

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. X No. X 1

OPTIMIZATION OF TEST KEEPER

SCHEDULING USING GENETIC ALGORITHM

AT INFORMATICS DEPARTMENT PETRA

CHRISTIAN UNIVERSITY

Kristo Radion Purba

Informatics Engineering, Petra Christian University

kristo@petra.ac.id

Abstract— At Informatics Department, Petra Christian

University, before mid or final exam, there will be a manual

process to schedule the test keepers for every exam session. The

test keepers are lecturer assistants (assistant is an appointed

student to help lecturer in class). For an exam session, the keeper

can be 1 up to 3 people, depending on the exam's participant.

These manual process is considering many factors, i.e. the

assistant's batch (year), the average of exam's participant

batch(year), gender combination of the keeper, evenness of the

exam keeping of every assistant, the character of the assistant

itself, and the exam schedule of the assistant. These factors are

considered upon picking every exam sessions' keeper, which is

taking a lot of time and knowledge, and this process is done twice

a semester by an exam coordinator (lecturer). In this paper, will

be designed an application that is using genetic algorithm to

automatically assign the test keepers for every exam. The result of

the application is tested during the mid-exam and final-exam early

semester of 2016, and the application is giving a good result, with

the accuracy of 90.23%, in which the 9.77% is some minor changes

that is required to make the test keepers more suitable.

Index Terms—About; Genetic algorithm; Test keeper;

University exam.

I. INTRODUCTION

At Informatics Department, Petra Christian University, like

any other university, there are 2 exam term for every semester,

mid exam and final exam. Some classes can have or not an

exam session. For example, game development class is having

mid exam but not final exam, because the final exam is replaced

with a game project. So usually, almost all classes are having

mid exam, but final exam is usually 80-90% of all classes.

Usually there are 3 exam sessions for each day, and the exam

term will run for 7 days. In each session, usually there are 2 up

to 4 exams. The total number of exams in an exam term is

usually around 70-90, depends on the count of the opened class

in the semester.

In every exam, there will be 1 up to 3 test keepers, depending

on the number of participants. Test keepers are lecturer

assistant. In an exam term, there are usually 130-150 keepers.

These test keepers will be scheduled by an exam coordinator

(lecturer). These processes are taking a lot of time and effort,

because there are so many constraints that will be considered

during the scheduling, i.e. assistant's and participant batch

(year), gender combination of the keeper, evenness of the exam

keeping of every assistant, the character of the assistant itself,

and the own exam schedule of the assistant itself.

In this research, an implementation of genetic algorithm will

be proposed to optimize the scheduling of test keepers for exam

sessions at Informatics Department Petra Christian University.

II. LITERATURE REVIEW

In this chapter, genetic algorithm will be discussed, as it is

the algorithm that will be used in this research. Also, there will

be a brief introduction about the Informatics Department Petra

Christian University, and the exam system.

A. Genetic Algorithm

In the computer science field of artificial intelligence, a

genetic algorithm (GA) is used to find solutions of problems

that are not obvious, or not having a certain formula, or the

searching space of the problem is not clear. [1]

The complete process of GA is described below: [2]

a. Generate the initial chromosomes, usually 10-20

chromosome in a generation. Chromosome is a set of

genes. Chromosome contains the solution. [3]

b. Create fitness function and assign to each chromosome.

The fitness value is determined depending on what kind of

problem needed to be solved. [4]

c. Record the best gene before the copulation process. This

will be used later in the elitism process.

d. Perform selection to the chromosomes, here we can use

tournament selection, roulette, proportionate, rank, steady

state selection, etc. In this research, roulette will be used.

In the roulette, chromosomes that are having bigger fitness

will have more chance.

e. Crossover process. The crossover process is done by

swapping the genes of chromosome A with B, from start

offset to end offset. The start and end will be picked

randomly.

f. Mutation process. For a chromosome, genes in several

positions (random position) will be changed to a new

random gene.

g. Elitism process. Pick the best chromosome before the

copulation process, and it will be used to replace the worst

chromosome after the copulation process. This process is

to make sure that the GA will never create worse

generation after copulation.

Journal of Telecommunication, Electronic and Computer Engineering

2 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. X No. X

h. Repeat the process from b-f, until a stopping condition is

met. These stopping conditions can vary depending on the

case, it can be number of generations, time limit,

acceptable quality, or some specific condition i.e. more

than 50% of the population is having the same fitness

value. [5]

B. Related Work

There are many researches that are using genetic algorithm to

solve problems, such as in medical field [6], where GA is used

to improve disease screening, treatment planning, diagnosis,

etc. In the medical field, data are really big, thus a meta-

heuristic like genetic algorithm is suitable to be used.

Other implementation is [7], where GA is used to schedule

precedence-constrained task that is using two fitness function,

the first one is to minimize the total execution time, and the

second is satisfy the load balance.

III. WEB AND MOBILE APPLICATION DESIGN

In this research, a web and mobile application is build to help

the scheduling process. The flow for the scheduling process can

be seen in Figure 1.

Figure 1: The Scheduling Process

The web application is used by the administrator to schedule

automatically using GA, or manually. What will be expected to

be done by the web application is that the GA will schedule

automatically, and web administrator will do some minor

changes if needed.

After the scheduling process, the schedule will be reviewed

by assistants, using a mobile application, for 1 week of grace

period. During this period, assistant will check for their own

daily schedule whether it can be fulfilled by them. If it can't be

met, because of some private reasons, they can give comment

to the administrator (exam coordinator) whether they can be

replaced by someone else.

After the grace period is finished, the schedule is finalized,

and the assistant can't no longer give comments. But still, the

administrator can change if it's really needed. The mobile

application is still needed for the assistant to check for their own

schedule during the exam term.

IV. GENETIC ALGORITHM FOR SCHEDULING

The Genetic Algorithm (GA) will automatically schedule test

keepers, using considerations that are replicated from human

knowledge.

A. Chromosome Design

First, exam sessions will be converted to test keeper slots, as

seen in Figure 2. An exam with 0-20 participants will be kept

by 1 assistant, 21-45 kept by 2, 46 or more kept by 3. One slot

will later be filled with one assistant.

Figure 2: Test Keeper Slots

The keeper slots are usually around 130-150, depending on

the number of opened class in that semester. After making these

slots, every assistant will be assigned an ID starting from 1, as

seen in Figure 3. Also, here the properties of each assistant is

assigned. The number of assistants are usually around 20-30,

every year there will be graduating assistants and replaced with

the new batch. A student can become assistant starting from

semester 2, and have to met certain criterions.

Figure 3: Assistant Data

The chromosome design is based on the keeper slots. Each

slot will be filled with the ID of the assistant. So the

chromosome length will be around 130-150 small integers. The

integer length is 2 digits. The example of chromosome can be

seen in Figure 4. This figure is related with Figure 2.

Figure 4. Chromosome design

In the test keeper slots, several global constraints must be

fulfilled, such as there should be no duplicated test keeper in the

same session. The global factors are mentioned sub-chapter B.

B. Fitness Value Factors

The factors for the considerations are split into two parts,

individual factors (consideration of each exam) and global

factors. The individual factors are:

a. Assistant's batch (year). Usually, assistant will be

prioritized to do exam keeping for students one-year

younger than the assistant's batch. An assistant will not

keep an exam if the participant is older than him/her. For

this, at least the younger assistant will be accompanied by

Optimization of Test Keeper Scheduling Using Genetic Algorithm at Informatics Department Petra Christian University

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. X No. X 3

the older one. But still, it's better if all test keepers are older

than the participants. It's also not good if the assistant is far

older than the participants, because we will run out of old

assistants very soon. So, one year older or same age is the

ideal one. The assistant batch (ab) value is the average of

assistants' batch in the exam. If for example there are 2

people keeping an exam, from batch 2013 and 2014, the

average is 2013.5.

b. The majority of exam's participant batch (year). If for

example, the majority of participants are of batch 2015, the

test keeper should ideally come from batch 2014.

The assistant batch (ab) and the participant's batch (pb) will

be compared, resuting the batch difference score (bd),

using the following lookup Table 1. Here, older and

younger refers to age. If for example the ab = 2013.5, and

the pb = 2014 (majority), the (pb-ab) = 0.5, thus the bd will

be 1. Higher is better.
Table 1

Batch difference score

pb - ab bd

<=0 (participant is older) 0

>0 to <=1 1
>1 to <=2 0.67

>2 to <=3 0.33
>3 0

c. Gender combination of the keeper. Female will be

prioritized not to be alone, and male will be prioritized with

female. If male if almost always with male, we will run out

of male quickly. Male is considered more responsible and

firm. The gender score (g) is described in Table 2, where

higher score means more prioritized.
Table 2

Gender Score

Gender combination g (score)

Male 1

Female 0.67
Male, male 0.67

Male, female 1

Female, female 0.33
Male, male, male 0.33

Male, male, female 0.67

Male, female, female 1
Female, female, female 0.3

d. Character of the assistant. Firmness and discipline will take

place into consideration. These numbers will be set by

administrator, with the scale of 0 to 3. An assistant that is

known to be not firm will be combined with a firm one.

Discipline factor is also the same. An assistant that is

known to be a late-comer is considered as not discipline.

We want the exam to start on time, so at least one should

be a discipline person.

The character of each assistant will be scored, the value is

between 0 and 1, and then will be averaged across all

keeper in the exam, calculated using a simple formula in

equation 1.

 (1)

Where n is test keeper slot

The global factors are:

a. Evenness of the exam keeping of every assistant. Usually,

each assistant will have 6-8 exam keeping. These number

should be even across all assistants. So the deviation of

these numbers should be as small as possible. The number

of exam keeping of an assistant usually maxed to 8 in an

exam term. So, the deviation of exam keeping count should

be no more than 8. The formula for ev (evenness) is shown

in equation 2 and 3.

 , s will be limited to 0-8 (2)

Where:

x = number of exam keeping of assistant i

n = number of assistants

The result of s will be limited to 0-8

𝑒𝑣 =
8−𝑠

8
 (3)

From equation 3, can be seen that if the deviation is

minimum or zero, the ev will be 1, which is the best.

b. Exam schedule of the assistant itself. Because assistant is a

student, they are having their own exam sessions as

participant. Therefore, they will not be an exam keeper

when they have their own exam. If this factor is happening,

this chromosome will be reshuffled.

c. Test keepers will not be duplicated in the same exam

session. In a day, there are 3 exam sessions, i.e. the first

session is 07.30-10.30, the second is 10.30-13.30, the third

is 13.30-16.30. If this factor is happening, this chromosome

will be reshuffled.

d. An assistant can't have multiple exam keeping for the same

exam session. So if this is happening, this chromosome will

be reshuffled.

C. Fitness Value

A fitness value will be calculated for a chromosome, based on

the fitness value factors previously. The fitness value is shown

in equation 4.

 (4)

Where:

bd = batch difference score

g = gender score

c = character score

ev = evenness of exam keeping

n = number of exam

From this equation, can be seen that the bd, g, c is coming

from the individual factors, or the factors coming from one

exam. One exam can consist 1 up to 3 genes (genes is test

keeper slot). The individual factors will be averaged first, and

then will be added with ev as the global factor. After that, they

will be divided by 4, thus creating the fitness value between 0

and 1 floating point. The 3 other global factors will directly re-

shuffle the chromosome if happened.

D. Crossover and Mutation

The crossover rate of a GA process is usually higher than

mutation and can be above 50% of probability. Mutation rate

should be kept low, usually just around 10%. High crossover

rate will lead to a global optimum, while too low will make the

Journal of Telecommunication, Electronic and Computer Engineering

4 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. X No. X

GA process longer. Mutation is good to prevent local optimum,

but a too high number will lead to too many variations of the

genes and causing the GA process to be longer.

The mutation and crossover rate is determining the success of

genetic algorithm, and usually done using trial and error process

[8], as can be seen in Table 3.

In this research, upon several testing, the ideal crossover rate

is 60%, and mutation is 10%. The crossover will exchange gene

from a random start and random end offset between two

chromosomes by 60% chance. The mutation will randomize a

gene in some random positions picked by 10% chance.

V. SCHEDULING TESTING RESULT

In this chapter, the genetic algorithm will be tested. First, we

will test the basic parameters i.e. mutation rate and crossover

rate. The number of population for each generation is 20.

Changing this number doesn’t affect much. The algorithm will

be stopped if it's having the same highest fitness value for 5

times in a row. The chromosome that is having the highest

fitness will be picked as the solution. The GA will be tested 3

times to check whether it is resulting the same chromosome

after each run.

A. Mutation and Crossover Rate

Changing the mutation and crossover rate doesn't affect

much, and can vary depends on the initial generation, but we

will pick the best rate after the testing. Table 3 show how these

rates affects how long the GA will run before it met the stopping

condition.
Table 3

Mutation and Crossover rate testing

Crossover % Mutation % # of Generation Time (minute)

55 15 531 13.14
55 10 544 12.98

60 15 522 12.32

60 10 509 12.16

70 15 514 13.06

70 10 525 11.92

From table 3, the 60% and 10% rate will be picked for the

crossover and mutation rate, respectively, based on the number

of generations before finding the best.

B. Genetic Algorithm Execution

In this section, we will run the GA for 3 times each for 2 exam

terms (during the mid-exam and final-exam early semester of

2016). The result shows that it usually generates 3 different

solutions, but the fitness value is almost the same. Because of

the chromosome can vary really much, there's not a problem if

we pick one of these solution, because they are equally good.

For the mid exam, the result can be seen in Figure 5 and Table

4. For the final exam, the result is in Figure 6 and Table 5.

Because it is from the same semester, the number of exams are

the same which is 76 exams, and needed 154 test keepers for

the mid exam (all classes are having exam), and 131 test keepers

for final exam (only 64 exams are having exam, the others are

project based). From these charts, can also be seen the growth

of fitness values. The initial generation is set the same, so the

result is not dependent on the initial generation.

Figure 5a. Mid Exam early 2016: Execution #1

Figure 5b. Mid Exam early 2016: Execution #2

Figure 5c. Mid Exam early 2016: Execution #3

In table 4, shown the details of the GA execution.

Table 4
Mid Exam early 2016: Execution Details

Execution # # of Generation Fitness result Time (minute)

1 537 0.552228571 13.78

2 523 0.537457143 12.69

3 553 0.541885714 14.62

The execution 1 result is used for the solution for mid exam

early 2016, which is the names of the test keepers for every

exam. The solution is checked manually by the exam

coordinator based on usual experience and knowledge, and it

requires 10.38% of changes (16 of 154 keeper names) to perfect

the result. So here we can say that the accuracy is 89.62%.

The result for GA execution for final exam can be seen below.

The GA execution slightly faster, because the number of exam

are lower, thus the chromosomes are shorter.

Figure 6a. Final Exam early 2016: Execution #1

Optimization of Test Keeper Scheduling Using Genetic Algorithm at Informatics Department Petra Christian University

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. X No. X 5

Figure 6b. Final Exam early 2016: Execution #2

Figure 6c. Final Exam early 2016: Execution #3

Table 5

Final Exam early 2016: Execution Details

Execution # # of Generation Fitness result Time (minute)

1 498 0.565514286 10.93

2 505 0.565085714 10.48

3 514 0.573228571 11.08

The execution 3 result is used for the solution for final exam

early 2016. After some manual checking, it requires 9.16% of

changes (12 of 131 keeper names) to perfect the result. So here

we can say that the accuracy is 90.84%.

Here is the example result of the test keeper schedules, exported

to Excel file, can be seen in Figure 7.

Figure 7. The Schedule, exported to Excel

VI. CONCLUSION

From the genetic algorithm execution for scheduling test

keepers, can be seen that the accuracy is pretty good, but still

needing some knowledge to fix the schedule. The accuracy is

90.23%, the average from 2 exam terms in the same semester.

To make the schedule more perfect, it will require some more

work, such as adding neural network which involves training

process which also can make the process faster. Also, the GA

fitness value can be tweaked more to produce better result.

VII. BIBLIOGRAPHY

[1] S. Sivanandam and S. Deepa, Introduction to Genetic

Algorithms, New York: Springer, 2008.

[2] R. Bhattacharjya, Introduction To Genetic Algorithms,

Guwahati: Indian Institute of Technology Guwahati, 2013.

[3] R. Chakraborty, Fundamentals of Genetic Algorithms,

Guna, 2010.

[4] M. O. Odim, B. O. Oguntunde and O. O. Alli, "On the

Fitness Measure of Genetic Algorithm for Generating

Institutional Lecture Timetable," Journal of Emerging

Trends in Computing and Information Sciences 4.4, 2013.

[5] M. Hristakeva and D. Shrestha, "Solving the 0-1 Knapsack

Problem with Genetic Algorithms," Midwest Instruction

and Computing Symposium, 2004.

[6] A. Ghaheri, S. Shoar, M. Naderan and S. S. Hoseini, "The

Applications of Genetic Algorithms in Medicine," Oman

Medical Journal, pp. 406-416, 2015.

[7] F. A. Omaraa and M. M. Arafa, "Genetic algorithms for

task scheduling problem," Journal of Parallel and

Distributed Computing, pp. 13-22, 2010.

[8] K. Deb and S. Argrawal, "Understanding Interactions

Among Genetic Algorithm Parameters," Foundations of

Genetic Algorithms 5, 1998.

