AUPEC 2004

Australasian Universities Power Engineering Conference Brisbane, Australia

26-2 THE UNIVERSITY OF QUEENSLAND A U 5 T R A L 5 A School of Information Technology & Electrical Engineering

26-29 September 2004

ISBN 1-864-99775-3

Papers sorted by Last Name of Primary Author

Papers sorted by Paper IDs Program Book

Welcome

Welcome to the Australasian Universities Power Engineering Conference (AUPEC) 2004. The theme of this year's conference is "Challenges and Opportunities in the Deregulated Power Industry". During the last year, power industries around the world have seen a number of major blackouts. This has emphasized the importance of security in complex and interconnected power systems. New techniques and solutions are required to manage and operate the deregulated electricity industry in a market environment. This conference represents the perfect forum for presenting the strategies developed by industry and academia to meet these challenges.

Organising Committee

GENERAL CHAIR

A/Prof. Tapan Kumar Saha University of Queensland

PUBLICATION CHAIR

Dr. Geoffrey Walker

TECHNICAL CHAIR Dr. Zhao Yang Dong

University of Queensland

University of Queensland

MEMBERS Dr. Dave Allan

Powerlink

Queensland University of Technology (QUT) A/Prof. David Birtwhistle Mr. Peter Brennan Ergon Energy NEMMCO Mr. Tim George University of Queensland Dr. Geir Hovland Queensland University of Technology (QUT) Prof. Gerard Ledwich University of Queensland Mr. Damien Sansom University of Queensland Mr. Alok Thapar University of Queensland Mr. Zhao Xu

Contents

Foreword – Message from the chair AUPEC 2004	2
Organising Committee	4
Conference Venue	5
Conference Information	6
Audio Visual for Presenters	6
Messages	6
Name Badges	6
Opening and Keynote Speakers	7
Program at a Glance	9
Social Program	11
Registration and Welcome Function	11
Conference Dinner	11
General Information	13
Banking	13
Mobile Phones	13
Emergency Medical Assistance	13
Parking	14
Pharmacy	14
Post Office	14
Taxis	14
Individual Paper Sessions	15
Author Index	
Sponsors	35

Foreword

MESSAGE FROM THE CHAIR - AUPEC 2004

Welcome to the Australasian Universities Power Engineering Conference (AUPEC) 2004. The theme of this year's conference is "Challenges and Opportunities in the Deregulated Power Industry". During the last year, power industries around the world have seen a number of major blackouts. This has emphasized the importance of security in complex and interconnected power systems. New techniques and solutions are required to manage and operate the deregulated electricity industry in a market environment. This conference represents the perfect forum for presenting the strategies developed by industry and academia to meet these challenges.

AUPEC is the only annual power engineering conference held in the Australasian region sponsored by the Australasian Committee for Power Engineering (ACPE). AUPEC rotates among the Universities in the Australasian region, and we are delighted to host the conference this year at the St. Lucia campus of the University of Queensland. On behalf of the organising committee, I take great pleasure in welcoming you all to Brisbane.

AUPEC provides a forum for University academics, research higher degree students and industry professionals to share innovation and developments. This year we have received over 235 digests/full papers from prospective authors from 17 countries. These countries include Australia, New Zealand, India, China, Singapore, Malaysia, Indonesia, Thailand, Iran, Germany, Austria, Italy, Turkey, Sweden, Spain, USA and Canada. Full papers were peer reviewed by national and international experts before being accepted. After a 2-stage independent peer review process, 167 papers were accepted for presentation and discussion in more than 30 technical sessions in the conference. I would like to thank all the reviewers for their time and effort in the review process, which has helped ensure an excellent technical programme across the three days of the conference. The morning session of each day of the conference will consist of keynote sessions addressing different aspects of power system security. On the first day, the keynote session is on recent major blackouts and transmission system security. The keynote session on the second day will consider renewable energy, focusing on the challenges of wind power. The final keynote session will review the reliability issues facing the Queensland distribution system, with comments from local electricity distribution companies.

A key part of AUPEC is to provide postgraduate students with the opportunity to present their research findings. We have awarded five travel grants to students from New Zealand, Thailand, Canada, USA and Australia to help them attend the conference. This year AUPEC truly will be an international event. Prizes will also be awarded for the three best papers presented by full time students during the conference. In addition, a number of quality papers selected from this conference will be published by the Institution of Engineers Australia in a special issue of the Journal of Electrical and Electronics Engineering.

The financial support of our sponsors is gratefully appreciated. These sponsors include Energex, Duff and Macintosh Pty Ltd, NEMMCO and Ceanet. I would also like to thank the IEEE Queensland Section and the IEEE Power Engineering Society for their support. The technical co-sponsorship provided by the IEEE Power Engineering Society is highly appreciated.

I would also like to thank all the members of the AUPEC 2004 organising committee and staff members of the School of Information Technology & Electrical Engineering. Without their dedication and efforts, the conference would not have been possible.

Welcome once again. We have hope that you enjoy the Brisbane weather, which is beautiful one day and perfect the next. Finally, enjoy what we are sure will be a stimulating and worthwhile conference.

Associate Professor Tapan Saha General Chair, AUPEC 2004 24 September 2004

Organising Committee

GENERAL CHAIR

A/Prof. Tapan Kumar Saha, University of Queensland

PUBLICATION CHAIR

Dr. Geoffrey Walker, University of Queensland

TECHNICAL CHAIR

Dr. Zhao Yang Dong, University of Queensland

MEMBERS

Dr. Dave Allan, Powerlink
A/Prof. David Birtwhistle, Queensland University of Technology (QUT)
Mr. Peter Brennan, Ergon Energy
Mr. Tim George, NEMMCO
Dr. Geir Hovland, University of Queensland
Prof. Gerard Ledwich, Queensland University of Technology (QUT)
Mr. Damien Sansom, University of Queensland
Mr. Alok Thapar, University of Queensland
Mr. Zhao Xu, University of Queensland

Conference Organiser

School of Information Technology and Electrical Engineering, The University of Queensland, Australia

Conference Venue

Hawken Engineering Building (Building No. 50), Staff House Road, St. Lucia Campus, University of Queensland, Brisbane, Australia
Meeting Rooms: 50-1, 50-2, 50-3, 50-N201 and 50-N202,
Registration Desk: 50-S201

Morning and afternoon teas will be served on Level 2 of the Hawken Engineering Building near the Registration Desk.

Lunches will be served at the Dinning room of St. Leo's College, located on College Road.

A notice board is situated close by the Registration Desk.

Conference Registration can be contacted on:Phone: +61 7 3365 9217Fax: +61 7 3365 4999Email : aupec04@itee.uq.edu.au

Conference Information

AUDIO VISUAL FOR PRESENTERS

All sessions will have a PC and a digital data projector. Overhead projection equipment will also be available. All the PC's have Microsoft PowerPoint and Acrobat Reader installed; therefore, we advise you to prepare your presentation using either of these software packages.

You will NOT be permitted to connect your laptop to the data projector.

You are advised to bring your own presentation on a CD. You should load the computer with the presentation in the break before start of the session. There will be a student volunteer to help you with this.

Please hand your resume to the session chair before the start of the session, if you have not done so prior to the commencement of the conference.

Messages

All messages for delegates will be posted on a message board near the conference registration desk. Please check the board regularly. Information regarding the conference will also be displayed on the notice board.

Name Badges

Admission of delegates to all sessions, morning, afternoon teas and lunches, is by conference name badge only. Delegates are requested to wear their name badge at all times.

Opening and Keynote Speakers

Monday 27th September

VENUE: 50-1	
9.00-9.05 AM	INTRODUCTION
	A/Prof. Tapan Kumar Saha
	General Chair, AUPEC 2004
9.05 – 9.15 AM	Conference Welcome
	Prof. Michael Keniger
	Executive Dean, Faculty of EPSA
9.15 - 9.30 AM	CONFERENCE OPENING
	Mr Gordon Jardine
	CEO, Powerlink
9.30 - 10.30 am	KEYNOTE SESSION
	"Challenges and Opportunities in the New
	Transmission Business"
	Prof. George Gross
	University of Illinois, Urbana Champagne, USA

TUESDAY 28th September

Venue: 50-1	
9.00 – 10.30 am	Key note Session
	"Challenges of Wind Power"
	Keynote Speaker: Mr. Jeffrey Harding
	Managing Director, Pacific Hydro
	Chair: Dr. Jennifer Crisp (NEMMCO)

WEDNESDAY 29TH SEPTEMBER

VENUE: 50-1	
8-30-9-30 AM	SPECIAL SESSION
	"Australian Electric Power Institute"
	Mr. Bryce Corderoy
	Australian Electric Power Institute
	Mr. Simon Bartlett
	General Manager Network, Powerlink
	Chair: Prof. Syed Islam (Curtin University of
	Technology)
9-30 - 10-30 AM	Special Forum
	"Reliability of Queensland Distribution System"
	Emeritus Prof. Mat Darveniza
	The University Of Queensland
	Mr. Terry Effeney
	Executive General Manager Distribution, Ergon Energy
	Mr. Mike Griffin
	General Manager Network Asset Management, Energex
	Chair: Prof. Gerard Ledwich (QUT)

0
Ü
5
U
\mathbf{v}
40
5
_
N
•
Ő

Sunday 26 September	Monday	27 Septemb	ler	Tu	esday 28	Septemb	er	Wedr	nesday 29	9 Septem	ıber
Workshop:	Introduction: Conference (A/Prof. Tapaı Chair AUPEC	n Saha, 2004					Special s Speakers Mr. Sim	session: / Power Ir Mr. Bryc Non Bartlet Powe	Australian nstitute ce Corderc tt, GM Net rlink	Electric y, AEPI twork,
"Ancillary Services in the Australian	Welcome: Pri Exec. Dean	of. Michael Ke , Faculty of El	eniger, PSA	Cha	Keynote (Session:	L.	Curtin I	air: Prof. University 8.30-9.	Syed Islar of Techno 30am	n ology
National Electricity Market"	Conference C Jardine, ()pening: Mr (CEO Powerlin	Gordon Jk	Spea	MD, Pacif	effrey Harc fic Hydro	ling,	Speci Queens	ial Forum sland Disti	ı: Reliabilit ribution Sy	ty of /stem
Speaker: Bill Truscott, NEMMCO 3.00-5.00pm Venue: 50-N201	Keyno Challenges and New Transn Speaker: Pr Univ. of Illinois, 9.00	te Session: I Opportuniti nission Busi of. George G Urbana Char 1-10.30am	es in the ness ross, mpagne	5		MCO .30am : 50-1	â	Emerit Univ Mr. Terr Distr Asset	Particic tus Prof. N versity of (versity of of ry Effeney ribution, E Managen Managen	cants: Mat Darvel Queenslar /, Executiv rigon Ener ffin, GM N nent, Ener	niza, hd e GM gy etwork gex
								Chair: P	rot. Gerar 9.30-10 Venue:	rd Ledwicf .30am : 50-1	, au
Registration Venue: 50-S201 4.00-5.30pm	Мо 10.31 Наw	rning tea 0-11.00am ken Foyer			Mornin 10.30-1 [*] Hawken	lg Tea 1.00am 1 Foyer			Mornin 10.30-11 Hawken	ig Tea 1.00am 1 Foyer	
Welcome reception	Paper session	is 11.00am-1	2.40pm	Paper s	essions 1	1.00am- 1	2.40pm	Paper se	ssions 1	1.00am-1	2.40pm
Venue: Kathleen Rm,	PS1 PE1 50-2 50-3	PQ1 50-N201	AI1 50-N202	PS3 50-2	MC2 50-3	SC1 50-N201	RE1 50-N202	ED1 50-2	MC4 50-3	RE3 50-N201	CM3 50-N202
Staff Club, Staff House Rd	150 56	45 0 -	112	75	34	71	39	13	143	28	84
University Of	21 147 24 168	95 132	40	88 117	79 81	106 113	52 52	61 90	144 197	160 228	16 171
Queensland,	31 176	133	220	118	82	127	55	195	206	42	186
טו בעכומ. 6.00 pm	41 188	138	78	122	139	129	110	51	207	205	85

cont'd...

6

	Μ	onday 27	Septemb)er		Tue	esday 28	Septem)er	Wedne	sday 29	Septer	nber
	Venue: S	Lur St. Leo's C 12.40-1	nch ollege, Cc 1.40pm	ollege Rd	>	enue: St	Lur Leo's Co 12.40-1	ich ollege, C .40pm	ollege Rd	Venue: St. L	Lunch eo's Coll 12.40-1.4	h lege, C Opm	ollege Rd
	Pap.	er session	IS 1.40-3.2 PO2	0pm MA1		Paper	' session	s 1.40-3.3 MC3	0pm CM3	Paper s	essions 1	1.40-3.(mq0
	76 99 121	20-3 204 227 231	50-N201 173 187 201	167 167 148 210 220		734 50-2 198 223 223	200 200 218 218 218	115 115 115 115	50-N202 161 178 179	MA4 50-2 12 26 32	SC2 50-3 217 37 53		Q4 86 36 20
	222	232 213	43	226		74	20	191	142	72	137	-	46
		Afterno 3.20-3 Hawkei	oon Tea .40pm n Foyer				Afterno 3.20-3. Hawker	on Tea 40pm 1 Foyer			Afternoon 3.00-3.2 Hawken F	n Tea 0pm ⁻ oyer	
	Pap	er session	IS 3.40-5.2	0pm		Рары	session	s 3.40-5.(00m				
	CM1 50-2	PE3 50-3	MC1 50-N201	MA2 50-N202	L	PQ3 50-2	50 20	35 -3 -3	MA3 60-N201	Prize Prese	Giving A		04 05
1	35 35 49 50 35	224 165 175 230 182	124 140 301 214	48 54 70	• • • • •	208 77 190	8 5 5 4	7 2 2 7	119 156 159 211	Conferei	nce closir 3-20-4p Venue: 5	ng cere pm 50-2	Ynom
_	2		•										
					¥	C ookaburr	onferenc ra Queen	e Dinner , 7.00pm	: for 7.30pm				

Social Program

REGISTRATION AND WELCOME FUNCTION

SUNDAY 26TH SEPTEMBER

4.00-5.30 PMREGISTRATIONVENUE: 50-S201, Hawken Engineering Building, University of Queensland

3.00 – 5.00 рм	WORKSHOP
	"Ancillary Services in the Australian
	National Electricity Market"
	Bill Truscott
	NEMMCO

VENUE: 50-N201, Hawken Engineering Building, University of Queensland

6.00 PM WELCOME RECEPTION

VENUE: Kathleen Room, Staff Club (Building No. 41), Staff House Rd, University of Queensland, St Lucia

Refreshments and drinks will be available.

CONFERENCE DINNER

TUESDAY 28th September, Kookaburra River Queen From: Eagle St. Pier Boarding: 7.00 pm Departure: 7.30pm Returning: 10.00pm

Built in the late eighties, the authentic paddle wheelers played a major role in the popular World Expo'88. The classic elegant decor and famous Queensland hospitality onboard the Kookaburra River Queens ensure a truly delightful and unique

experience, which will take you back to an opulent bygone era. As evening approaches, the city lights up showing visitors the brilliance of Queensland's capital city onboard the famous River Lights Dinner Cruise.

This function has been included in the registration fee but you are kindly requested to arrange your travel to the Eagle St. Pier. Following are the options for public transport from University of Queensland to Eagle St. Pier.

How to reach Eagle St. Pier from University of Queensland:

Option 1: Catch a Bus - Route 411 (Fare A\$2.40)

Board at: University of Queensland. Stop 'C', Chancellors Place **Alight at:** Adelaide St., far side Creek St. (Stop 27), Walk 350 metres to Eagle St. Pier. (See map and timetable for more details)

Option 2: Catch a Ferry – City Cat (Fare A\$2.40)

Board at: University of Queensland Ferry Terminal **Alight at:** Riverside Ferry Terminal, Walk a few yards to the Eagle St. Pier.

Option 3: Taxi (Fare approx. A\$20)

Call a taxi (phone numbers in next section) and ask to be dropped at Eagle St. Pier in the City.

General Information

BANKING

UniCredit Union	Adjacent to Staff Club, Staff House Rd
ANZ Bank	Adjacent to Staff Club, Staff House Rd
Commonwealth Bank	Approx. 100m from Staff Club, Staff House Rd
	Additional ATM located near the Bus-Stop.

ATMs for the National Australia Bank and Westpac Bank are located near the Commonwealth Bank.

MOBILE PHONES

You are kindly requested to have your mobile phones turned off while in any of the conference sessions or workshops.

EMERGENCY MEDICAL ASSISTANCE

University of Queensland Emergency Phone Number: 3365 3333 Ambulance: 000

Health Services (St. Lucia) 8.30am-5pm, Phone: 3365 6210 (You should have a Medicare Card or Insurance to see a Doctor)

After hours private Medical Services Phone Number 3831 9999

PARKING

Parking permit must be displayed at all times while parking at the university campus. Red permit at a cost of \$8 per day will be available to purchase from the Conference Office, 50-S201. You can also pay and park in different parking places within the campus. This option will be cheaper.

PHARMACY

Building No.21, Student Union Complex, Staff House Rd

POST OFFICE

Building No. 61, J. D. Story Building (near University Bus stop)

TAXIS

Yellow Cab	13 1924 (to help the driver locate the conference
	venue, ask the operator for "template DSTC", you will
	be dropped at GP South building, which is 10m from
	the conference venue)
Black and White Cab	131 139, 131 008
Maxi Taxi	13 6294
Silver Service	133 100

Taxi Rank is located near the University Bus-Stop.

Individual Paper Sessions

	POWER SYSTEMS (PS)
Paper ID	Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-2 PS1 Chair: Prof. Syed Islam
150	Power System Dynamic Equivalents using Line Flow Minimization Approach B.C. Kok, A.A. Mohd. Zin, M.W. Mustafa
21	Incorporation of Faults in Transmission Lines with a Nonlinear Model of Power Systems <i>M. Aldeen, F. Crusca, R. Sharma</i>
24	Subsynchronous Resonance Assessment using Time Frequency Distribution Algorithm <i>Majid Al-Dabbagh, Nadia Yousif</i>
31	Load Capability and Collapse Margin Analysis of the Large Scale Queensland Power System <i>Craig Aumuller, Tapan Kumar Saha</i>
41	Comparison of Fault Location Techniques for Transmission Systems Darren Spoor, Joe Zhu
Paper ID	Date: Monday 27 September, Time: 1.40-3.20pm, Venue: 50-2 PS2 Chair: Prof. Gerard Ledwich
76	Standard Interoperable Middleware Design for Substation Communication Systems <i>C.R. Ozansoy, A. Zayegh, A.Kalam</i>
99	A Proposal to Investigate the Problems of Three-phase Distribution Feeders Supplying Power to SWER Systems Nasser Hossein-Zadeh, Jonathan Turner, Dawit Seyoum
121	A New Appraoch to Stability Limit Analysis of a Shunt Active Power Filter with Mixed Non- linear Loads Hanny H. Tumbelaka, Lawrence J. Borle, Chem V. Nayar

134	Theoretical Investigation of Accidental Contact Between Distribution Lines of Dissimilar Voltage V. W. Smith, V. J. Gosbell
222	System Dynamics Modelling: Application to Electricity Transmission Network Asset Management <i>Jennifer Crisp, David Birtwhistle</i>
Paper ID	Date: Tuesday 28 September, Time: 11.00am-12.40pm, Venue: 50-2 PS3 Chair: A/Prof. Majid Al-Dabbagh
75	Voltage Stability Analysis of Grid Connected Embedded Generators Raj Kumar Jaganathan, Tapan Kumar Saha
88	Information Embedded Power System: The Effective Communication System of the 21st Century Power System Industry <i>Amanullah Maung Than Oo, A. Kalam, A. Zayegh</i>
117	Modelling High Frequency Signal Propagation over Low Voltage Distribution Lines <i>R. Keyhani, D. Birtwhistle</i>
118	On-line Identificating of the Proportion of Dynamic Component in Composite Load Model Shi Zhen-hui, Zhu Zhou-zhen, Zheng Jing-hong, Wang Guang, Qu Zu-yi, Wang Gang
122	Analysis of a Series Inductance Implementation on a Three-phase Shunt Active Power Filter for Various Types of Non-Linear Loads Hanny H. Tumbelaka, Lawrence J. Borle, Chem V. Nayar
Paper ID	Date: Tuesday 28 September, Time: 1.40-3.20pm, Venue: 50-2 PS4 Chair: Prof. Victor Quintana
73	Rapid Detection of Deteriorating Modal Damping in Power Systems <i>R.A. Wiltshire, P. O'Shea, G. Ledwich</i>
223	Modelling of the Interaction between Gas Pipelines and Power Transmission Lines in Shared Corridors <i>D.Markovic, V.Smith, S.Perera, S.Elphick</i>
23	One End Simplified Fault Location Algorithm using Instantaneous Values for Series Compensated High Voltage Transmission Lines <i>S. K. Kapuduwage, M. Al-Dabbagh</i>

198	An Open Frame Modelling Tool for Simulation of AC Power Systems Anthony B. Morton, Robin P. Lisner, D. Grahame Holmes
74	Monitoring of Individual Modal Damping Changes in Multi-Modal Power Systems R.A. Wiltshire, P. O'Shea, G. Ledwich
Paper ID	Date: Tuesday 28 September, Time: 3.40-5.00pm, Venue: 50-3 PS5 Chair: Dr. Craig Aumuller
184	On-line Voltage Collapse Prediction Considering Different Kinds of Loads and On-Load Tap Changer <i>Momen Bahadornejad, Gerard Ledwich</i>
185	Identification of High Power Loads <i>Gerard Ledwich</i>
192	Iron-Cored High-Temperature Superconducting Inductors for Large Electric Power Applications <i>C. Chao, C. Grantham</i>
141	Evaluation of Economic Rent of Hydropower: A Case of Nepal <i>T. R. Limbu, R. M. Shrestha</i>
	ELECTRICITY MARKET (MA)
Paper ID	ELECTRICITY MARKET (MA) Date: Monday 27 September, Time: 1.40-3.20pm, Venue: 50-N202 MA1 Chair: Mr. Tim George
Paper ID 167	ELECTRICITY MARKET (MA) Date: Monday 27 September, Time: 1.40-3.20pm, Venue: 50-N202 MA1 Chair: Mr. Tim George Derivative Markets in the Australian NEM: Roles and Issues Poh Weng Tham, Hugh Outhred, Iain MacGill
Paper 167 148	ELECTRICITY MARKET (MA) Date: Monday 27 September, Time: 1.40-3.20pm, Venue: 50-N202 MA1 Chair: Mr. Tim George Derivative Markets in the Australian NEM: Roles and Issues Poh Weng Tham, Hugh Outhred, Iain MacGill Transmission Planning in Competitive Power Markets Considering the Uncertainties in Market Operation G.B. Shrestha, P.A.J. Fonseka

ſ

229	On the Development of a Web Electricity Market Simulator <i>M. J. Sorbello, Z.Y. Dong, X. Li</i>
226	Minimum Energy Quadratic Programming Method for Linear Circuits, Load Flows and Optimizing Generator Dispatch <i>Damien. C. Sansom, Tapan K. Saha</i>
Paper ID	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-N202 MA2 Chair: Mr. David Bones
48	Markets for the Transmission Rights: Competitive Equilibrium Models <i>Guillermo Bautista, Victor H. Quintanay, Jose A. Aguado</i>
54	Loss Allocation based on Network Reduction in Deregulated Electricity Market <i>V. Lim, T. K. Saha, T. Downs</i>
181	Power System Planning and Operation in Deregulated Environment <i>Z. Xu, Z. Y. Dong</i>
70	Multiple Model Forecasting of Australian Regional Wholesale Electricity Prices D. C. Sansom, T. K. Saha, T. Downs
Paper ID	Date: Tuesday 28 September, Time: 3.40-5.00pm, Venue: 50-N201 MA3 Chair: Dr. Ian Rose
119	Understanding Spot Price Behaviour in the Australian National Electricity Market L. F. Sugianto, V. C. S. Lee, X. B. Lu salah ketik, seharusnya: "L.F. Sugianto, M. Widjaja, X.B. Lu"
156	A System for Electricity Trading using Genetic Algorithm and Reinforcement Learning <i>A. Hryshko, T. Downs</i>
159	Social Analysis on Electricity Market Mechanism in Indonesia Fidiarta Andika, Ratna Dewanda
211	Integrated Power Scheme Simulator for Human-System Integration Studies Rizah Memisevic, Sanjib Choudhury, Penelope Sanderson, William Wong

Paper ID	Date: Wednesday 29 September, Time: 1.40-3.00pm, Venue: 50-2 MA4 Chair: Dr. Geir Hovland
12	Flexible Interconnections for the Deregulated Electricity Market J.Arrillaga, N.R.Watson, Y.H.Liu, B.Perera
26	Advanced Tools to Manage Power System Stability in the National Electricity Market <i>Tim George, Jennifer Crisp, Gerard Ledwich</i>
32	Forecasting Electricity Consumption: A Comparison of Models for New Zealand Zaid Mohamed, Pat Bodger
72	Monte-Carlo Simulation and its Application in Modelling Electricity Market Behaviour Ian Rose, Margarida Pimentel, David Bones
	STABILITY AND CONTROL (SC)
Paper ID	Date: Tuesday 28 September, Time: 11.00am-12.40pm, Venue: 50-N201 SC1 Chair: Prof. S. P. Ghoshal
Paper ID 71	Date: Tuesday 28 September, Time: 11.00am-12.40pm, Venue: 50-N201 SC1 Chair: Prof. S. P. Ghoshal A Flexible and Temporal Integral Optimal Reactive Power Control System Mu Lin, Sandhya Samarasinghe, Ramesh K. Rayudu, Aiguo Hu
Paper 71 106	Date: Tuesday 28 September, Time: 11.00am-12.40pm, Venue: 50-N201 SC1 Chair: Prof. S. P. Ghoshal A Flexible and Temporal Integral Optimal Reactive Power Control System Mu Lin, Sandhya Samarasinghe, Ramesh K. Rayudu, Aiguo Hu The Vector Control Techniques for Low Voltage IPM Machine in 42V System Rukmi Dutta, Faz Rahman
Paper 71 106 113	Date: Tuesday 28 September, Time: 11.00am-12.40pm, Venue: 50-N201 SC1 Chair: Prof. S. P. Ghoshal A Flexible and Temporal Integral Optimal Reactive Power Control System Mu Lin, Sandhya Samarasinghe, Ramesh K. Rayudu, Aiguo Hu The Vector Control Techniques for Low Voltage IPM Machine in 42V System Rukmi Dutta, Faz Rahman Encoder-Less Operation of a Direct Torque Controlled IPM Motor Drive with a Novel Sliding Mode Observer Zhuang Xu
Paper 71 106 113 127	Date: Tuesday 28 September, Time: 11.00am-12.40pm, Venue: 50-N201 SC1 Chair: Prof. S. P. Ghoshal A Flexible and Temporal Integral Optimal Reactive Power Control System Mu Lin, Sandhya Samarasinghe, Ramesh K. Rayudu, Aiguo Hu The Vector Control Techniques for Low Voltage IPM Machine in 42V System Rukmi Dutta, Faz Rahman Encoder-Less Operation of a Direct Torque Controlled IPM Motor Drive with a Novel Sliding Mode Observer Zhuang Xu Investigation of the Behaviour of an AVR in a Ballast Load Frequency Controlled Stand Alone Micro-Hydroelectric System Rob Jarman, Paul Bryce

Paper ID	Date: Wednesday 29 September, Time: 1.40-3.00pm, Venue: 50-3 SC2 Chair: Dr. Jennifer Crisp
217	Maximizing Static Voltage Stability Margin in Power Systems using a New Generation Pattern <i>Arthit Sode-Yome, Nadarajah Mithulananthan</i>
37	DSP Controlled Variable Speed Constant Frequency Induction Generator for Wave Energy Applications S. Srinivasa Rao, B. K. Murthy
53	A Novel Approach for Optimization of Proportional Intregral Derivative Gains in Automatic Generation Control <i>S.P. Ghoshal, N.K. Roy</i>
137	The Dynamic Stability Analysis of Induction Generators Dawit Seyoum, Nasser Hossein-Zadeh, Peter Wolfs
	POWER ELECTRONICS (PE)
Paper ID	Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-3 PE1 Chair: A/Prof. Fazlur Rahman
Paper ID 56	Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-3 PE1 Chair: A/Prof. Fazlur Rahman Evaluation of DSP and FPGA based Digital Controllers for a Single-Phase PWM Inverter Ariawan Tjondronugroho, Adnan Al-Anbuky, Simon Round, Richard Duke
Paper ID 56 147	Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-3 PE1 Chair: A/Prof. Fazlur Rahman Evaluation of DSP and FPGA based Digital Controllers for a Single-Phase PWM Inverter Ariawan Tjondronugroho, Adnan Al-Anbuky, Simon Round, Richard Duke Distortion in Single Phase Hysteretic Current Control PV Inverters for Grid Connection <i>R. Sharma, T. Ahfock</i>
Paper 56 147 168	Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-3 PE1 Chair: A/Prof. Fazlur Rahman Evaluation of DSP and FPGA based Digital Controllers for a Single-Phase PWM Inverter Ariawan Tjondronugroho, Adnan Al-Anbuky, Simon Round, Richard Duke Distortion in Single Phase Hysteretic Current Control PV Inverters for Grid Connection <i>R. Sharma, T. Ahfock</i> Implementation of the HEPWM Technique on a Multilevel Inverter Using FPGA <i>F. Salim, N.A. Azli</i>
Paper ID 56 147 168 176	Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-3 PE1 Chair: A/Prof. Fazlur Rahman Evaluation of DSP and FPGA based Digital Controllers for a Single-Phase PWM Inverter Ariawan Tjondronugroho, Adnan Al-Anbuky, Simon Round, Richard Duke Distortion in Single Phase Hysteretic Current Control PV Inverters for Grid Connection R. Sharma, T. Ahfock Implementation of the HEPWM Technique on a Multilevel Inverter Using FPGA F. Salim, N.A. Azli An Investigation of Battery Voltage Equalisation Topologies for an Electric Vehicle Ming-Kuang Hsieh, Simon Round, Richard Duke

ſ

Paper ID	Date: Monday 27 September, Time: 1.40-3.20pm, Venue: 50-3 PE2 Chair: A/Prof. Peter Wolfs
204	A Low Cost Portable Car Heater based on a Novel Current-Fed Push-Pull Inverter Aiguo Patrick Hu, Ping Si
227	A Class E Resonant Inverter for use as Electronic Fluorescent Lamp Ballast <i>B.D. Singer, G.R. Walker</i>
231	Matrix Converter for ISA 42 V Powernet Vehicle Electrical Systems Part I: Theoretical Feasibility Keping You, M. F. Rahman
232	Matrix Converter for ISA 42 V Powernet Vehicle Electrical Systems Part II: Simulated Physical Implementation <i>Keping You, M. F. Rahman</i>
213	DSP-based Speed Control of a Four-Phase 8/6 Switched Reluctance Motor Drive <i>P. Chancharoensook, M. F. Rahman</i>
Paper ID	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-3 PE3 Chair: A/Prof. Richard Duke
Paper ID 224	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-3 PE3 Chair: A/Prof. Richard Duke Two Stage Unity Power Factor Rectifier Design C. D. Lister, G. R. Walker
Paper ID 224 165	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-3 PE3 Chair: A/Prof. Richard Duke Two Stage Unity Power Factor Rectifier Design C. D. Lister, G. R. Walker Design Considerations in an Indirectly Coupled Multilevel Motor Controller Jordan Pierce, Geoffrey Walker, David Finn, Paul Sernia
Paper 1D 224 165 175	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-3 PE3 Chair: A/Prof. Richard Duke Two Stage Unity Power Factor Rectifier Design C. D. Lister, G. R. Walker Design Considerations in an Indirectly Coupled Multilevel Motor Controller Jordan Pierce, Geoffrey Walker, David Finn, Paul Sernia Load Dump Transient Behaviour of a 42V Prototype Integrated Starter Alternator C. P. Mudannayake, M. F. Rahman, B. Karanayil
Paper ID 224 165 175 230	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-3 PE3 Chair: A/Prof. Richard Duke Two Stage Unity Power Factor Rectifier Design C. D. Lister, G. R. Walker Design Considerations in an Indirectly Coupled Multilevel Motor Controller Jordan Pierce, Geoffrey Walker, David Finn, Paul Sernia Load Dump Transient Behaviour of a 42V Prototype Integrated Starter Alternator C. P. Mudannayake, M. F. Rahman, B. Karanayil Digital PWM Waveform Generation using Adders, Not Counters Geoffrey Walker

Г

	RENEWABLE ENERGY (RE)
Paper ID	Date: Tuesday 28 September, Time: 11.00am-12.40pm, Venue: 50-N202 RE1 Chair: Dr. A. Zahedi
39	Solar Powered Chlorination of Swimming Pools <i>Kame Y. Khouzam</i>
44	Distributed Maximum Power Tracking for High Performance Vehicle Solar Arrays Peter Wolfs, Lixin Tang, Steven Senini
52	Simulation Model of a Distributed VRLA Battery Management Network Darren Lim, Adnan Anbuky, Harsha Sirisena
55	Economic Assessment of Utility Connected Photovoltaic Systems for Residential and Commercial Use Kame Khouzam, Jason Yu
110	The Optimization of a Resonant Two-Inductor Boost Cell for a Photovoltaic Module Integrated Converter <i>Quan Li, Peter Wolfs</i>
Paper ID	Date: Tuesday 28 September, Time: 1.40-3.20pm, Venue: 50-3 RE2 Chair: Dr.Geoff Walker
194	An Improved Maximum Power Point Tracking Algorithm for Photovoltaic Systems Xin Wang, Aiguo Patrick Hu
200	An Electrochemically based Electrical Fuel Cell Model James W. Darbyshire, Lawrence J. Borle
218	Development of a Low-Cost Roof-Mounted Solar System using Flat-Plane Reflectors K. Mitchell, J. Rizk, M. Nagrial
233	Energy Injection by Distributed Generation for Improvement in Feeder Voltage Profile <i>M. A. Kashem, G. Ledwich</i>

20	A Current Fed Two-Inductor Boost Converter for Grid Interactive Photovoltaic Applications <i>Quan Li, Peter Wolfs</i>
Paper ID	Date: Wednesday 29 September, Time: 11.00am-12.40pm, Venue: 50-N201 RE3 Chair: Dr. Lawrence J. Borle
28	Development of a Numerical Approach for Optimum Sizing of the Components in Solar Photovoltaic Hybrid Power Systems <i>A. Zahedi</i>
160	Design of High Energy Lithium-Ion Battery Charger K. M. Nor, M. F. M. Elias, N. A. Rahim, A. K. Arof
228	Short-Term Wind Forecasting Techniques for Power Generation <i>Cameron Potter, Martin Ringrose, Michael Negnevitsky</i>
42	Decentralised Source Scheduling in a Model Nanogrid using DC Bus Signalling John Schönberger, Simon Round, Richard Duke
205	Testing Procedure for Passive Fuel Cell State of Health Shannon Page, Susan Krumdieck, Adnan Anbuky
	POWER QUALITY (PQ)
Paper ID	Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-N201 PQ1 Chair: A/Prof. Chang Che-Sau
45	Harmonic and Reactive Power Control using a Hybrid Active/Passive Power Conditioner based on a Square Wave Source Steven Senini, Peter Wolfs
95	A New Simulation Tool for an AC/DC System A. Abu-Siada, S. Islam, W.B. Lawrance
132	Reporting and Benchmarking Indices for Power Quality Surveys S.T. Elphick, V.J. Gosbell, R. Barr

ſ

133	Data Management for Large Scale Power Quality Surveys M.L. Peard, V.J. Gosbell, V.W. Smith
138	Harmonic Quality of Multi-level Cascade Inverters with Random Carrier Phase Pulse Width Modulation <i>Paul Sernia, Geoff Walker</i>
Paper ID	Date: Monday 27 September, Time: 1.40-3.20pm, Venue: 50-N201 PQ2 Chair: Prof. Vic Gosbell
173	Power Factor Improvement in Harmonically Polluted Power System and Design of Harmonic Filter Suhail Aftab Qureshi, G. Murtaza Hashmi
187	Power Quality Data Analysis using Unsupervised Data Mining Ali Asheibi, David Stirling, Duane Robinson, Sarath Perera
201	Using PFC and Trap Filters for Harmonic Mitigation in Wind Turbine Energy Conversion Systems <i>Fernando Soares dos Reis, Kelvin Tan, Syed Islam</i>
11	Pulse Multiplication in Forced-Commutated Current Source Converters by DC Ripple Reinjection <i>J. Arrillaga, N.R. Watson, B.Perera, Y.H.Liu</i>
43	Performance of the IEEE Standard Definitions for the Measurement of Electrical Power under Nonsinusoidal Conditions <i>Harnaak Khalsa, Jingxin Zhang</i>
Paper ID	Date: Tuesday 28 September, Time: 3.40-5.00pm, Venue: 50-2 PQ3 Chair: Dr. Neville Watson
208	Improvement of Harmonic Reference Estimation for Shunt Active Power Filters Huu-Phuc To, Faz Rahman, Colin Grantham
77	The Effects of Voltage Variation on the Power Consumption and Running Cost of Domestic Appliances <i>G. K. Hood</i>
190	Flicker Transfer in Radial Power Systems Sankika Tennakoon, Lakshal Perera, Duane Robinson, Sarath Perera

Paper ID	Date: Wednesday 29 September, Time: 1.40-3.00pm, Venue: 50-N201 PQ4 Chair: Dr.Kame Khouzam
86	An Investigation of Power Quality Problems in a Remote Mine Site in Papua New Guinea Franz Alois Hemetsberger, Tapan Kumar Saha
96	Comparative Study of using Different Mother Wavelets on Power Quality Monitoring <i>A. M. Gargoom, N. Ertugrul, W. L. Soong</i>
120	Power Quality in an Integrated PV-Diesel Hybrid Water and Power System <i>Ali Al-Alawi, S.M Islam, WB Lawrance</i>
146	A Real Time Power Harmonics Measuring Technique under Noisy Conditions <i>Thip Manmek, Colin Grantham, B. Toan Phung</i>
	MACHINES (MC)
Paper ID	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-N201 MC1 Chair: Prof. Erich Schmidt
Paper ID 124	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-N201 MC1 Chair: Prof. Erich Schmidt Thermal Analysis of Neodymium Iron Boron (NdFeB) Magnet in the Linear Generator Design W. N. L. Wan Mahadi, S. R. Adi, K. M. Nor
Paper 124 140	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-N201 MC1 Chair: Prof. Erich Schmidt Thermal Analysis of Neodymium Iron Boron (NdFeB) Magnet in the Linear Generator Design W. N. L. Wan Mahadi, S. R. Adi, K. M. Nor A Survey of Sensorless Initial Rotor Position Estimation Schemes for Permanent Magnet Synchronous Motors Ying Yan, Jian Guo Zhu
Paper ID 124 140 145	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-N201 MC1 Chair: Prof. Erich Schmidt Thermal Analysis of Neodymium Iron Boron (NdFeB) Magnet in the Linear Generator Design W. N. L. Wan Mahadi, S. R. Adi, K. M. Nor A Survey of Sensorless Initial Rotor Position Estimation Schemes for Permanent Magnet Synchronous Motors Ying Yan, Jian Guo Zhu A Novel IPM Machine for Integrated Starter Alternator Application Rukmi Dutta, M.F. Rahman
Paper ID 124 140 145 301	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-N201 MC1 Chair: Prof. Erich SchmidtThermal Analysis of Neodymium Iron Boron (NdFeB) Magnet in the Linear Generator Design W. N. L. Wan Mahadi, S. R. Adi, K. M. NorA Survey of Sensorless Initial Rotor Position Estimation Schemes for Permanent Magnet Synchronous Motors Ying Yan, Jian Guo ZhuA Novel IPM Machine for Integrated Starter Alternator Application Rukmi Dutta, M.F. RahmanOn the Issues of Starting and Cogging Force Reduction of a Tubular Permanent Magnet Linear Generator Hamzah Arof, Ahmad M. Eid, Khalid M. Nor

ſ

Paper ID	Date: Tuesday 28 September, Time: 11.00am-12.40pm, Venue: 50-3 MC2 Chair: Prof. J.G. Zhu
34	Experimental Confirmation of On-Site Efficiency Evaluation of Three-Phase Induction Motors using Synthetic Loading Techniques D.J. McKinnon, C. Grantham
79	A Comparative Study of Microactuators Driven by Electric and Magnetic Principles <i>Haiwei Lu, Jianguo Zhu</i>
81	Investigation of Iron Losses in a High Flux Interior PM Automotive Alternator V. Zivotic-Kukolj, W.L. Soong, N. Ertugrul
82	Extracting More Power from the Lundell Car Alternator D.M. Whaley, W.L. Soong and N. Ertugrul
139	High-Efficiency Magnetic Ballast Design utilizing Amorphous Metal Core <i>N. Ertugrul, W.L. Soong, J. Gayler, T. Rybak</i>
Paper ID	Date: Tuesday 28 September, Time: 1.40-3.20pm, Venue: 50-N201 MC3 Chair: Prof. G. Gentile
Paper ID 100	Date: Tuesday 28 September, Time: 1.40-3.20pm, Venue: 50-N201 MC3 Chair: Prof. G. Gentile Modelling of a Synchronous Permanent Magnet Motor to allow Comparison of Reference Current Waveforms G. Heins, F.G. De Boer
Paper 100 103	Date: Tuesday 28 September, Time: 1.40-3.20pm, Venue: 50-N201 MC3 Chair: Prof. G. Gentile Modelling of a Synchronous Permanent Magnet Motor to allow Comparison of Reference Current Waveforms G. Heins, F.G. De Boer A Direct Torque Controlled Integrated Starter Alternator with Space Vector Modulation Jun Zhang, M. F. Rahman, Lixin Tang
Paper ID 100 103 115	Date: Tuesday 28 September, Time: 1.40-3.20pm, Venue: 50-N201 MC3 Chair: Prof. G. Gentile Modelling of a Synchronous Permanent Magnet Motor to allow Comparison of Reference Current Waveforms G. Heins, F.G. De Boer A Direct Torque Controlled Integrated Starter Alternator with Space Vector Modulation Jun Zhang, M. F. Rahman, Lixin Tang Self Excited Induction Generators for Brake VAN Applications Dawit Seyoum, Peter Wolfs
Paper ID 100 103 115 83	Date: Tuesday 28 September, Time: 1.40-3.20pm, Venue: 50-N201 MC3 Chair: Prof. G. GentileModelling of a Synchronous Permanent Magnet Motor to allow Comparison of Reference Current Waveforms G. Heins, F.G. De BoerA Direct Torque Controlled Integrated Starter Alternator with Space Vector Modulation Jun Zhang, M. F. Rahman, Lixin TangSelf Excited Induction Generators for Brake VAN Applications Dawit Seyoum, Peter WolfsModelling of Saturation and Cross-Saturation Effects in an Interior PM Automotive Alternator V. Zivotic-Kukolj, W.L. Soong, N. Ertugrul

Г

Paper ID	Date: Wednesday 29 September, Time: 11.00am-12.40pm, Venue: 50-3 MC4 Chair: Dr. S. C. Mukhopadhyay
143	Application of 3D Finite Element Analyses for the Reactance Calculation of Switched Reluctance Machines <i>Erich Schmidt, Christian Grabner</i>
144	Mechanical Displacement of Slot Conductors in Large Electrical Machines: An Analytical Approach Erich Schmidt, Christian Grabner
197	Study of Permanent Magnet Transverse Flux Motors with Soft Magnetic Composite Core Y.G. Guo, J.G. Zhu
206	Performance Analysis of a Permanent Magnet Linear Synchronous Motor <i>G. Gentile, A. Ometto, N. Rotondale</i>
207	Supply Strategies and Diagnostic of Linear Induction Motors G. Gentile, S. Meo, A. Ometto, N. Rotondale
	ARTIFICIAL INTELLIGENCE (AI)
Paper ID	ARTIFICIAL INTELLIGENCE (AI) Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-N202 Al1 Chair: Dr. Michael Negnevitsky
Paper ID 112	ARTIFICIAL INTELLIGENCE (AI) Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-N202 Al1 Chair: Dr. Michael Negnevitsky Fuzzy-Neural Approach for Dissolved Gas Analysis of Power Transformer Incipient Faults C. S. Chang, C. W. Lim, Q. Su
Paper 112 221	ARTIFICIAL INTELLIGENCE (AI) Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-N202 Al1 Chair: Dr. Michael Negnevitsky Fuzzy-Neural Approach for Dissolved Gas Analysis of Power Transformer Incipient Faults C. S. Chang, C. W. Lim, Q. Su Application of Neural Networks as an Auxiliary Technique in the Modelling of Power Station Khayam Ghamami, Eric Hu
Paper 112 221 40	ARTIFICIAL INTELLIGENCE (AI) Date: Monday 27 September, Time: 11.00am-12.40pm, Venue: 50-N202 All Chair: Dr. Michael Negnevitsky Fuzzy-Neural Approach for Dissolved Gas Analysis of Power Transformer Incipient Faults C. S. Chang, C. W. Lim, Q. Su Application of Neural Networks as an Auxiliary Technique in the Modelling of Power Station Khayam Ghamami, Eric Hu Proposal for an Improvement in Transformer Diagnosis by DGA using Expert System N.K.Dhote, S.B.Bodkhe

