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The Analysis of Student Performance using Data Mining

Leo Willyanto Santoso, Yulia

Abstract. This paper presents the study of data mining in the education industry
to model the performance for students enrolled in university. Two algorithms of
data mining were used. Firstly, a descriptive task based on the K-means algorithm
was utihized to select several student clusters. Secondly. a classification task
supported two classification techniques, known as Decision Tree and Naive
Bayes, to predict the dropout because of poor performance in a student's first four
semesters. The student academic data collected during the admission process of
those students were used to train and test the models, which were assessed using
a cross-validation technique. Experimental results show that the prediction of
drop out student is improved. student performance is monitored when the data
from the previous academic enrollment are added.

Keywords: Data mining, education, drop out, student performance

1 Introduction

Data mining represents a significant computational advance in obtaining information
from hidden relationships between variables. This discipline aims to extract useful
knowledge from a high volume of data in which initially this knowledge is unknown,
but when applying mining techniques. these relationships are discovered. The
application of the technologies and tools of data mining in various educational contexts
1s known as Educational Data Mining (EDM) or data mining in education [1].

The contributions of data mining in education have been used to increase
understanding of the educational process, with the main objective of providing teachers
and researchers with recommendations for the improvement of the teaching-learning
process. By implementing data mining applications in education. teachers and
administrators could organize educational resources in a more efficient way.

The objective of the EDM is to apply data mining to traditional teaching systems —
in particular to learning content management systems and intelligent web-based
education systems, Each of these systems has different data sources for knowledge
discovery. After the pre-processing of the data in each of these systems. the different
techniques of data mining are applied: statistics and visualization. grouping and
classification. association rules and data mining.

The amount of academic information stored in the databases of educational
institutions s very useful in the teaching and leaming process; that is why nowadays
there has been significant research interest in the analysis of the academic information.
This research focus to apply data mining techniques to the academic records of the
students that entered the academic periods between July 2010 and June 2014 through
the construction of a mining model of descriptive data, which allows to create the
different profiles of the admitted students with socioeconomic information. For the
development of the research, the CRISP-DM methodology was used to structure the
lifecycle of a data mining project in six phases. described in four levels, which interact
with each other during the development of the research [2].
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This paper 1s organized as follows: Chapter 1 contains the background of the research
and a review of the state of the art of data mining and the use of its techniques in the
educational industry sector. In Chapter 2. the understanding of the data is made: in order
to perform a preliminary exploration of the data, The preparation of these covers all the
activities necessary for the construction of the final dataset. the selection of tables,
records, and attributes. Chapters 3 focuses on the design and evaluation of a descriptive
and classification model. Finally. in Chapter 4, the conclusions and future work are
presented.

2 Literature Review

Data mining is widely used in many interdisciplinary fields [3]. including in the
education sector. There have been many research in data mining for education. Araque,
Roldan and Salguero [4] conducted a study on the factors that atfect the university
dropout by developing a prediction model. This model could measure the risk of
abandonment of a student with sociceconomic information and academic records,
through the technique of decision tree and logistic regression, to quantify students at
high risk of dropping out,

Kotsiantis, Pierrakeas and Pintelas [5] present the study of a learning algorithm for
the prediction of student desertion — i.e., when a student abandons studies. The
background of their research is the large number of students who do not complete the
course in universities that offer distance education. A large number of testing were
carried out with the academic data, the algorithms of decision tree. neural network,
Naive Bayes, logistic regression and support vector machines were compared to know
the performance of the proposed system. The analysis of the results showed that the
Naive Bayes algorithm is the most appropriate to predict the performance of students
in a distance education system.

Kuna, Garcia and Villatoro [6], in their work "The discovery of knowledge obtained
through the process of Induction of decision trees." used decision trees to model
classifications of the data. One of the main results obtained was the characterization of
students at high risk of abandoning their university studies.

Kovacic [7] studied socioeconomic variables such as age, gender. ethnicity,
disability, employment status and the distance study program. The objective of the
research was to identify students at high risk of dropping out of school. Data mining
techniques. decision trees and logistic regression were used in this research.

Yadav, Bharadwaj and Pal [8] presented a data mining project to generate predictive
models and identify students at high risk of dropping out taking into account student
records at the first enrollment. The quality of the prediction models was examined with
the algorithms ID3, C4.5 and ADT of the decision tree techniques. ADT machine
learning algorithms can learn from predictive models with student data from previous
years. With the same technique, Quadril and Kalyankar |9] presented the study of data
mining to construct and evaluate a predictive model to determine the probability of
desertion of a particular student: they used the decision tree technique to classify the
students with the application of the algorithm C4.5.

Zhang and Oussena [10] proposed the construction of a mining course management
system based on data mining. Once the data was processed in the system, the authors
identified the characteristics of students who did not succeed in the semester. In this
research, support vector machine, Naive Bayes and decision tree were used. The highest
precision in the classification was presented with the Naive Bayes algorithm, while the
decision tree obtained one of the Iffest values.

The cff§luation of the important attributes that may affect student performance could
improve the quality of the higher education system [11. 12. 13]. Radaideh. Al-Sahwakf
and Al-Najjar [14] presented a classification model by implementing 1D3 and C4.5
algorithms of the decision tree techniques and the Naive Bayes. The classification for
the three algorithms is not very high, to generate a high quality classification model it
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1s necessary to add enough attributes. In the same study, Yudkselturk, Ozekes and Kilic
[15] examined the prediction of dropout in online academic programs, in order to
classify students who dropped out. three mining techniques were applied: decision tree,
Naive Bayes and Neural network. These algorithms were trained and evaluated using a
cross-validation technique. On the other hand. Pal [16] presented a data mining
application to generate predictive models taking into account the records of the students
of the first period. The decision tree is used for validation and training to find the best
classifier to predict students who dropped out.

Bhise., Thorat and Supekar [17] studied the evaluation factors of students to improve
performance. using grouping technique through the analysis of the K-Means algorithm,
to characterize the student population. Moreover. