Turnitin ITB

Submission date: 07-May-2018 04:45PM (UTC+0700)

Submission ID: 960110443

File name: untuk_plagiarism_check.docx (1.33M)

Word count: 4806

Character count: 30043

Optimasi Ukuran Penampang Rangka Batang Baja berdasarkan SNI 1729:2015 dengan Metode Metaheuristik Symbiotic Organisms Search

Doddy Prayogo¹, Wong Foek Tjong², Ricky Gunawan³, Stefano Kusuma Ali⁴, Steven Sugianto⁵

1,3,4Program Studi Teknik Sipil

^{2,5}Program Studi Magister Teknik Sipil

Universitas Kristen Petra, Surabaya, tel. 62-31-2983041

E-mail: 1prayogo@petra.ac.id, 2wftjong@petra.ac.id, 3m21413114@john.petra.ac.id,

⁴m21413136@john.petra.ac.id, ⁵m01516011@john.petra.ac.id

Abstrak

Penelitian ini menyelidiki metode metaheuristik baru bernama symbiotic organisms search (SOS) dalam mengoptimasi ukuran penampang rangka batang baja. Syarat batasan desain diadopsi dari spesifikasi untuk bangunan gedung baja struktural, SNI 1729:2015, yaitu rasio gaya terhadap kapasitas dan rasio kelangsingan batang. Lima studi kasus optimasi struktur rangka batang digunakan untuk menguji performa dari SOS. Hasil simulasi dengan metode SOS ini kemudian akan dibandingkan terhadap tiga metode metaheuristik lainnya, yaitu particle swarm optimization, differential evolution, dan teaching-learning-based optimization. Hasil penelitian memunjukkan bahwa algoritma SOS lebih superior dan mempunyai kemampuan konvergensi yang lebih baik dibandingkan dengan metode metaheuristik lainnya dalam menyelesaikan problem optimasi struktur rangka batang.

Kata-kata kunci: rangka batang, optimasi, metaheuristik, SNI 1729:2015, symbiotic organisms search.

Abstract

This study investigates a new metaheuristic method called symbiotic organisms search (SOS) for sizing optimization of steel truss structures. The design constraints are adopted from SNI 1729:2015 Indonesian code specification for structural steel huildings that includes the constraints on slenderness ratio and force capacity. Five practical case studies of truss design are employed to test the performance of the SOS algorithm. The simulation results of the SOS are compared to other metaheuristic methods, namely, the particle swarm optimization, differential evolution, and teaching-learning-based optimization, in terms of accuracy and consistency. The results show the superiority of the SOS as well as excellent convergence behavior over the other metaheuristic algorithms in solving the truss structure optimization problems.

Keywords: truss structure, optimization, metaheuristic, SNI 1729: 2015, symbiotic organisms search.

1. Pendahuluan

Efisiensi biaya merupakan hal yang penting dalam perencanaan struktur rangka batang. Umumnya, para perencana menggunakan metode *trial-and-error* untuk menentukan pemilihan profil yang didasarkan intuisi dan pengalaman pribadi. Namun, metode tersebut tidak dapat menjamin terwujudnya suatu desain yang optimal. Itulah sebabnya para peneliti berinisiatif untuk mengembangkan berbagai macam metode optimasi. Penerapan optimasi pada struktur rangka batang diharapkan mampu menghasilkan efisiensi penggunaan bahan namun masih tetap memenuhi persyaratan desain yang mencakup *safety* dan *serviceability*.

Kerumitan dalam optimasi struktur yang diakibatkan oleh banyaknya jumlah elemen dan batasan desain yang digunakan menyebabkan metode metaheuristik lebih populer digunakan daripada metode berbasis gradien. Pada umumnya, metode metaheuristik mengadopsi fenomena-fenomena alam yang sering ditemui dalam suatu grup atau populasi makhluk hidup. Beberapa contoh dari metode metaheuristik yang terkenal diantara lain: genetic algorithm (GA) (Holland, 1975), yang mengadopsi proses dari evolusi alam; particle swarm optimization (PSO) (Kennedy dan Eberhart, 1995), yang mensimulasikan perilaku dan interaksi sosial yang sering muncul pada sekawanan burung maupun ikan; dan ant colony optimization (ACO) (Dorigo, et al., 1996), yang memodelkan perilaku koloni semut dalam mencari sumber makanan.

Banyak peneliti yang telah mengaplikasikan metode metaheuristik ke dalam optimasi struktur rangka batang: Deb dan Gulati (2001) menggunakan GA, Lamberti (2008) menggunakan simulated annealing (SA), Lee dan Geem (2004) menggunakan harmony search (HS), dan Sonmez (2011) menggunakan artificial bee colony (ABC). Lebih lanjut lagi, beberapa peneliti telah mengembangkan metode modifikasi dari metaheuristik dasar untuk meningkatkan akurasi dan kecepatan proses pencarian desain struktur rangka batang yang optimal diantaranya: Li, et al. (2009) mengembangkan heuristic particle swarm optimization (HPSO), Cheng, et al. (2016b) mengembangkan hybrid harmony search (HHS), dan Cheng dan Prayogo (2017) mengembangkan fuzzy adaptive teaching—learning-based optimization (FATLBO).

Belum lama ini, Cheng dan Prayogo (2014) memperkenalkan metode metaheuristik baru bernama symbiotic organisms search (SOS) yang mensimulasikan hubungan simbiosis antar makhluk hidup dalam suatu ekosistem. Simbiosis berperan dalam kelangsungan hidup dan perkembangan dari makhluk-makhluk hidup tersebut. Algoritma SOS memiliki tiga fase utama yang mengadopsi fenomena simbiosis: mutualism phase, commensalism phase, dan parasitism phase. Ketiga fase tersebut diharapkan mampu meningkatkan proses pencarian solusi terbaik secara efektif dan efisien. Sejak awal ditemukannya, SOS terbukti sukses digunakan untuk menyelesaikan masalah optimasi dari berbagai macam bidang penelitian (Cheng, et al., 2014; Cheng dan Prayogo, 2016; Cheng, et al., 2016a; Prayogo, et al., 2017; Tran, et al., 2016).

Kesuksesan algoritma SOS dalam menyelesaikan problem optimasi yang rumit mendorong penyelidikan dan eksplorasi lebih jauh akan potensi dari algoritma ini dalam optimasi struktur rangka batang. Dalam penelitian ini, algoritma SOS akan digunakan untuk mencari desain pruktur rangka batang yang optimal. Studi kasus optimasi struktur rangka batang yang digunakan adalah: (1) 10-bar planar truss, (2) 15-bar planar truss, (3) 25-bar spatial truss, (4) 52-bar planar truss, (5) 72-bar spatial truss. Desain struktur rangka batang menggunakan profil baja sebagai elemen penyusun serta wajib memenuhi syarat batasan desain, yaitu rasio gaya terhadap kapasitas dan

rasio kelangsingan batang, berdasarkan ketentuan SNI 1729:2015 (Badan Standarisasi Nasional, 2015). Performa dari SOS akan dibandingkan terhadap tiga metode metaheuristik laipanya yaitu PSO (Kennedy dan Eberhart, 1995), differential evolution (DE) (Storn dan Price, 1997), dan teaching—learning-based optimization (TLBO) (Rao, et al., 2011).

2. Perumusan Optimasi Desain Struktur Rangka Batang

Tujuan dari kebanyakan optimasi desain struktur rangka batang adalah untuk menemukan biaya maupun berat minimum dengan cara memilih penampang rangka batang yang tersedia pada tabel penampang di mana desain terakhir harus memenuhi kekuatan dan unsur kelayakan lainnya yang ditentukan oleh standar yang berlaku. Untuk sebuah struktur yang terdiri dari sejumlah N_m elemen, problem optimasi dapat diformulasikan sebagai berikut.

2.1. Fungsi Objektif

Tujuan dari problem optimasi ini adalah untuk menemukan sebuah vektor yang berisikan profil dengan luas penampang A_m (persamaan 1) sejumlah N_m komponen dari struktur tersebut,

$$\mathbf{A}^{\mathrm{T}} = [A_1, A_2, \dots, A_{N_m}] \tag{1}$$

sedemikian sehingga dapat menghasilkan fungsi objektif berat,

$$W = \sum_{m=1}^{N_m} \rho_m L_m A_m \tag{2}$$

yang minimum. Dalam persamaan ini W adalah berat total struktur itu, ρ_m , L_m , dan A_m merupakan berat jenis, panjang, dan luas penampang.

2.2. Fungsi Pembatas

Pada permasalahan optimasi struktur rangka batang, fungsi-fungsi pembatas diambil dari respon struktural secara keseluruhan dan perilaku dari masing-masing elemen, yaitu:

$$g_m = \frac{\sigma_m}{\sigma_m^{all}} - 1 \le 0; \ m = 1, ..., N_m$$
 (3)

$$\delta_j = \frac{d_{j,k}}{d_{j,k}} - 1 \le 0; \ j = 1, ..., N_j$$
 (4)

Pada persamaan (3) dan (4), fungsi-fungsi g_m dan δ_m adalah faktor pembatas optimasi masing-masing untuk untuk tegangan dan perpindahan; σ_m dan σ_m^{all} masing-masing merupakan tegangan tekan aktual dan yang dijinkan pada elemen ke-m; N_j merupakan jumlah total dari sambungan; $d_{j,k}$ dan $d_{j,k}^{all}$ masing-masing merupakan perpindahan aktual dan yang dijinkan pada sambungan ke-j pada arah ke-k.

Pada penelitian ini akan digunakan profil struktur berongga (PSB) bulat sebagai penampang elemen. Faktor-faktor batasan mengikuti spesifikasi dari SNI 1729:2015 yang terkait dengan rasio kelangsingan dan gaya aksial. Menurut spesifikasi dari SNI 1729:2015, rasio kelangsingan dibatasi sebesar 300 untuk komponen tarik dan 200 untuk komponen tekan dan dapat diformulasikan sebagai berikut:

$$\lambda_m = \frac{\kappa_m L_m}{r_m} \le 300 \text{ (untuk komponen tarik)}$$
 (5)

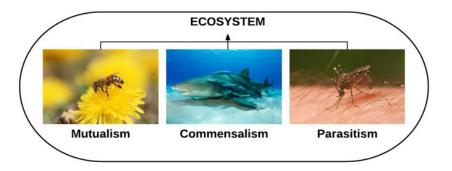
$$\lambda_m = \frac{\kappa_m L_m}{r_m} \le 200 \text{ (untuk komponen tekan)}$$
 (6)

dimana λ_m merupakan rasio kelangsingan aktual pada elemen ke-m, K_m adalah faktor panjang efektif elemen ke-m, L_m adalah panjang tanpa pengekangan lateral dari elemen ke-m, dan r_m adalah radius girasi penampang elemen ke-m.

SNI 1729:2015 juga mensyaratkan bahwa gaya aksial yang terjadi pada setiap komponen rangka batang tidak boleh melebihi kapasitas aksial dari komponen rangka batang tersebut, yaitu:

$$P_m \le 0.9F_{cr,m}A_{g,m}$$
 (untuk komponen tarik) (7)

$$P_m \le \min(0.9F_{cr.m}A_{a.m}; 0.75F_{u.m}A_{e.m}) \text{ (untuk komponen tekan)}$$
(8)


 P_m merupakan gaya pada elemen ke-m; $F_{cr,m}$ adalah tegangan kritis pada elemen ke-m; $A_{g,m}$ merupakan luas penampang bruto elemen ke-m; $F_{u,m}$ merupakan kekuatan tarik minimum yang disyaratkan pada elemen ke-m; $A_{e,m}$ adalah luas neto efektif elemen ke-m. Dalam penelitian ini gaya aksial yang terjadi, P_m , didapatkan dari hasil analisis linier struktur dengan metode elemen hingga.

3. Metode Optimasi Metaheuristik

Pada bagian ini, struktur dan filosofi utama dari metode SOS akan dibahas. Di samping itu, SOS akan dibandingkan dengan tiga macam metode metaheuristik yaitu: PSO, DE, dan TLBO. Struktur dan filosofi dari metode-metode ini juga akan dipresentasikan sebagai pembanding.

3.1. Symbiotic Organisms Search (SOS)

Algoritma SOS merupakan metode optimasi metaheuristik yang mensimulasikan interaksi simbiosis yang dilakukan oleh macam-macam organisme di dalam ekosistem yang bertujuan untuk meningkatkan tingkat kelangsungan hidup dari organisme yang bersangkutan (Cheng dan Prayogo, 2014). Interaksi antar makhluk hidup secara umum dapat dibagi menjadi tiga macam, yaitu simbiosis mutualisme, komensalisme dan parasitisme. Contoh dari ketiga hubungan tersebut diilustrasikan pada Gambar 1. Setiap organisme selalu melakukan simbiosis agar mereka mampu beradaptasi terhadap lingkungan dan bertahan hidup lebih lama, maka dari itu dapat disimpulkan bahwa simbiosis mampu membangun, membentuk dan mempertahankan semua ekosistem modern.

Gambar 1. Ilustrasi simbiosis yang terjadi antar makhluk hidup

Setiap organisme, yang melambangkan variabel solusi, akan saling berinteraksi dengan yang lain secara acak dan akan mengalami ketiga simbiosis tersebut. Prosedur kerja dari algoritma SOS terdiri atas tiga fase, yaitu: (1) Fase inisialisasi; (2) Fase simbiosis (mutualism phase, commensalism phase, dan parasitism phase); (3) Pengulangan hingga mendapatkan hasil yang diinginkan. Pseudo-code berikut ini menggambarkan algoritma SOS secara garis besar:

- 1: Initialisasi parameter
- 2: Initialisasi ekosistem dengan variabel acak
- 3: while (belum memenuhi kriteria berhenti) do
- 4: for masing-masing organisme i
- 5: %% Mutualism phase
- pilih organisme j secara acak dari ekosistem
- 7: update solusi terbaik dalam ekosistem
- 8: modifikasi organisme i dan j melalui mutualism phase
- 9: evaluasi nilai objektif dari organisme i dan j setelah interaksi mutualisme
- 10: terima hasil modifikasi organisme i dan j apabila nilai objektif yang dihasilkan lebih baik
- 11: %% Commensalism phase
- 12: pilih organisme j secara acak dari ekosistem
- 13: modifikasi organisme i melalui commensalism phase
- 14: evaluasi nilai objektif dari organisme i setelah interaksi komensalisme
- 15: terima hasil modifikasi organisme i apabila nilai objektif yang dihasilkan lebih baik
- 16: % Parasitism phase

- 17: pilih organisme j secara acak dari ekosistem
- 18: bentuk "Parasite_Vector" melalui parasitism phase
- evaluasi nilai objektif dari Parasite Vector
- 20: ubah organisme j menjadi Parasite_Vector apabila nilai objektif yang dihasilkan lebih baik
- 21: end for

22: end while

Detail lebih lanjut mengenai ketiga fase ini akan dijelaskan pada sub-bab berikut.

3.1.1. Mutualism phase

Dalam algoritma SOS, organisme yang cocok dengan anggota ekosistem ke-i dilambangkan dengan variabel X_i . Organisme lain, X_j , kemudian dipilih secara acak dari ekosistem untuk berinteraksi dengan X_i . Kandidat solusi baru yaitu $new_{-}X_i$ dan $new_{-}X_j$ dihitung berdasarkan simbiosis mutualisme antara organisme X_i dan X_j , yang dimodelkan dalam Persamaan (9) dan (10). Organisme X_i dan X_j diperbarui hanya jika nilai objektif dari $new_{-}X_i$ dan $new_{-}X_j$ lebih baik daripada nilai objektif X_i dan X_j sebelum interaksi.

$$new_X_i = X_i + rand(0,1) * [X_{best} - mean(X_i, X_j) * round[1 + rand(0,1)]]$$
 (9)

$$new_{-}X_{j} = X_{j} + rand(0,1) * \left[X_{best} - mean(X_{i}, X_{j}) * round[1 + rand(0,1)]\right]$$

$$(10)$$

dimana X_{best} merupakan organisme terbaik dalam ekosistem.

3.1.2. Commensalism phase

Serupa dengan fase mutualisme, organisme X_j dipilih secara acak dari ekosistem untuk berinteraksi dengan X_i . Kandidat solusi baru yaitu $new_{-}X_i$ dihitung sesuai dengan simbiosis komensalisme antara organisme X_i dan X_j , yang dimodelkan dalam Persamaan (11). Organisme X_i diperbarui hanya jika nilai objektif dari $new_{-}X_i$ lebih baik daripada nilai objektif X_i sebelum interaksi.

$$new_{X_i} = X_i + rand(-1,1) * (X_{best} - X_i)$$
(11)

3.1.3. Parasitism phase

Dalam algoritma SOS, organisme X_i diberi peran untuk memproduksi parasit buatan yang dinamakan "Parasite_Vector". Parasite_Vector merupakan modifikasi acak dari organisme X_i yang dimodelkan dalam Persamaan (12). Organisme X_j dipilih secara acak dari ekosistem dan berfungsi sebagai host dari parasite tersebut. Setelah interaksi, jika Parasite_Vector memiliki nilai objektif yang lebih baik, maka akan menggantikan posisi organisme X_j di ekosistem. Namun, jika nilai fitness X_j lebih baik, X_j akan tetap tinggal di ekosistem itu.

$$parasite_vector = F * X_i + (1 - F) * (rand(0,1) * (ub - lb) + lb)$$
(12)

dimana F merupakan maktriks biner acak yang bertujuan untuk menentukan secara acak variabel-variabel solusi yang akan dimodifikasi; ub dan lb menunjukkan batas atas dan batas bawah dari rentang pencarian variabel solusi.

Kode program dari SOS dapat dilihat secara terbuka melalui http://cice.petra.ac.id/wordpress/wp-content/uploads/2017/06/SOS.rar.

3.2. Particle Swarm Optimization (PSO), Differential Evolution (DE), dan Teaching-Learning-Based Optimization (TLBO)

PSO, yang pertama kali diciptakan oleh Kennedy dan Eberhart (1995), merupakan metode optimasi metaheuristik berbasis pada swarm intelligence yang didasarkan pada bentuk perilaku sosial antar makhluk hidup. Algoritma PSO bermula dengan menciptakan populasi acak berisikan sejumlah variabel solusi yang diberi nama partikel, di mana setiap partikel memiliki kecepatan awal serta posisi awal yang diberikan secara acak. Pada setiap iterasi, partikel ini akan bergerak di dalam ruang pencarian ke arah solusi yang paling optimal. Apabila posisi baru suatu partikel diakhir iterasi lebih baik dari posisi sebelumnya, nilai tersebut akan disimpan di dalam pBest (personal best) beserta dengan posisinya. Proses pergerakan dari partikel ini dimodelkan melalui suatu persamaan matematis. Setelah seluruh partikel dalam populasi bergerak, maka algoritma akan memilih satu partikel dengan nilai terbaik dan menyimpan nilai tersebut dalam gBest (global best) beserta dengan posisinya. Pseudo-code berikut ini menggambarkan algoritma PSO secara garis besar:

- 1: Initialisasi parameter
- 2: Initialisasi partikel (x) dan kecepatan (v) dengan variabel acak
- 3: Hitung pbest dan gbest inisial
- 3: while (belum memenuhi kriteria berhenti) do
- 4: for masing-masing partikel i
- 5: $update \text{ kecepatan } (v_i)$
- 6: $update x_i = x_i + v_i$
- evaluasi nilai objektif dari partikel i
- 8: *update pbest_i* apabila nilai objektif yang dihasilkan lebih baik
- 9: end for
- 10: update gbest

11: end while

DE, yang dikembangkan oleh Storn dan Price (1997), merupakan salah satu metode optimasi metaheuristik yang berbasis pada *evolutionary algorithm* yang mengambil inspirasi dari suatu populasi makhluk hidup yang berevolusi secara terus-menerus. Dalam operasinya, DE memiliki tiga operasi penting yang harus dilakukan untuk mendapatkan hasil yang optimum, yaitu dengan cara *crossover* dan *mutation* untuk menciptakan kandidat individu yang baru serta dilakukan *selection* untuk menentukan apakah kandidat individu tersebut dapat lolos ke generasi selanjutnya. Proses *crossover* dan *mutation* dari masing-masing individu dimodelkan melalui suatu persamaan matematis. DE memiliki struktur algoritma yang berbeda dengan PSO. DE mengadopsi *greedy selection* perihal

memperbaharui individu dalam suatu populasi. *Pseudo-code* berikut ini menggambarkan algoritma DE secara garis besar:

- 1: Initialisasi parameter
- 2: Initialisasi populasi dengan variabel acak
- 3: while (belum memenuhi kriteria berhenti) do
- 4: for masing-masing populasi i
- 5: pilih populasi a, b, dan c secara acak dari ekosistem
- 6: menciptakan *donor i* melalui operasi *mutation* melibatkan populasi *a*, *b*, dan *c*
- 7: menciptakan offspring i melalui operasi crossover antara populasi i dan donor i
- evaluasi nilai objektif dari offspring i setelah crossover
- 9: terima offspring i sebagai populasi i yang baru apabila nilai objektif yang dihasilkan lebih baik
- 10: end for

11: end while

TLBO merupakan metode optimasi metaheuristik yang diciptakan oleh Rao, et al. (2011) berdasarkan proses belajar mengajar antara guru dan murid dalam suatu kelas. Algoritma ini dibagi menjadi dua fase yaitu teacher phase dan learner phase. Pada teacher phase, akan dipilih 1 individu yang memiliki nilai paling baik untuk menjadi teacher dan bertugas mengajar individu lainnya yang berperan sebagai learner. Pada learner phase, proses saling belajar mengajar antara sesama learner dimana yang memiliki nilai lebih baik akan mengajar yang memiliki nilai lebih rendah dengan harapan nilai learner baik yang lebih rendah maupun yang lebih tinggi dapat meningkat. Proses belajar-mengajar pada kedua fase ini direpresentasikan dengan persamaan matematis. TLBO memiliki struktur algoritma yang mirip dengan DE dan juga mengadopsi greedy selection dalam prinsip memperbaharui individu dalam suatu populasi. Pseudo-code berikut ini menggambarkan algoritma TLBO secara garis besar:

- 1: Initialisasi parameter
- 2: Initialisasi populasi dengan variabel acak
- 3: while (belum memenuhi kriteria berhenti) do
- for masing-masing organisme i
- 5: %% Teacher phase
- 6: pilih murid j secara acak dari populasi
- 7: update solusi terbaik dalam populasi
- 8: modifikasi murid i melalui teacher phase

- evaluasi nilai objektif dari murid i setelah teacher phase
- 10: terima hasil modifikasi murid i apabila nilai objektif yang dihasilkan lebih baik
- 11: %% Learner phase
- 12: pilih murid j secara acak dari ekosistem
- 13: modifikasi murid i melalui learner phase
- 14: evaluasi nilai objektif dari murid *i* setelah *learner phase*
- 15: terima hasil modifikasi murid i apabila nilai objektif yang dihasilkan lebih baik
- 16: end for
- 17: end while

4. Studi Kasus Optimasi Struktur Rangka Batang

Dalam penelitian ini, kemampuan SOS dalam mengoptimasi struktur rangka batang akan diselidiki dengan menggunakan beberapa studi kasus optimasi struktur rangka batang, di antaranya: (1) 10-bar planar truss, (2) 15-bar spatial truss, (3) 25-bar spatial truss, (4) 52-bar planar truss, dan (5) 72-bar spatial truss. Pada percobaan ini, berat struktur akan dioptimasi dengan memilih serangkaian penampang dari 49 buah profil struktur berongga (PSB) yang tersedia pada Tabel Profil Konstruksi Baja (Gunawan, 2003). Bahan baja yang digunakan memiliki massa jenis (ρ)= 7800 kg/m³, modulus elastisitas (E) = 200.000 Mpa dan tegangan leleh (fy) = 240 Mpa. Lebih lanjut lagi, SOS akan dibandingkan dengan algoritma metaheuristik lainnya yaitu PSO, DE, dan TLBO.

Proses optimasi struktur rangka batang dari masing-masing algoritma metaheuristik terbagi menjadi 5 tahapan yaitu:

1. Inisialisasi parameter.

Pada tahap awal, perlu dilakukan identifikasi terhadap kasus desain struktur seperti koordinat *joint*, konektivitas batang, jenis perletakan pada semua *joint*, arah dan besar beban pada semua *joint*. Disamping itu, parameter dari masing-masing algoritma metaheuristik harus didefiniskan terlebih dahulu.

2. Inisialisasi profil penampang secara acak dan evaluasi nilai objektif.

Masing-masing dari algoritma metaheuristik akan melakukan inisialisasi dari variabel solusi awal berupa profil penampang secara acak. Variabel solusi awal tersebut akan dievaluasi untuk menentukan nilai objektif yang berupa berat struktur.

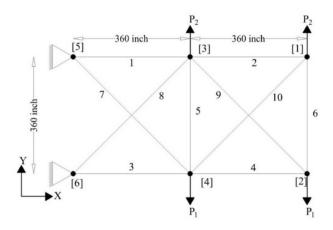
3. Simulasi pencarian melalui algoritma metaheuristik (PSO, DE, TLBO, dan SOS).

Simulasi pencarian akan dilakukan dengan pola pencarian khas dari masing-masing algoritma. PSO akan melakukan pencarian dengan prinsip perpindahan partikel beserta update *pbest* dan *gbest*. DE akan melakukan pencarian dengan operasi *mutation* dan *crossover* dimana *update* solusi baru dapat dilakukan jika solusi yang

dihasilkan lebih baik daripada sebelumnya setelah dievaluasi nilai objektifnya. TLBO akan melakukan pencarian dengan teacher phase dan learner phase dimana pada masing-masing fase akan dilakukan evaluasi nilai objektif dan update solusi jika solusi yang dihasilkan lebih baik daripada sebelumnya. SOS akan melakukan pencarian dengan mutualism phase, commensalism phase, dan parasitism phase dimana pada masing-masing fase akan dilakukan evaluasi nilai objektif dan update solusi jika solusi yang dihasilkan lebih baik daripada sebelumnya.

4. Pengecekan syarat fungsi pembatas.

Setelah proses update solusi dilakukan dimana akan dihasilkan suatu kombinasi profil penampang yang baru, analisis struktur direct stiffness method akan dilakukan untuk mencari tegangan batang dan perpindahan joint yang kemudian akan dibandingkan dengan tegangan dan perpindahan ijin. Apabila fungsi pembatas terlampau, maka variabel solusi akan diberikan nilai hukuman. Pengecekan syarat yang sama juga berlaku untuk fungsi-fungsi pembatas yang berdasarkan SNI 1729:2015.

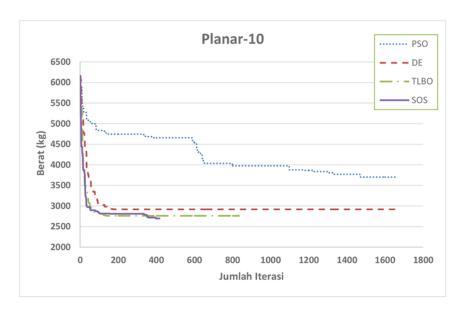

Kriteria berhenti.

Setelah proses simulasi pencarian dan pengecekan fungsi pembatas, informasi profil penampang yang tersimpan dalam variabel populasi akan diteruskan ke iterasi berikutnya sampai kriteria berhenti terpenuhi. Masing-masing algoritma akan berhenti apabila sudah dilakukan 50.000 kali perhitungan analisis struktur, yang dilakukan untuk mengecek fungsi pembatas.

Untuk setiap kasus optimasi, dilakukan 30 kali simulasi untuk keempat algoritma metaheuristik itu. Berat struktur yang dihasilkan oleh masing-masing algoritma akan dicatat untuk mencari nilai terbaik (*Best*), nilai rata-rata (*Average*), dan standar deviasi (*Stdev*). Nilai-nilai tersebut akan digunakan sebagai parameter untuk membandingkan kepiawaian masing-masing algoritma dalam mengoptimasi struktur rangka batang tersebut.

4.1. Studi Kasus 1: 10-bar planar truss

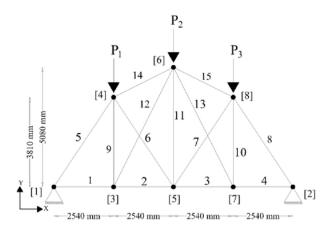
Bentuk struktur 10-bar planar truss dapat dilihat pada Gambar 2. Pembebanan yang diberikan untuk struktur itu adalah $P_1 = 10^5$ lb (444.822 N) dan $P_2 = 0$ lb. Tabel 1 menunjukkan profil terpakai, hasil terbaik, rata-rata, standar deviasi yang didapat dari algoritma metaheuristik. Sementara itu, konvergensi pencarian dari keempat algoritma metaheuristik ditunjukkan oleh Gambar 3.



Gambar 2. Struktur 10-bar planar truss

Tabel 1. Hasil optimasi SOS dan algoritma metaheuristik lainnya pada studi kasus *10-bar planar truss* dengan batasan SNI 1729:2015

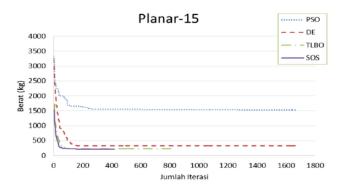
Variabe	l	PSO	DE	TLBO	SOS
A1	mm ²	4602,75	3964,06	4602,75	4602,75
A2	mm ²	1226,48	989,22	759,13	759,13
A3	mm ²	8750,91	8750,91	5890,49	5890,49
A4	mm ²	8750,91	2994,25	3964,06	3964,06
A5	mm ²	1706,51	759,13	989,22	1116,90
A6	mm ²	1552,26	989,22	759,13	759,13
A7	mm ²	2632,34	3479,00	2516,42	2516,42
A8	mm ²	8750,91	5890,49	6850,24	6850,24
A9	mm ²	1912,76	1912,76	2516,42	2271,84
A10	mm ²	4602,75	4602,75	3481,51	2994,25
Best*	kg	3701,85	2917,94	2759,75	2695,04
Average*	kg	4654,76	3411,00	3326,65	2861,64
Stdev*	kg	525,97	341,11	424,21	96,33


^{*}Best, Average, dan Stdev melambangkan hasil terbaik, rata-rata, standar deviasi yang didapat dari masingmasing algoritma metaheuristik dari hasil 30 kali simulasi.

Gambar 3. Grafik konvergensi perubahan berat struktur 10-bar planar truss PSO, DE, TLBO dan SOS

4.2. Studi Kasus 2: 15-bar planar truss

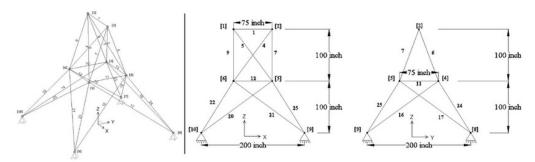
Bentuk struktur 15-bar planar truss dapat dilihat pada Gambar 4. Ada tiga kasus pembebanan yang diberikan untuk struktur berikut, yaitu: 1) $P_1 = 35 \text{ kN}$; $P_2 = 35 \text{ kN}$; $P_3 = 35 \text{ kN}$, 2) $P_1 = 35 \text{ kN}$; $P_2 = 0 \text{ kN}$; $P_3 = 35 \text{ kN}$, dan 3) $P_1 = 35 \text{ kN}$; $P_2 = 35 \text{ kN}$; $P_3 = 0 \text{ kN}$. Tabel 2 menunjukkan profil terpakai, hasil terbaik, rata-rata, standar deviasi yang didapat dari algoritma metaheuristik. Sementara itu, konvergensi pencarian dari keempat algoritma metaheuristik ditunjukkan oleh Gambar 5.



Gambar 4. Struktur rangka batang 15-bar planar truss

Tabel 2. Hasil optimasi SOS dan algoritma metaheuristik lainnya pada studi kasus *15-bar planar truss* dengan Batasan SNI 1729:2015

Variabel		PSO	DE	TLBO	SOS
A1	mm ²	8750,91	291,92	291,92	291,9
A2	mm ²	8750,91	291,92	291,92	291,9
A3	mm ²	8750,91	291,92	291,92	291,9
A4	mm ²	8750,91	291,92	291,92	291,9
A5	mm ²	1069,40	989,22	989,22	989,2
A6	mm ²	1226,48	646,54	646,54	646,5
A8	mm ²	1069,40	989,22	989,22	989,2
A9	mm ²	1069,40	576,04	420,53	420,5
A10	mm ²	8750,91	576,04	576,04	420,5
A11	mm ²	646,54	646,54	646,54	646,5
A12	mm ²	989,22	759,13	759,13	759,1
A13	mm ²	759,13	759,13	759,13	759,1
A14	mm ²	8750,91	576,04	576,04	576,0
A15	mm ²	8750,91	576,04	576,04	576,0
Best*	kg	1619,37	292,62	288,00	283,3
Average*	kg	2348,32	777,63	307,91	290,1
Stdev*	kg	361,22	244,71	21,71	4,68


^{*}Best, Average, dan Stdev melambangkan hasil terbaik, rata-rata, standar deviasi yang didapat dari masingmasing algoritma metaheuristik dari hasil 30 kali simulasi.

Gambar 5. Grafik konvergensi perubahan berat struktur 15-bar planar truss PSO, DE, TLBO dan SOS

4.3. Studi Kasus 3: 25-bar spatial truss

Bentuk struktur rangka batang spasial-25-batang dapat dilihat pada Gambar 6, sedangkan kasus pembebanan dapat dilihat pada Tabel 3. Tabel 4 menunjukkan profil terpakai, hasil terbaik, rata-rata, standar deviasi yang didapat dari keempat algoritma metaheuristik. Sementara itu, konvergensi pencarian dari keempat algoritma metaheuristik ditunjukkan oleh Gambar 7.

Gambar 6. Struktur rangka batang 25-bar spatial truss

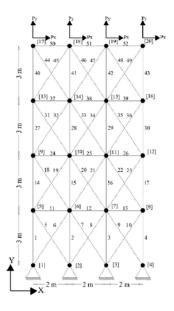
Tabel 3. Pembebanan pada struktur rangka batang 25-bar spatial truss

Joint	P_x (kips)	P_y (kips)	P_z (kips)
1	1,0	-10,0	-10,0
2	0,0	-10,0	-10,0
3	0,5	0,0	0,0
6	0,6	0,0	0,0

Tabel 4. Hasil optimasi algoritma metaheuristik pada 25-bar spatial truss dengan batasan SNI 1729:2015

Variabel		PSO	DE	TLBO	SOS
A1	mm ²	420,53	158,34	158,34	158,34
A2-A5	mm ²	420,53	420,53	646,54	420,53
A6-A9	mm ²	8750,91	759,13	646,54	759,13
A10-A11	mm ²	123,78	123,78	123,78	123,78
A12-13	mm ²	1069,40	229,05	229,05	229,05
A14-A17	mm ²	646,54	646,54	646,54	646,54
A18-A21	mm ²	646,54	734,88	646,54	734,88
A22-A25	mm ²	863,56	759,13	759,13	759,13
Best*	kg	1102,33	399,06	400,20	399,06
Average*	kg	2796,44	938,27	406,53	401,43

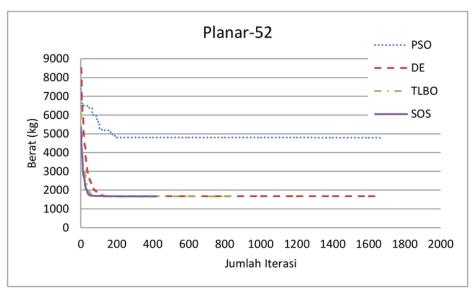
Stdev*	kg	861,98	673,52	15,35	3,11
--------	----	--------	--------	-------	------


^{*}Best, Average, dan Stdev melambangkan hasil terbaik, rata-rata, standar deviasi yang didapat dari masingmasing algoritma metaheuristik dari hasil 30 kali simulasi.

Gambar 7. Grafik konvergensi perubahan berat struktur 25-bar spatial truss PSO, DE, TLBO dan SOS

4.4. Studi Kasus 4: 52-bar planar truss

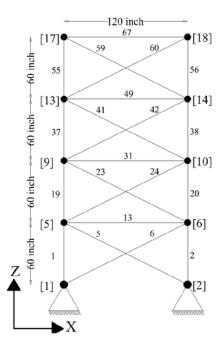
Bentuk struktur 52-bar-planar truss dapat dilihat pada Gambar 8. Adapun pembebanan yang diberikan untuk struktur berikut yaitu: $P_x = 100 \text{ kN}$ dan $P_y = 200 \text{ kN}$. Total 52 batang yang ada pada struktur tersebut akan dikelompokkan menjadi dua belas kategori, yaitu: (1) A_1 – A_4 , (2) A_5 – A_{10} , (3) A_{11} – A_{13} , (4) A_{14} – A_{17} , (5) A_{18} – A_{23} , (6) A_{24} – A_{26} , (7) A_{27} – A_{30} , (8) A_{31} – A_{36} , (9) A_{37} – A_{39} , (10) A_{40} – A_{43} , (11) A_{44} – A_{49} , (12) A_{50} – A_{52} . Tabel 5 menunjukkan profil terpakai, hasil terbaik, rata-rata, standar deviasi yang didapat dari algoritma metaheuristik. Sementara itu, konvergensi pencarian dari keempat algoritma metaheuristik ditunjukkan oleh Gambar 9.

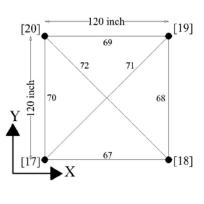


Gambar 8. Struktur rangka batang 52-bar planar truss

Tabel 5. Hasil optimasi algoritma metaheuristik pada 52-bar planar truss dengan batasan SNI 1729:2015

Variabel		PSO	DE	TLBO	SOS
A1-A4	mm ²	8750,91	3479,00	3479,00	3479,00
A5-A10	mm ²	1226,48	1116,90	1116,90	1116,90
A11-A13	mm ²	576,04	710,00	710,00	710,00
A14-A17	mm ²	2522,07	2632,34	2632,34	2632,34
A18-A23	mm ²	1517,39	1116,90	989,22	989,22
A24-A26	mm ²	8750,91	646,54	646,54	646,54
A27-A30	mm ²	8750,91	1912,35	1912,76	1912,35
A31-A36	mm ²	1116,90	989,22	989,22	989,22
A37-A39	mm ²	8750,91	576,04	576,04	576,04
A40-A43	mm ²	8750,91	989,22	989,22	989,22
A44-A49	mm ²	1116,90	989,22	989,22	989,22
A50-A52	mm ²	8750,91	646,54	908,55	908,55
Best*	kg	4788,84	1675,09	1665,84	1665,80
Average*	kg	6485,83	2984,61	1732,73	1672,95
Stdev*	kg	974,00	896,49	89,51	6,02


^{*}Best, Average, dan Stdev melambangkan hasil terbaik, rata-rata, standar deviasi yang didapat dari masingmasing algoritma metaheuristik dari hasil 30 kali simulasi.



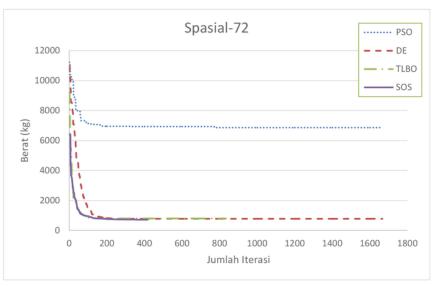
Gambar 9. Grafik konvergensi perubahan berat struktur 52-bar planar truss PSO, DE, TLBO dan SOS

4.5. Studi Kasus 5: 72-bar spatial truss

Bentuk struktur 72-bar spatial truss dapat dilihat pada Gambar 10. Kasus pembebanan dapat dilihat pada Tabel 6. Total 72 batang yang ada pada struktur tersebut akan dikelompokkan menjadi enam belas kategori, yaitu : (1) A₁-A₄, (2) A₅ -A₁₂, (3) A₁₃ -A₁₆, (4) A₁₇ -A₁₈, (5) A₁₉ -A₂₂, (6) A₂₃ -A₃₀, (7) A₃₁ -A₃₄, (8) A₃₅ -A₃₆, (9) A₃₇ -A₄₀, (10) A₄₁ -A₄₈, (11) A₄₉ -A₅₂, (12) A₅₃ -A₅₄, (13) A₅₅ -A₅₈, (14) A₅₉ -A₆₆, (15) A₆₇ -A₇₀ dan (16) A₇₁ -A₇₂. Tabel 7 menunjukkan profil terpakai, hasil terbaik, rata-rata, standar deviasi yang didapat dari algoritma metaheuristik. Sementara itu, konvergensi pencarian dari keempat algoritma metaheuristik ditunjukkan oleh Gambar 11.

Gambar 10. Struktur rangka batang 72-bar spatial truss

Tabel 6. Dua kasus pembebanan pada struktur rangka batang 72-bar spatial truss


	Kas	sus Pembebana	an 1	Kasus Pembebanan 2		
Nodes	P_x (kips)	P_y (kips)	P_z (kips)	P_x (kips)	P_y (kips)	P_z (kips)
17	5,0	5,0	-5,0	0,0	0,0	-5,0
18	0,0	0,0	0,0	0,0	0,0	-5,0
19	0,0	0,0	0,0	0,0	0,0	-5,0
20	0,0	0,0	0,0	0,0	0,0	-5,0

Tabel 7. Hasil optimasi SOS dan algoritma metaheuristik lainnya pada studi kasus *72-bar spatial truss* dengan batasan SNI 1729:2015

Variabel		PSO	DE	TLBO	SOS
A1-A4	mm ²	8750,91	291,92	291,92	291,92
A5-A12	mm ²	8750,91	576,04	576,04	420,53
A13-A16	mm ²	8750,91	334,55	402,88	402,88
A17-A18	mm ²	8750,91	334,55	402,88	334,55
A19-A22	mm ²	8750,91	291,92	291,92	291,92

A23-A30	mm ²	420,53	576,04	576,04	576,04
A31-A34	mm ²	8750,91	334,55	402,88	334,55
A35-A36	mm ²	8750,91	334,55	402,88	334,55
A37-A40	mm ²	8750,91	229,05	229,05	229,05
A41-A48	mm ²	420,53	576,04	420,53	420,53
A49-A52	mm ²	710,00	402,88	402,88	334,55
A53-A54	mm ²	646,54	646,54	646,54	646,54
A55-A58	mm ²	8750,91	229,05	229,05	229,05
A59-A66	mm ²	420,53	420,53	576,04	420,53
A67-A70	mm ²	646,54	402,88	402,88	402,88
A71-A72	mm ²	759,13	646,54	646,54	646,54
Best*	kg	6858,29	778,64	800,83	712,51
Average*	kg	8676,94	3058,38	855,95	758,28
Stdev*	kg	1060,97	1154,38	63,68	25,94

*Best, Average, dan Stdev melambangkan hasil terbaik, rata-rata, standar deviasi yang didapat dari masingmasing algoritma metaheuristik dari hasil 30 kali simulasi.

Gambar 11. Grafik konvergensi perubahan berat struktur 72-bar spatial truss PSO, DE, TLBO dan SOS

4.6. Analisis Hasil dan Diskusi

Ringkasan hasil simulasi kelima studi kasus ini disajikan berupa ranking tingkat optimasi pada Tabel 8. Dari kelima studi kasus optimasi yang telah dilakukan, dapat terlihat bahwa SOS menghasilkan desain yang lebih ringan

jika dibandingkan dengan ketiga algoritma lainnya. Pada kasus 15-bar planar truss, DE mampu menghasilkan desain yang sama ringannya dengan SOS, yaitu sebesar 399,06 kg. Namun, SOS mampu mengungguli DE dari sisi konsistensi, dimana SOS menghasilkan nilai rata-rata dan standar deviasi yang jauh lebih rendah, yaitu masingmasing 401,33 kg dan 3,11 kg jika dibandingkan dengan DE yang menghasilkan masing-masing 938,27 kg dan 673,52 kg. Lebih lanjut lagi, SOS sukses menunjukkan konsistensi performa terbaik pada studi kasus lainnya yang ditunjukkan dari nilai rata-rata dan standar deviasi yang terkecil diantara ketiga algoritma lainnya.

Tabel 8. Evaluasi performa dari SOS dan algoritma metaheuristik lainnya pada studi kasus optimasi struktur rangka batang (skala 1-4, 1: paling optimal, 4: paling kurang optimal)

Studi kasus	PSO	DE	TLBO	SOS
10-bar planar truss	4	3	2	1
15-bar planar truss	4	3	2	1
25-bar spatial truss	4	1	3	1
52-bar planar truss	4	3	2	1
72-bar spatial truss	4	2	3	1

Berdasarkan grafik konvergensi di masing-masing studi kasus, dapat disimpulkan bahwa algoritma SOS mencapai titik konvergen lebih cepat dalam proses pencarian desain dengan struktur dibandingkan ketiga algoritma lainnya: PSO, DE, dan TLBO. Kepiawaian dari SOS dalam menemukan solusi lebih baik dibanding algoritma metaheuristik lainnya disebabkan karena: (1) SOS bersifat parameter-free, sehingga tidak dibutuhkan pengaturan parameter pada algoritma; (2) SOS memiliki kemampuan ekplorasi yang baik melalui mutualism phase dan parasitism phase; (3) SOS memiliki kemampuan eksploitasi yang baik yang tercermin dari proses kloning dan mutasi didalam parasitism phase; (4) SOS memiliki kemampuan untuk mengeliminasi solusi inferior melalui parasitism phase.

- 5. Kesimpulan Pada penelitian ini, algoritma SOS digunakan untuk mengoptimasi struktur rangka batang berdasarkan batasan yang diatur dalam SNI 1729:2015. Lima studi kasus optimasi struktur diambil untuk menguji performa dari SOS, yaitu: (1) 10-bar planar truss, (2) 15-bar spatial truss, (3) 25-bar spatial truss, (4) 52-bar planar truss, dan (5) 72-bar spatial truss. Algoritma PSO, DE, dan TLBO juga digunakan dalam penelitian ini sebagai algoritma pembanding. Berdasarkan hasil dan analisis yang dilakukan, dapat diambil kesimpulan sebagai berikut:
- Performa dari algoritma metaheuristik SOS lebih baik dibanding tiga algoritma yang lain, baik dari segi akurasi dan konsistensi. Hal ini ditunjukkan melalui performa SOS yang sukses mendapatkan nilai rata-rata dan standar deviasi yang terkecil dibandingkan ketiga algoritma lainnya dalam 30 kali simulasi dari masingmasing studi kasus.

2.	SOS mampu mendapatkan titik konvergen lebih cepat dalam proses pencarian desain dengan struktur dibandingkan dengan ketiga algoritma lainnya. Hal ini mengindikasikan bahwa algoritma SOS lebih cepat dalam menentukan global optima dari suatu kasus dibandingkan dengan ketiga algoritma lainnya.
3.	SOS telah terbukti mampu untuk menjadi alternatif yang baik dalam menyelesaikan problem optimasi di bidang desain struktur.

Turnitin ITB

ORIGINALITY REPORT

9%

5%

7%

4%

SIMILARITY INDEX

INTERNET SOURCES

PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES

Lijuan Li. "Optimum Design of Structures with Heuristic Particle Swarm Optimization Algorithm", Adaptation Learning and Optimization, 2011

1%

Publication

V. Ho-Huu, T. Le-Duc, L. Le-Anh, T. Vo-Duy, T. Nguyen-Thoi. "A global single-loop deterministic approach for reliability-based design optimization of truss structures with continuous and discrete design variables", Engineering Optimization, 2018

1%

Publication

www.mdpi.com

Internet Source

1 .,

1%

repository.petra.ac.id

eventos.ufpr.br

1%

Internet Source

jurnalindustri.petra.ac.id

1%

Lijuan Li. "Improvements and Applications of <1% Group Search Optimizer in Structural Optimal Design", Adaptation Learning and Optimization, 2011 Publication A. Kaveh. "Advances in Metaheuristic <1% 8 Algorithms for Optimal Design of Structures", Springer Nature, 2017 Publication Qui X. Lieu, Dieu T.T. Do, Jaehong Lee. "An <1% 9 adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints", Computers & Structures, 2018 Publication <1% Submitted to Middle East Technical University 10 Student Paper Alexander Setiawan, Gregorius Satia Budhi, Djoni Haryadi Setiabudi, Ricky Djunaidy. "Data Mining Applications for Sales Information System Using Market Basket Analysis on Stationery Company", 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), 2017 Publication

12	repository.unib.ac.id Internet Source	<1%
13	Heri Purwanto, Coleta Palupi Titasari. "CANDI PLANGGATAN: BANGUNAN SUCI MILIK KAUM RSI", Naditira Widya, 2017 Publication	<1%
14	Submitted to Queen's University of Belfast Student Paper	<1%
15	mariamasihidup.blogspot.com Internet Source	<1%
16	Ho-Huu, V., T. Nguyen-Thoi, T. Vo-Duy, and T. Nguyen-Trang. "An adaptive elitist differential evolution for optimization of truss structures with discrete design variables", Computers & Structures, 2016. Publication	<1%
17	Sadollah, A "Mine blast algorithm for optimization of truss structures with discrete variables", Computers and Structures, 201207	<1%
18	Oftadeh, R., and M. J. Mahjoob. "A New Structural Optimization Method Based on Group Hunting of Animals: Hunting Search (HuS)", ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis Volume 4, 2010.	<1%

19	publication.petra.ac.id Internet Source	<1%
20	www.polines.ac.id Internet Source	<1%
21	javan.web.id Internet Source	<1%
22	eprints.usm.my Internet Source	<1%
23	www.lajss.org Internet Source	<1%
24	Cheng, Min-Yuan, and Doddy Prayogo. "Symbiotic Organisms Search: A new metaheuristic optimization algorithm", Computers & Structures, 2014. Publication	<1%

Off

Exclude quotes Off Exclude matches

On

Exclude bibliography