ſ

78	Economic Optimisation of Gas Turbine Compressor Washing <i>G. Hovland, M. Antoine</i>
	EDUCATION (ED)
Paper ID	Date: Wednesday 29 September, Time: 11.00am-12.40pm, Venue: 50-2 ED1 Chair: Prof. A. Kalam
13	First Year Experiences of Conducting Virtual Laboratory for Information and Telecommunication Engineering Students at Massey University S.C.Mukhopadhyay, D.N.Pinder
61	The Electric Power Engineering Centre: Power Engineering as a Field of Excellence in New Zealand Joseph D Lawrence, Pat S Bodger
90	Sustainable Postgraduate Education for the Electricity Supply Industry <i>D.Birtwhistle</i>
195	Web-based Interactive Teaching of Power Electronics A. Dastfan, S. Ferdowsi
51	Strategies for Stimulating Interest in Power Electronics at UWA H.H.C. Iu, L. Borle
	CONDITION MONITORING (CM)
Paper ID	Date: Monday 27 September, Time: 3.40-5.20pm, Venue: 50-2 CM1 Chair: A/Prof. David Birtwhistle
35	Correlation between Time and Frequency Domain Polarisation Measurements for Transformer Moisture Assessment <i>T.K. Saha, R. Middleton, A. Thomas</i>
38	Optimal Selection of Parameters for Wavelet-Packet-based Denoising of UHF Partial Discharge Signals for Condition Monitoring of GIS C. S. Chang, J. Jin, C. Chang, T. Hoshino, M. Hanai, N. Kobayashi

49	Recognition of Partial Discharge Waveshape Patterns for Gas Insulated Switchgear <i>C. S. Chang, K. H. Lee, C. Chang</i>			
50	Identification of SF ₆ Partial Discharge Sources in Gas-Insulated Substations <i>C. S. Chang, R. C. Zhou, J. Jin</i>			
135	Technical Challenges of an Ageing Power System in a Deregulated Industry <i>D. M. Allan</i>			
Paper ID	Date: Tuesday 28 September, Time: 1.40-3.20pm, Venue: 50-N202 CM2 Chair: Dr. Dave Allan			
161	Signal Processing of On-Line Partial Discharges Measurements in HV Power Cables Hao Zhang, T.R. Blackburn, B.T. Phung, Z. Liu			
178	Evaluation of Over Voltage Surges and PD Propagation on XLPE Cables <i>M. Vakilian, T.R. Blackburn, B.T.Phung</i>			
179	Novel and Accurate Technique for Instantaneous Power Measurements Thip Manmek, Colin Grantham, B. Toan Phung			
235	A Dynamic Rating Technique for Underground Power Cables J.S. Lyall, J. Brooks, D. McKeown			
142	Measurement of Magnetic Field from Distribution Substations in Malaysia I. Said, A.S. Farag, H. Hussain, N.A. Rahman			
Paper ID	Date: Wednesday 29 September, Time: 11.00am-12.40pm, Venue: 50-N202 CM3 Chair: A/Prof. Trevor Blackburn			
84	Conduction and Displacement Currents in Capacitors <i>J.Edwards</i>			
16	Application of a Novel Planar Magnetic Sensor to Estimate the Life of Turbine <i>C. Gooneratne, S.C.Mukhopadhyay</i>			

171	Determination of Velocities of Propagation for Three Phase Medium Voltage Cables using Time Domain Reflectometry Measurements <i>G. Murtaza Hashmi, Roland Eriksson, Suhail Aftab Qureshi</i>
186	An Accelerated Wet Ageing Test on Medium Voltage XLPE Cables F. Foottit, J.S. Lyall, P. Wickramasuriya, D. Birtwhistle, R. Gilbert, L. Powell, T. Saha
85	Establishment of Magnetic Fields in Coils <i>J.Edwards</i>

Author Index

Abu-Siada A	19, 23	Chang C.	28, 29
Adi S. R.	25	Chang C. S.	27, 28, 29
Aguado Jose A.	18	Chao C.	17
Ahfock T.	20	Choudhury Sanjib	18
Ahmed I.	26	Crisp Jennifer	16, 19
Al-Alawi Ali	25	Croft Mark	20
Al-Anbuky Adnan	20, 22, 23	Crusca F.	15
Al-Dabbagh M.	15, 16	Darbyshire J. W.	22
Aldeen M.	15	Dastfan A.	28
Allan D. M	29	De Boer F. G.	26
Andika Fidiarta	18	Dewanda Ratna	18
Antoine M.	28	Dhote N. K.	27
Arof A. K.	23	Dong Z.Y.	18
Arof Hamzah	25	Downs T.	18
Arrillaga J.	19, 24	Duke Richard	20, 23
Asheibi Ali	24	Dutta Rukmi	19, 25
Aumuller Craig	15	Edwards J.	29, 30
Azli N. A.	20	Eid Ahmad M.	25
Bahadornejad M.	17	Elias M. F. M.	23
Barr R.	23	Elphick S.	16, 23
Bautista Guillermo	18	Eriksson Roland	30
Birtwhistle David	16, 28, 30	Ertugrul N.	25, 26
Blackburn T. R.	29	Farag A. S.	29
Bodger Pat S	19, 28	Ferdowsi S.	28
Bodkhe S. B.	27	Finn David	21
Bones David	19	Fonseka P. A. J.	17
Borle Lawrence J.	15, 16, 22, 28	Foottit F.	30
Brooks J.	29	Gang Wang	16
Bryce Paul	19	Gargoom A. M.	25
Cau Thai D. H.	17	Gayler J.	26
Chancharoensook P.	21	GentileG.	27

GeorgeTim	19	Kapuduwage S. K.	16
Ghamami Khayam	27	Karanayil B.	21
Ghoshal S. P.	20	Kashem M. A.	22
Gilbert R.	30	Keyhani R.	16
Gooneratne C.	29	Khalsa Harnaak	24
Gosbell V. J.	16, 23, 24	Khouzam Kame Y.	22
Grabner Christian	27	Kobayashi N.	28
Grantham C.	17, 24, 25, 26, 29	Kok B.C.	15
Grieger J.	26	Krumdieck Susan	23
Guang Wang	16	Lawrance W. B.	19, 23, 25
Guo Y.G.	27	Lawrence Joseph D	28
Han Li	25	Ledwich Gerard	16, 17, 19, 22
Hanai M.	28	Lee K. H.	29
Hashmi G. Murtaza	24, 30	Lee V. C. S.	18
Heins G.	26	Li Hui	25
Hemetsberger Franz	25	Li Jingcan	25
Holmes Grahame	17	Li Quan	22, 23
Hood G. K.	24	Li X.	18
Hoshino T.	28	Lim C. W.	27
Hossein-Zadeh N.	15, 20	Lim Darren	22
Hovland Geir	20, 28	Lim V.	18
Hryshko A.	18	Limbu T. R	17
Hsieh Ming-Kuang	20	Lin Mu	19
Hu Aiguo Patrick	19, 21, 22	Lisner Robin P.	17
Hu Eric	27	Lister C. D.	21
Hussain H.	29	Liu Y. H.	19, 24
Islam Syed	19, 23, 24, 25	Liu Z.	29
Iu H.H.C.	28	Lu Haiwei	26
Jaganathan Raj K.	16	Lu X. B.	18
Jarman Rob	19	Lyall J. S.	29, 30
Jin J.	28, 29	MacGill Iain	17
Jing-hong Zheng	16	Mahadi W. N.	25
Kalam A.	15, 16	L.Wan	25

Manmek Thip	25, 29	Potter Cameron	23
Markovic D.	16	Powell L.	30
McKeown D.	29	Quintanay Victor H.	18
McKinnon D. J.	26	Qureshi S. A.	24, 30
Memisevic Rizah	18	Rahim N. A.	23
Meo S.	27	Rahman F.	19, 21, 24, 25, 26
Middleton R.	28	Rahman N.A.	29
Mitchell K.	22	Rao S. Srinivasa	20
Mithulananthan N.	20	Rayudu R. K.	19
Mohamed Zaid	19	Ringrose Martin	23
Morton Anthony B.	17	Rizk J.	22
Mudannayake C. P.	21	Robinson Duane	24
Mukhopadhyay S. C.	28, 29	Rose Ian	19
Murthy B. K.	20	Rotondale N.	27
Mustafa M. W.	15	Round Simon	20, 23
Nagrial M.	22	Roy N. K.	20
Nayar Chem V.	15, 16	Rybak T.	26
Negnevitsky M.	23	Saha T. K	15, 16, 18, 25, 28, 30
Nor K. M.	23, 25	Said I.	29
O'Shea P.	16, 17	Salim F.	20
Ometto A.	27	Samarasinghe S.	19
Oo Amanullah M.T.	16	Sanderson Penelope	18
Outhred Hugh	17	Sansom D. C.	18
Ozansoy C.R.	15	Schmidt Erich	27
Page Shannon	23	Schönberger John	23
Peard M. L.	24	Senini Steven	22, 23
Perera B.	24	Sernia Paul	21, 24
Perera Lakshal	24	Seyoum Dawit	15, 20, 26
Perera Sarath	16, 19, 24	Sharma R.	15, 20
Phung B. T.	25, 29	Shrestha G.B.	17
Pierce Jordan	21	Shrestha R. M.	17
Pimentel Margarida	19	Si Ping	21
Pinder D. N.	28	Singer B.D.	21

