing 

energy demand. However, optimum production of biodiesel still requires a huge number of 

expensive and time-consuming laboratory tests. To address the problem, this research develops a 

novel Genetic Algorithm-based Evolutionary Support Vector Machine (GA-ESIM). The GA-

ESIM is an Artificial Intelligence (AI)-based tool that combines K-means Chaotic Genetic 

Algorithm (KCGA) and Evolutionary Support Vector Machine Inference Model (ESIM). The 
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ESIM is utilized as a supervised learning technique to establish a highly accurate prediction 

model between the input-output of biodiesel mixture properties; and the KCGA is used to 

perform the simulation to obtain the optimum mixture properties based on the prediction model. 

A real biodiesel experimental data is provided to validate the GA-ESIM performance. Our 

simulation results demonstrate that the GA-ESIM establishes a prediction model with better 

accuracy than other AI-based tool and thus obtains the mixture properties with the biodiesel yield 

of 99.9%, higher than the best experimental data record, 97.4%.  

Keywords: Biodiesel production, Rice bran, In-situ process, Genetic Algorithm, Evolutionary 

Support Vector Machine 

1. Introduction 

 Nowadays, the world encounters energy demand problems due to increasing population and 

global economic development. Therefore, the remarkable global energy demand triggers the over 

consumption of fossil fuel. This phenomenon yields the following main issues: (1) excessive 

greenhouse emissions and air pollutions, (2) global warming and climate change, and (3) fossil 

fuel depletion (Puig-Arnavat, Bruno, and Coronas 2010; Ching-Piao et al. 2012; Noam 2010; 

Baños et al. 2011). Facing these serious problems, the use of renewable energy as an alternative 

energy supply must be developed. Biodiesel has been recognized for its ability in yielding energy 

with less environmental impacts than fossil fuel (Demirbas 2007; Gaurav, Srivastava, and Singh 

2012; Al-Mulali 2014). Moreover, with recent inflation of current fossil fuel prices, uncertainties 

regarding its future availability, and the need for environment friendly fuels, there is an increased 
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attention in utilizing biodiesel as alternate fuel (Hoekman et al. 2011). Since biodiesel can be 

produced by in-expensive raw material such as rice bran, the agricultural waste in most rice 

producing countries (Shiu et al. 2010; Wakil et al. 2014; Chuah et al. 2006), production cost 

might not become the major threat for its commercialization. 

 A number of studies present that the production cost of biodiesel might be decreased even 

more by applying an in-situ process (Ozgul-Yucel and Turkay 2002; Yustianingsih, Zullaikah, 

and Ju 2009). In this process, additional mixtures such as alcohol and catalyst are usually needed. 

Consequently, expensive and time-consuming laboratory test are required to optimize of those 

properties. Several researchers need to provide a number of sample tests to conduct experiments 

involving different mixtures to indentify the influencing variables that affecting the biodiesel 

yield (Freedman, Pryde, and Mounts 1984; Dorado et al. 2004). It was found that the relationship 

among production of biodiesel and its corresponding mixture properties become more complex 

due to the large number of components. Therefore, there is a need to implement a model that is 

able to predict the complex relationship accurately. 

Recently, the adoption of Artificial Intelligence (AI) approaches in biodiesel fields has attracted 

the attention from the researchers. Hybrid Artificial Neural Network - Genetic Algorithm (ANN-

GA) is example of AI approaches that have been successfully applied to solve complex problems 

in biodiesel fields (Rajendra, Jena, and Raheman 2009). However, both ANN and GA have their 

main disadvantages. For example, improper parameters setting of ANN can decrease the 

prediction accuracy. On the other hand, premature convergence and trapped in local optima 
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problems are often faced by GA. This has thus encouraged many researchers to conduct a 

number of studies in improving the quality of AI techniques. 

K-means and Chaos Genetic Algorithm (KCGA) (Cheng and Huang 2010) and Evolutionary 

Support Vector Machine Inference Model (ESIM) (Cheng and Wu 2009) are examples of AI 

approaches that have been applied in several engineering fields. KCGA is a powerful hybrid 

optimization algorithm that minimizes some shortcomings of traditional GA while ESIM 

improves the performance of Support Vector Machine (SVM) in dealing with complex input-

output relationship by self-tuning the SVM parameters automatically. The success of KCGA and 

ESIM for improving the performance of GA and SVM opened the possibilities of establishing 

more advance hybrid algorithm. 

 This paper introduces a novel hybrid Genetic Algorithm-based Evolutionary Support Vector 

Machine (GA-ESIM) which combines KCGA and ESIM for optimizing biodiesel mixture 

properties. ESIM is employed for building accurate prediction model whilst KCGA is performed 

to search the optimum mixture properties. Thus, Integrating KCGA and ESIM can offer strong 

potential to generate a robust method for searching the optimum mixture properties of biodiesel. 

2. Artificial Intelligence for biodiesel 

 In recent years, various studies have been conducted in the field of in-situ biodiesel 

production (Ozgul-Yucel and Turkay 2002; Yustianingsih, Zullaikah, and Ju 2009; Shiu et al. 

2010). Those studies have shown that the in-situ biodiesel production has successfully been 

tested in several circumstances. However, although these approaches reduce further production 

D
ow

nl
oa

de
d 

by
 [

N
A

T
IO

N
A

L
 T

A
IW

A
N

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

],
 [

D
od

dy
 P

ra
yo

go
] 

at
 0

0:
17

 1
5 

Ju
ly

 2
01

6 



Acc
ep

ted
 M

an
us

cri
pt

 

6 

cost of biodiesel, a huge number of laboratory tests are still required in order to get the optimum 

production of biodiesel. Therefore, to solve this situation, a model that can predict and search the 

optimized mixture properties without implementing expensive and time-consuming tests must be 

developed. 

 Many studies have proposed Artificial Intelligence (AI) approaches, such as Artificial Neural 

Network (ANN) or Support Vector Machine (SVM), as alternative methods to solve complex 

and ill-defined problems. Those approaches have been widely proven its usefulness in handling 

complex input-output relationship. In recent years, the use of ANN has been developed in 

solving many problems in the field of renewable energy, such as solar radiation, wind-speed 

prediction, photovoltaic systems, and biomass gasification (Kalogirou 2001). As for other 

renewable energy such as biodiesel, there are significant numbers of studies that have been 

conducted. 

 Ramadhas et al. (2006) proposed an ANN to predict the cetane number (CN) of biodiesel. It 

was found that the ANN models developed could be used reliably for the prediction of biodiesel 

CN (Ramadhas et al. 2006). Yuste and Dorado (2005) demonstrated the superiority of ANN in 

predicting biodiesel yield through the transesterification of used frying olive oil. It was reported 

that the results were similar to those obtained with the help of the empirical tests required in a 

laboratory, thus, indicating ANN has proven to be capable of modeling the production of 

biodiesel from waste olive oil, which is a process with a high nonlinear behavior (Yuste and 

Dorado 2005). 
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 Instead of using solely ANN for predicting the input-output relationship of biodiesel 

production, a number of studies present an ANN coupled with optimization technique for 

different purpose. Rajendra et al. (2009) use hybrid ANN-GA to optimize the input parameters of 

biodiesel production (Rajendra, Jena, and Raheman 2009). The input parameters for the ANN to 

generalize the pretreatment process were initial acid value of vegetable oil (IAV), methanol-to-

oil ratio (M), catalyst concentration (C), and reaction time (T); and the output parameter was 

final acid value (FAV) of oil. After ANN was performed to develop the input-output 

relationship, initial random population was created by GA and then given to the developed ANN 

for predicting the FAVs. Then, the usual genetic operators (selection, crossover, and mutation) 

were performed until termination criterion was achieved. As a result, the proposed hybrid model 

was able to find the optimum mixtures and verified by laboratory experiment. 

 Despite being widely used, both ANN and GA have their main shortcomings. To this end, 

more advance hybridization of prediction and optimization algorithms are still needed to 

optimize mixtures of biodiesel. 

3.  Genetic Algorithm-based Evolutionary Support 

Vector Machine (GA-ESIM) 

This section explains the proposed model in detail. GA-ESIM combines KCGA and ESIM to 

build a model that can search an optimal solution from the dataset which contains the complex 

input-output relationship. The proposed model employs KCGA as the optimizer and ESIM for 

mapping the relationship. The hybridization of those AI methods is expected to produce a robust 
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model for optimizing mixture properties. The following section first briefly introduces two main 

core AI methods, namely KCGA and ESIM, and explains the proposed GA-ESIM in detail. 

3.1. K-means and Chaos Genetic Algorithm (KCGA) 

 KCGA is a powerful hybrid algorithm proposed by Cheng and Huang (2009) which 

integrates k-means and chaos attributes based on GA (Cheng and Huang 2009). In this hybrid 

algorithm, k-means plays a critical role in convergence of GA whereas chaos algorithm can keep 

GA population diversity and avoid from premature convergence. Initial individuals of KCGA 

were generated using chaos algorithm to diversify their positions between the lower and upper 

bound of the domain value. The individuals were evaluated and ranked. Then, crossover and 

mutation were performed. The chaos operator diversified individuals by using logistic map and 

eventually generates chaotic spread-spectrum and unpredictable irregular motions of each 

individual. K-means clustering groups the individuals into k mutually exclusive clusters and 

locates the centroid of each cluster. Thus, location information of each cluster centroid would be 

treated as candidate individuals for the next generation. A competing procedure was employed to 

eliminate lower fitness value individuals, and reserved the others to create formal population for 

KCGA iteration. 

 KCGA obtain more accuracy by enhancing the diversity of GA using chaos mapping. KCGA 

also further extracts clustering rules for achieving a potential trend of evolution. As a result, 

KCGA can effectively solve some drawbacks of traditional GA, such as long running time and 

being trapped in local optima. D
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3.2.  Evolutionary Support Vector Machine Inference Model (ESIM) 

 Support vector machine (SVM) is a machine-learning algorithm combining Vapnik-

Chervonenkis Dimension of statistics with Structure Risk Minimization Theory that was widely 

adopted after being proposed by Vapnik (Vapnik 1995). SVM classifies data using different class 

labels by determining a set of support vectors, which are members of the set of training inputs 

that outline a hyper plane in a feature space. Furthermore, it provides a generic mechanism that 

fits the hyper plane surface to the training data using a kernel function (Huang and Wang 2006).  

 However, SVM presents users the problem of tuning optimal kernel parameters for users. 

The proper parameter can increase SVM prediction accuracy greatly, therefore, SVM parameters 

must be optimized simultaneously. The parameters includes penalty parameter C and radial basis 

function (RBF) kernel parameters . Fast messy genetic algorithms were developed by Goldberg 

et al. in 1993 (Goldberg et al. 1993). Unlike the well-known simple genetic algorithm (sGA), 

which uses fixed length strings to represent possible solutions, fmGA applies messy 

chromosomes to form strings of various lengths. Its ability to identify optimal solutions 

efficiently for large-scale permutation problems gives fmGA the potential to generate parameter 

C and  of SVM simultaneously. 

 Taking the benefits of the two AI approaches, a hybrid SVM-fmGA, namely ESIM, was 

proposed by Cheng and Wu (Cheng and Wu 2009). In ESIM, the SVM is employed primarily to 

address the learning and curve fitting while fmGA addresses optimization. Furthermore, this 

model was developed to achieve the fittest C and  parameters with minimal prediction error. D
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3.3. Genetic Algorithm-based Evolutionary Support Vector Machine 

Algorithm 

 The implementation GA-ESIM is a two-step approach, which involves the initialization and 

optimization phase. In initialization phase, ESIM is utilized to map out the input-output 

relationship of the data involved. As a result, a prediction model is established, including the 

optimal C and  parameters. This prediction model can predict the percentage of FAME yield 

given the required input variables. The output prediction model will be carried out and shall be 

utilized in the next phase for predicting the optimum mixture component which will produce the 

highest percentage of FAME yield. 

 The second phase of GA-ESIM is the optimization phase. Once the input-output relationship 

of the dataset is established, then, KCGA is employed as a search and optimization algorithm. 

The role of KCGA is to find the optimum mixture component which yields the fittest value. The 

individuals of population represent the feasible solutions. These individuals are generated and 

evaluated using the established ESIM prediction model. The population was initialized 

randomly. Each individual represents a potential solution to a problem. Then, all KCGA 

parameters were set, including population size, number of generation, stopping criteria, 

crossover rate, mutation rate, and number of k-means cluster. The population will be evaluated to 

obtain the fitness value of each individual. In a number of complex problems, the objective 

function cannot be expressed in mathematical equation. In this situation, ESIM plays a role to 

map the each individual and its fitness value using the optimal C and . The population of D
ow

nl
oa

de
d 

by
 [

N
A

T
IO

N
A

L
 T

A
IW

A
N

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

],
 [

D
od

dy
 P

ra
yo

go
] 

at
 0

0:
17

 1
5 

Ju
ly

 2
01

6 



Acc
ep

ted
 M

an
us

cri
pt

 

11 

solution undergoes selection, crossover, mutation, chaos operator and k-means clustering until 

the fittest solution, that is the mixture with the highest FAME yield, is obtained. 

Finally, the complete GA-ESIM algorithm flowchart is shown in Fig. 1. 

4.  Result and Discussion 

 This section demonstrates the performance of the proposed model. This study uses GA-ESIM 

to conduct a biodiesel production simulation for searching the optimum mixture properties. This 

section is organized to describe the explanation of model application in detail. 

4.1. Input Data 

 This paper uses the original research data of biodiesel production from rice bran which were 

conducted by Shiu et al (Shiu et al. 2010). This experiment has successfully produced biodiesel 

from rice bran by a two-step in-situ reaction (acid-catalyzed followed by base-catalyzed). The 

highest FAME yield of 97.4% was obtained after evaluating laboratory tests, which were 

conducted within various conditions. 

 Table 1 shows examples of several data from biodiesel experiment. The collected database 

contains total 79 records, includes 38 records of one-step in-situ process and 41 records of two-

step in-situ process. One-step in-situ process involves the only in-situ acid- catalyzed 

esterification. Meanwhile, the other method is two-step process in which in-situ acid-

esterification was directly followed by in-situ transesterification without a separation step in 

between. 
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 Since the one-step process only conducts the in-situ esterification, the value of both NaOH 

content and second step reaction attributes are certainly 0. Moreover, it was found that the same 

mixture solutions in the database were tested several times. For the example, three first cases 

which consist of the same mixture solutions; one-step process, initial FFA content of 3%, 

methanol to rice bran ratio of 2.5 mL/g, sulfuric acid to rice bran mass ratio of 27.6%, 60 

minutes first step reaction; were reacted and produced slightly different output results. 

 The database covers 8 attributes as shown in Table 2, 7 of which are input factors, and the 

output factor is FAME yield. In this paper, the input and output variables were normalized 

between 0 and 1 in order to avoid the numerical difficulties or condition where attributes with 

greater ranges dominating those with smaller ranges (Hsu, Chang, and Lin 2003). The function 

used to normalize the data is shown in Eq. (1). 

   
      

     
   

  
      

            (1) 

where   
    = normalized data of attribute n, xn = initial data of attribute n,   

   = upper bound 

data of attribute n,    
    = lower bound data of attribute n. 

<Insert Table 2 here> 
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4.2. Cross validation to verify ESIM training 

 Since partitioning data randomly into training and testing dataset presents certain 

disadvantages, cross validation techniques are often used to solve those shortcomings. One of the 

disadvantages was whenever prediction error is excessive, the testing data must be re-sampled 

until error conditions are satisfied. Thus, only the best model can be used to predict unknown 

cases. This may cause bias of actual model error. Thus, researchers often use k-fold cross 

validation to minimize the bias. Kohavi showed that 10 folds were optimal to obtain the minimal 

time needed to perform the test with acceptable bias associated with the validation process 

(Kohavi 1995).  

 The dataset introduced in Section 4.1 were subjected to 10-fold cross validation in order to 

ensure that all the dataset were applied in both the training and testing phase. The procedure was 

performed in the following four steps: 

1. Randomize the data; 

2. Divide the data into 10 folds which have the equal amount and number each fold from 1 

to 10; 

3. Generate single set by assigning one fold as the testing case and the other nine folds as 

training cases. When fold 1 was considered the testing dataset, folds 2 through 10 were training 

dataset. When fold 2 was the testing dataset, the other nine folds were treated as training dataset, 

and so on. D
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4. Repeat step 3 until generate 10 folds consists of 10 sets of different training and testing 

dataset. 

Total 79 records of biodiesel experiments were divided into 10 folds. The first nine folds have a 

total of 71 training records and 8 testing records, while the last fold has 72 training records and 7 

testing records. ESIM were employed to run the total 10 folds. The Root Mean Square Error 

(RMSE) was employed to evaluate an error measure of each fold. The formulation of RMSE is 

expressed in the following equation: 

     √
∑       

 
 (2) 

where y = actual value; y’ = predicted value; and n = number of data samples. 

4.3. ESIM prediction model 

 This section presents the prediction results of ESIM training and testing. In addition, well-

known prediction tool, namely SVM, was also employed for comparison purposes. The C and  

parameter for SVM were set to 1 and 0.14286 suggested by Hsu et al. (Hsu, Chang, and Lin 

2003). As for ESIM, the parameters were automatically optimized to achieve the minimum 

prediction error. Table 3 shows RMSE results of the ESIM compared against SVM. 

ESIM produces less error than SVM. This indicates that the new model achieves better 

performance for predicting FAME yield percentage than SVM. For training results, the 

minimum, average and maximum RMSE of ESIM obtained were 6.98, 9.54, and 12.20 

respectively, whereas for testing results, 4.80, 6.49, and 8.55 were obtained. The best prediction 
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result for biodiesel production was found in fold 3, which has the lowest testing RMSE of 4.80. 

Table 4 and Table 5 show the training and testing result of the best fold in detail. ESIM training 

and testing results of fold 3 were plotted in Fig. 2. 

Finally, ESIM C and  parameters in the best fold, 6 and 0.2647 respectively, were identified as 

the optimal tuning parameters. In the last step, the optimal C and  parameters will be carried out 

to GA-ESIM step as the optimal prediction model. With this optimal prediction model, ESIM is 

ready for determining the new input-output relationship during the optimization process. 

4.4. The optimization process of GA-ESIM 

 With the ability for mapping out the input-output relationship, ESIM has two roles in this 

proposed model. Firstly, ESIM used the mapping ability to train the biodiesel data to create 

prediction model before the optimization started. Secondly, during the optimization process 

conducted by KCGA, ESIM used the prediction model to map out the relationship between 

mixture properties as the input and FAME yield as the output of biodiesel data. Finally, the 

optimization process continued until the optimal mixture solution with the best FAME yield is 

found. 

 KCGA is employed due to the ability to improve the performance of traditional GA with the 

help of two additional operators, namely chaos operator and k-means clustering. These operators 

ensure the diversity of the population during the optimization process and speed up the 

convergence to global optima. The role of KCGA is to find the optimum mixture component 

which yields the highest FAME. Feasible solutions are generated and evaluated using the 
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established ESIM prediction model. Solutions with the higher FAME yield are regarded as fitter 

solutions. In KCGA, the population of solution undergoes selection, crossover, mutation, chaos 

operator and k-means clustering until the fittest solution, that is the mixture with the highest 

FAME yield, is obtained. 

 In this study, parameters of KCGA were set as follows: number of generation = 100, 

population size = 40, crossover rate = 0.9, mutation rate = 0.05, and number of k-means cluster = 

3. Reaching maximum number of generations was applied to stop the computational work. Each 

individual in the population of KCGA represented the random biodiesel mixture components. 

The upper and lower bound of the input variables is adopted from the experiment. 

 Then, optimal C and  parameters obtained from Section 4.3 (C = 6 and  = 0647) were 

used to map each individual to its fitness value. KCGA operators, including selection, crossover, 

mutation, chaos, and k-means, were employed to search the best individual. The process was 

repeated until the stopping criterion was met. The convergence graphic is shown in Fig. 3. 

Finally, the result of the optimum mixture obtained was listed and compared to the original 

laboratory research in Table 6. 

 The maximum FAME yield of 99.9% was obtained by GA-ESIM after 100 generations. The 

result shows the better FAME yield value comparing with the maximum value of 97.4% of the 

FAME yield produced in the real laboratory tests. This implies that performing test using the 

mixture properties as given in Table 5, will achieve the increasing FAME yield of biodiesel 

production by 2.1% with the RMSE of 4.80%. 
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4.5. Integrating GA-ESIM with Graphic User Interface (GUI) of 

MATLAB 

 A graphical user interface (GUI) is a graphical display that enables users to perform 

interactive tasks. This study developed a system that integrates GA-ESIM with GUI to provide 

users easier and more effective interaction. To demonstrate the performance of the system, an 

example is provided as follows: lower and upper bound, KCGA and ESIM parameters were set 

as the same setting as in Section 4.4. 

 There are two main panels in the interface, input data and output data panel. In input data 

panel, users can input: (1) lower bound and upper bound of each component; (2) KCGA 

parameter such as the number of generation, crossover rate, mutation rate, population size and 

number of clusters; (3) ESIM parameter C and . The output data panel includes: (1) optimum 

mixture contents; (2) result of predicted FAME yield and computational time. The mixture of 

biodiesel production is presented on the output panel of the proposed system as shown in Fig. 4. 

5. Conclusions 

 This research developed the GA-ESIM for optimizing biodiesel mixture properties by fusing 

KCGA together with ESIM. ESIM primarily achieved the concurrently C and parameters to 

build the accurate prediction model verified by cross validation. KCGA can conduct simulations 

of trial mixes and searches the optimum solution in short time without being trapped in local 

optima. In this case study, individuals of KCGA represent compositions of biodiesel mixture 
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properties while the fitness value represent FAME yield. During the optimization process 

performed by KCGA, ESIM determines the complex relationship between each individual and 

its fitness value. 

 The comparison between ESIM and SVM showed the superiority of ESIM as a prediction 

tool for biodiesel production. Thus, the incorporation between ESIM together with KCGA, 

which were proven to outperform traditional GA, shows the strong potential of GA-ESIM as a 

robust model for optimizing biodiesel mixture properties. In addition, this model does not rule 

out the possible application in other academic and engineering fields. 
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Fig. 1. The procedure of GA-ESIM 
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Fig. 2. ESIM Training and Testing result of fold 3 
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Fig. 3. GA-ESIM convergence graphics 

 

  

D
ow

nl
oa

de
d 

by
 [

N
A

T
IO

N
A

L
 T

A
IW

A
N

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

],
 [

D
od

dy
 P

ra
yo

go
] 

at
 0

0:
17

 1
5 

Ju
ly

 2
01

6 



Acc
ep

ted
 M

an
us

cri
pt

 

26 

Fig. 4. Demonstration of Graphic User Interface (GUI) integrated with GA-ESIM 
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Table 1. Biodiesel production dataset 

Case 

Number 

In situ 

Process 

method 

Initial 

FFA 

content 

methanol 

to rice 

bran 

ratio 

Sulfuric 

acid to 

rice bran 

mass 

ratio 

first step 

reaction 

time  

5N 

NaOH 

content 

second 

step 

reaction 

time  

FAME 

yield 

 

(step) (%) (mL/g) (%) (minutes) (mL) (minutes) (%) 

1 1 3 2.5 27.6 60 0 0 20.85 

2 1 3 2.5 27.6 60 0 0 26.61 

3 1 3 2.5 27.6 60 0 0 22 

4 1 3 5 27.6 60 0 0 27.71 

5 1 3 5 27.6 60 0 0 26.5 

6 1 3 5 27.6 60 0 0 33.18 
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7 1 3 10 27.6 60 0 0 36.05 