A NEW APPROACH TO STABILITY LIMIT ANALYSIS OF A SHUNT ACTIVE POWER FILTER WITH MIXED NON-LINEAR LOADS

Hanny H. Tumbelaka*, Lawrence J. Borle** and Chem V. Nayar*

 * Department of Electrical and Computer Engineering Curtin University of Technology, Western Australia
 ** School of Electrical, Electronic and Computer Engineering. University of Western Australia, Western Australia

Abstract

In this paper, a new approach to evaluate the operation of a shunt Active Power Filter (APF) is presented. The filter consists of a three-phase current-controlled voltage source inverter (CC-VSI) with a filter inductance at the ac output and a dc-bus capacitor. The CC-VSI is operated to directly control the ac line current to be sinusoidal and in phase with the grid voltage. The compensation is successful if the current and voltage controller operates within the stable and controllable area. The area boundaries are established from current control loop equations and voltage control loop transfer function. The simulation results indicate that the new approach is simple for analyzing the stability and controllability of the system for various loads and system parameters.

1. INTRODUCTION

Non-linear loads, especially power electronic loads, create harmonic currents and voltages in power systems. In many cases, non-linear loads consist of combinations of harmonic voltage sources and harmonic current sources, and may contain significant load unbalance (ex. single phase loads on a three phase system).

For many years, various active power filters (APF) have been developed to suppress harmonic currents, as well as compensate for reactive power, so that the source/grid will supply sinusoidal voltage and current with unity power factor [1, 2]. With mixed non-linear loads, it has been shown that a combined system of a three-phase line-current-forcing shunt APF with a series reactor installed at the Point of Common Coupling (PCC) is effective in compensating harmonic current sources, as well as harmonic voltage sources [3]. The filter is able to handle the load unbalanced as well. Figure 1 shows the filter configuration.

The filter consists of two control loops, namely an inner control loop and an outer control loop. The inner control loop is a ramptime current control that shapes the grid currents to be sinusoidal, while the outer control loop is a simple PI control to keep the dc bus voltage constant and to provide the magnitude of reference current signals.

The active power filter is able to successfully compensate the harmonics as well as the unbalance of the non-linear loads, if the two loops are controlled in a stable and controllable region. The region has boundaries/limits that are established from the inner loop equations and the outer loop transfer function. The stability and controllability of the system can be evaluated by checking whether the two loops are working within the boundaries. This new approach is simple in analysing the stability and controllability of the system for various loads and system parameters.

Figure 1 Active Power Filter configuration

2. A THREE-PHASE SHUNT ACTIVE POWER FILTER

The three-phase shunt active power filter is a threephase four-wire current-controlled voltage-source inverter (CC-VSI) with a mid-point earthed, split capacitor in the dc bus and inductors in the ac output.

In Figure 1, the CC-VSI is operated to directly control the ac line/grid current to be sinusoidal and in phase with the source voltage. In this scheme, the grid current is sensed and directly controlled to follow symmetrical sinusoidal reference signals. Hence, by putting the current sensors on the grid side, the grid current is forced to behave as a sinusoidal current source and as a high-impedance circuit for the harmonics. By this principle of forcing the grid current to be sinusoidal, the APF automatically provides the harmonic, reactive, negative and zero sequence currents for the load, because

$$i_{grid} = i_{APF} + i_{loads} \tag{1}$$

The sinusoidal line current reference signal is given by:

$$i_{ref} = k v_{grid-1}$$
 (2)

where v_{grid-1} is the fundamental component of the grid voltage, and k is obtained from an outer control loop regulating the CC-VSI dc-bus voltage. This can be accomplished by a simple PI control loop. This is an effective way of determining the required magnitude of active current required, since any mismatch between the required load active current and that being forced by the CC-VSI would result in the necessary corrections to regulate the dc-bus voltage.

Another important component of this system is the small-added series inductance L_L . Without this inductance, load harmonic voltage sources would produce harmonic currents through the line impedance, which could not be compensated by a shunt APF. Currents from the APF do not significantly change the harmonic voltage at the loads. The series inductance L_L provides the required voltage decoupling between load harmonic voltage is balanced and sinusoidal, the equivalent circuit, from the low order harmonic point of view, is shown in Figure 2.

Figure 2 Equivalent circuit for low order harmonics

3. CURRENT CONTROL LOOP

The performance and effectiveness of the filter are enhanced by the use of the ramptime current control technique to control the CC-VSI [4]. The principle operation of ramptime current control is based on ZACE (zero average current error). The current error signal is the difference between the actual current and the reference signal. This error signal is forced to have an average value equal to zero with a constant switching frequency. Ramptime current control maintains the area of positive current error signal excursions equal to the area of negative current error signal excursions, resulting in the average value of the current error signal being zero over a switching period. The switching period (or frequency) is also kept constant based on the choice of switching instants relative to the zero crossing times of the current error signal.

In order to evaluate the current control to maintain the switching operation, the single-phase equivalent circuit as shown in Figure 3 is examined.

Figure 3 Current-control circuit equivalent

The output current of the inverter through L_{inv} is

$$\frac{di_{APF}}{dt} = -\frac{v_{PCC}}{L_{inv}} + (2s - 1)\frac{v_C}{2L_{inv}}$$
(3)

where s = 1 if the upper switch is closed, and s = 0 if the upper switch is open. The switches are operated on a complementary basis. The inverter can always generate currents and the current control loop is stable as long as $v_C/2 > V_{PCC-pk}$. In this case, L_L is considered as a part of the loads.

The ramptime current control has characteristics similar to a sliding mode control. Therefore, the current error signal, ε as a controlled parameter can be defined as a sliding surface [5].

$$\varepsilon = i_{grid} - i_{ref} \tag{4}$$

To assure that the system can remain on the sliding surface and maintain perfect tracking, the following condition must be satisfied:

$$\varepsilon \dot{\varepsilon} \le 0$$
 (5)

where $\dot{\varepsilon}$ is:

$$\frac{d\varepsilon}{dt} = \frac{di_{loads}}{dt} + \frac{di_{APF}}{dt} - \frac{di_{ref}}{dt}$$
(6)

A positive value of the error signal (ε) produces a negative derivative of the error signal, and a negative

value of ε produces a positive derivative of ε . In both cases, full controllability is achieved when:

$$\left|\frac{di_{loads}}{dt} + \frac{di_{ref}}{dt}\right| < \left|\frac{di_{APF}}{dt}\right|$$
(7)

3.1 The Boundaries of Controllability

The right side of (7) represents the boundaries or limits of controllability, which are determined by the switch position *s* (1 or 0), v_{PCC} , v_C and L_{inv} (equation 3) and expressed in Figure 4 for $V_{PCC-rms} = 1$ pu, $V_{C-dc} = 3.3333$ pu, $X_{inv} = 1\%$, f = 50Hz with s = 1 (upper curve) and s = 0 (lower curve). So from (7), the current control will force the grid currents to track the reference signals perfectly, if the di/dt of the loads (assuming di_{ref}/dt is negligible) is between the upper and lower curves of the boundaries.

Figure 4 The boundaries of controllability

The lowest value of the upper curve has the same magnitude as the highest value of the lower curve. If this limiting magnitude is considered, the relationship between v_C and v_{PCC} for $X_{inv} = 1\%$ (0.01pu) and system frequency = 1Hz (= 1pu) to create the boundaries of *di/dt* (per-unit value - A(pu)/sec) can be depicted in Table 1 and Figure 5. The reactance X_{inv} is used rather than inductance L_{inv} because the per-unit reactance is a relative value that can be compared across different voltage and power levels or line frequencies. Therefore, the frequency is also expressed in per-unit value to provide the correct perunit di/dt. For 50Hz, 60Hz or 400Hz system, the chart will be obtained by multiplying the value in table 1 with 50, 60 or 400. From the figure, it can be seen that the higher the V_C and the lower the V_{PCC} , the more margin is available for di_{load}/dt .

For X_{inv} other than 1%, the chart will be inversely proportional to the X_{inv} value. Figure 6 shows the boundaries of controllability for different values of X_{inv} (f = 1 pu, $V_{PCC-rms} = 1$ pu, and $V_{C-dc} = 3.3333$ pu).

Table 1 The boundaries of controllability in A(pu)/sec with $X_{inv} = 1\%, f = 1Hz$

Vc-pu	Vpcc-rms-pu				
	0.9	0.95	1	1.05	1.1
3.1250	182.042	137.612	93.176	48.753	4.323
3.2292	214.778	170.349	125.913	81.489	37.059
3.3333	247.390	202.960	158.530	114.100	69.670
3.4375	280.220	235.790	191.354	146.931	102.501
3.5417	312.956	268.526	224.090	179.667	135.237

Figure 5 The boundaries of controllability in A(pu)/sec with $X_{inv} = 1\%$, f = 1pu

Figure 6 The boundaries of controllability in A(pu)/sec for various X_{inv}

3.2 The Effects of v_C and v_{PCC} Ripples

 v_C contains low order frequency ripples. The ripples represent the active alternating power for each cycle of operation and the active power demand during transient periods. Generally, the size of the dc-bus capacitor is sufficient large to minimize the ripple. As long as $v_C/2 > V_{PCC-pk}$, the system is stable and controllability can be achieved. Hence, although v_C contains ripple, it just has to be sufficiently large so as to outweigh the fluctuation of v_{PCC} and small perturbations.

Ripples in the v_{PCC} exist due to switching actions. To analyse the high-frequency ripple in v_{PCC} , consider the

portion of the circuit diagram in Figure 1 around the PCC (Figure 7):

Figure 7 *v_{PCC}* ripple circuit

$$v_g - v_{PCC} = L_g \frac{di_g}{dt} \tag{8}$$

$$v_{PCC} - v_{h_{inv}} = L_{inv} \frac{di_{APF}}{dt}$$
(9)

$$v_{PCC} - v_L = L_L \frac{di_L}{dt} \tag{10}$$

$$\frac{di_g}{dt} = \frac{di_{APF}}{dt} + \frac{di_L}{dt}$$
(11)

$$v_{PCC} = \frac{v_g + \frac{L_g}{L_{inv}} v_{h_{-inv}} + \frac{L_g}{L_L} v_L}{1 + \frac{L_g}{L_{inv}} + \frac{L_g}{L_L}}$$
(12)

 $v_{h_{inv}} = +v_C/2$ for s = 1 and $-v_C/2$ for s = 0

From (12), the waveform of v_{PCC} can be shown in Figure 8a. It is obvious that the ripple reduces the boundaries of controllability, because the value of v_{PCC} increases. A small high pass filter (with low losses) should be installed to eliminate the grid current ripple. By doing this, the ripple in v_{PCC} will be greatly attenuated (Figure 8b).

Figure 8 v_{PCC} (a) with the switching ripple; (b) the switching ripple is attenuated

4. VOLTAGE CONTROL LOOP

The outer voltage control loop employs a PI controller to adjust the gain k of the reference currents in order to maintain the desired dc bus voltage. The outer loop block diagram using an average model and considering a perfect tracking current control loop is shown in Figure 9. To obtain a smooth gain k for the dc link voltage regulator, a first order low pass filter is added to the feedback loop. The low pass filter creates a time delay T_{LPF} , which is related to the cut-off frequency of the filter.

Figure 9 Outer loop block diagram

From the block diagram, the stability of the system can be evaluated through the input-output transfer function. The transfer function is observed primarily due to the dynamic changing of the loads. In this case, losses in the converter and energy stored in L_{inv} are neglected.

$$\frac{V_C(s)}{I_{load}(s)} = \frac{\frac{K_C}{sC}}{1 + \frac{K_C}{sC} \left(K_P + \frac{1}{T_i s}\right) \left(\frac{K_f}{1 + sT_{LPF}}\right)}$$
(13)

$$\frac{V_C(s)}{I_{load}(s)} = \frac{s(1+sT_{LPF})K_C}{s^3 C T_{LPF} + s^2 C + sK_C K_f K_P + \frac{K_C K_f}{T}}$$
(14)

where, K_{f} : gain of voltage sensor, and K_C : gain of the power converter due to energy balance between ac side and dc side.

The characteristic equation of this closed-loop transfer function must satisfy the following equation for stable operation [6].

$$(s + \alpha \zeta \omega_n)(s^2 + s 2\zeta \omega_n + \omega_n^2) = 0$$
(15)
where $\alpha > 0, \zeta$ (damping) > 0 and $\omega_n > 0$

If characteristic equation (14) is equated to equation (15), the value of the proportional gain, K_P and the integral time constant, T_i of the PI controller can be obtained.

$$K_P = \frac{\omega_n^2 (1 + 2\zeta^2 \alpha) C T_{LPF}}{K_C K_f}$$
(16)

$$T_i = \frac{K_C K_f}{\alpha \zeta \omega_n^3 C T_{LPF}}$$
(17)

The values of K_P and T_i for various α (0.01 – 75) and ζ (damping: 0.5 – 1) are shown in the Figure 10 and 11. T_{LPF} is chosen based on a filter cut-off frequency of 40Hz.

5. CASE STUDY A THREE-PHASE SHUNT ACTIVE POWER FILTER WITH MIXED LOADS

Using the stability requirement and controllability boundaries as mentioned above, the parameters for the three-phase active power filter are set up to handle a mixed load. The system in Figure 1 is tested using computer simulation to verify the concepts discussed in the previous sections. $V_{PCC-rms} = 1$ pu, $V_C = 3.3333$ pu, $L_L = 0.8\%$, and $I_{base} = 10$ A

The three-phase current waveforms of the mixed loads and their di/dt are shown in Figure 12. The loads consist of a three-phase inductive (linear) load, singlephase diode rectifiers with RC load connected in phase A and C, and a three-phase diode rectifier with RL load. Each phase-current is compared individually to the boundaries of controllability according to (7). The phase-A load current is chosen for presentation as it has the highest rate of change. For the first case, X_{inv} = 1.96% is chosen based on a comparison between the maximum di/dt value of the loads in Figure 12 and the boundaries of controllability in Figure 6 (with f =

Figure 10 K_P versus damping for varying α

Figure 11 T_i versus damping for varying α

50Hz). As a result, full controllability is obtained (Figure 13) and the active power filter can compensate the reactive and harmonic currents successfully (Figure 14).

Figure 12 (a) Load currents and (b) their di/dt

Figure 13 The di/dt of the load (phase A) is inside the boundaries

Figure 14 The grid currents after successful compensation

Alternatively, if X_{inv} is increased to 8.04%, the *di/dt* signals of the load exceed the boundary envelopes at the spot indicated (Figure 15). At that moment, the controllability of the current controller is lost since the current error signal moves away from zero. However, as soon as the *di/dt* of the loads is returned to the inside of the envelope, controllability is recovered, and the APF is able to force the grid current to return to the reference value. Overall, the active power filter fails to compensate the reactive and harmonic currents completely and the grid currents are distorted (Figure 16).

Figure 15 The di/dt of the load (phase A) exceeds the boundaries

Figure 16 The grid currents due to momentary unsuccessful compensation

Figure 17 Dynamic condition of DC bus voltage

For the voltage control loop, according to equation (16) and (17), and Figures 10 and 11, K_p and T_i are selected for a specific α and ζ to obtain the optimum dynamic response. T_i must be chosen such that the speed response of the voltage control loop is sufficiently slower than the current control loop. Hence, both loops are decoupled. Figure 17 shows the simulation results of the dynamic condition of the dc-bus voltage for $K_P = 10$ and $T_i = 0.0058$. It can be seen that the dc-capacitor voltage is increased when the load is decreased. Once the transient interval is finished, the dc-bus voltage is recovered and remains at the reference voltage.

6. CONCLUSION

It is important to assure that APF operates successfully by checking the stability and controllability of the current control and voltage control loop of APF. The stability requirement for the current control loop is to ensure v_C is much greater than v_{PCC} . However, to maintain perfect tracking of the reference signals, the di/dt of the loads has to be inside of boundaries of controllability, which are established by the APF components. At the same time, the voltage control loop must be regulated so that its poles are located on the left side of the *s*-plane.

7. **REFERENCES**

- El-Habrouk, M., M.K. Darwish, and P. Mehta, *Active Power Filters: A Review*. IEE Proc. Electr. Power Appl., 2000. 147(5): p. 403-413.
- 2. Singh, B., K. Al-Haddad, and A. Chandra, *A Review of Active Filters for Power Quality Improvement.* IEEE Trans. on Industrial Electronics, 1999. **46**(5): p. 960-971.
- 3. Tumbelaka, H.H., L.J. Borle, and C.V. Nayar. Application of A Shunt Active Power Filter to Compensate Multiple Non-linear Loads. in Australasian Universities Power Engineering Conference (AUPEC). 2002. Melbourne, Australia: ACPE.
- 4. Borle, L.J., Zero Average Current Error Control Methods for Bidirectional AC-DC Converters (PhD Thesis), in School of Electrical and Computer Engineering. 1999, Curtin University of Technology: Perth, Western Australia. p. 315.
- Saetieo, S., R. Devaraj, and D.A. Torey, *The* Design and Implementation of a Three-phase Active Power Filter based on Sliding Mode Control. IEEE Trans. on Industry Applications, 1995. **31**(5): p. 993-1000.
- Franklin, G.F., J.D. Powell, and A. Emami-Naeini, *Feedback Control of Dynamic Systems*. 3rd ed. 1994, New York: Addison-Wesley.