8 1 3 10 27.6 60 0 0 37.83 

9 1 3 10 27.6 60 0 0 46.66 

10 1 3 15 27.6 60 0 0 49.95 

11 1 3 15 27.6 60 0 0 51.36 

12 1 3 15 27.6 60 0 0 50.13 

13 1 3 20 27.6 60 0 0 44.41 

14 1 3 20 27.6 60 0 0 53.93 

15 1 3 20 27.6 60 0 0 44.75 

16 1 3 15 27.6 15 0 0 21.85 

17 1 3 15 27.6 15 0 0 25.36 
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18 1 3 15 27.6 15 0 0 23.1 

19 1 3 15 27.6 30 0 0 47.92 

20 1 3 15 27.6 30 0 0 47.96 

21 1 3 15 27.6 30 0 0 45.5 

22 1 3 15 27.6 60 0 0 49.95 

23 1 3 15 27.6 60 0 0 51.36 

24 1 3 15 27.6 60 0 0 50.13 

25 1 3 15 27.6 120 0 0 63.48 

26 1 3 15 27.6 120 0 0 60.78 

27 1 3 15 27.6 120 0 0 57.5 

28 1 3 15 27.6 240 0 0 72.89 
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29 1 3 15 27.6 240 0 0 77.55 

30 1 3 15 27.6 240 0 0 74.84 

31 1 3 15 13.8 15 0 0 13.39 

32 1 3 15 13.8 15 0 0 14.18 

33 1 3 15 18.4 15 0 0 21.73 

34 1 3 15 18.4 15 0 0 21.24 

35 1 3 15 18.4 15 0 0 26.53 

36 1 3 15 27.6 15 0 0 21.85 

37 1 3 15 27.6 15 0 0 25.36 

38 1 3 15 27.6 15 0 0 23.1 

39 2 3 15 27.6 15 7 120 29.81 
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40 2 3 15 27.6 15 7 120 18.44 

41 2 3 15 27.6 15 7 120 26.85 

42 2 3 15 27.6 15 8 120 83.93 

43 2 3 15 27.6 15 8 120 83.74 

44 2 3 15 27.6 15 8 120 83.89 

45 2 3 15 27.6 15 9 120 76.19 

46 2 3 15 27.6 15 9 120 85.4 

47 2 3 15 27.6 15 9 120 83.55 

48 2 3 15 27.6 15 10 120 64.06 

49 2 3 15 27.6 15 10 120 68.22 

50 2 3 15 27.6 15 10 120 66.2 

D
ow

nl
oa

de
d 

by
 [

N
A

T
IO

N
A

L
 T

A
IW

A
N

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

],
 [

D
od

dy
 P

ra
yo

go
] 

at
 0

0:
17

 1
5 

Ju
ly

 2
01

6 



Acc
ep

ted
 M

an
us

cri
pt

 

32 

51 2 3 15 27.6 15 8 5 88.6 

52 2 3 15 27.6 15 8 5 87.26 

53 2 3 15 27.6 15 8 5 85.22 

54 2 3 15 27.6 15 8 15 84.83 

55 2 3 15 27.6 15 8 15 93.39 

56 2 3 15 27.6 15 8 15 89.28 

57 2 3 15 27.6 15 8 30 89.59 

58 2 3 15 27.6 15 8 30 93.7 

59 2 3 15 27.6 15 8 30 88.85 

60 2 3 15 27.6 15 8 60 96.88 

61 2 3 15 27.6 15 8 60 89.76 
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62 2 3 15 27.6 15 8 60 95.6 

63 2 3 15 27.6 15 8 120 83.93 

64 2 3 15 27.6 15 8 120 83.74 

65 2 3 15 27.6 15 8 120 83.89 

66 2 30 15 27.6 15 8 5 96.07 

67 2 30 15 27.6 15 8 5 93.12 

68 2 30 15 27.6 15 8 15 90.21 

69 2 30 15 27.6 15 8 15 91.7 

70 2 30 15 27.6 15 8 15 94.4 

71 2 30 15 27.6 15 8 30 97.27 

72 2 30 15 27.6 15 8 30 95.57 
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73 2 30 15 27.6 15 8 30 99.21 

74 2 30 15 27.6 15 8 60 93.84 

75 2 30 15 27.6 15 8 60 91.74 

76 2 30 15 27.6 15 8 60 98.17 

77 2 30 15 27.6 15 8 120 96.98 

78 2 30 15 27.6 15 8 120 94.81 

79 2 30 15 27.6 15 8 120 95.9 
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Table 2. Biodiesel production influencing factors data 

Input Factor Unit 

Upper 

bound 

Lower 

bound 

In-situ Process method (Step) 1 2 

Initial Free Fatty Acid (FFA) content (%) 3 30 

Methanol to rice bran ratio (mL/g) 2.5 20 

Sulfuric acid to rice bran ratio (%) 13.8 27.6 

Reaction time (first step) (minutes) 15 240 

5N NaOH content (mL) 0 10 

Reaction time (second step) (minutes) 0 120 

Output Factor Unit 

Upper 

bound 

Lower 

bound 
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FAME yield % 13.4 97.4 
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Table 3. Training and testing result of various prediction tools verified by 10-fold cross 

validation 

Number 

of fold 

Training RMSE 

(% FAME yield) 

Testing RMSE 

(% FAME yield) 

ESIM optimal 

parameters 

ESIM SVM ESIM SVM C 

1 11.43 12.58 6.00 8.03 105 0.1579 

2 10.66 12.67 5.62 9.55 198 0.2122 

3 12.20 12.74 4.80 6.22 6 0.2647 

4 11.41 12.64 6.34 9.37 16 0.5422 

5 7.42 12.55 6.53 9.95 200 0.6401 

6 6.98 9.71 8.55 25.31 195 0.9985 

7 10.78 12.60 5.26 7.21 200 0.2001 
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8 10.03 12.52 7.54 9.97 190 0.3073 

9 7.08 11.46 7.64 17.57 200 0.9751 

10 7.45 12.47 6.63 8.36 110 0.9206 

Minimum 6.98  9.71  4.80  6.22      

Average 9.54  12.20  6.49  11.16  

  

Maximum 12.20  12.74 8.55  25.31     
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Table 4. ESIM training result of fold 3 

Case Number Desired Output 

(% FAME yield) 

Estimated Output 

ESIM 

(% FAME yield) 

SVM 

(% FAME yield) 

17 25.36 33.10 35.36 

12 50.13 42.06 41.89 

32 14.18 23.35 23.39 

7 36.05 37.50 37.28 

70 94.40 95.68 93.67 

2 26.61 30.85 30.93 

78 94.81 85.90 85.90 

8 37.83 37.50 37.28 
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… … … … 

28 72.89 70.11 67.55 

66 96.07 95.21 93.80 

26 60.78 53.45 50.84 

58 93.70 90.44 83.73 

53 85.22 91.54 85.13 

12 50.13 42.06 41.89 

54 84.83 91.31 84.65 

C,  

 

6, 0.2647 1, 0.1429 

RMSE 

 

12.20 12.74 
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Table 5. ESIM testing result of fold 3 

Case Number 

Desired Output 

(% FAME yield) 

Estimated Output 

ESIM 

(% FAME yield) 

SVM 

(% FAME yield) 

77 96.98 85.90 85.90 

59 88.85 90.44 83.73 

61 89.76 86.88 81.20 

56 89.28 91.31 84.65 

13 44.41 46.09 46.46 

5 26.50 32.94 32.92 

71 97.27 95.91 93.27 

74 93.84 94.65 91.71 
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C,  

 

6, 0.2647 1, 0.1429 

RMSE 

 

4.80 6.22 
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Table 6. Mixture properties comparison between GA-ESIM result and the highest FAME yield 

record 

Attribute Unit 

GA-ESIM Highest FAME Yield 

Record 

In-situ Process method (Step) 2 2 

Initial Free Fatty Acid (FFA) content (%) 19.4 30 

Methanol to rice bran ratio (mL/g) 19.9 15 

Sulfuric acid to rice bran ratio (%) 27.6 27.6 

Reaction time (first step) (minutes) 18.8 15 

5N NaOH content (mL) 9 8 

Reaction time (second step) (minutes) 20.1 30 

FAME yield % 99.9 97.4 
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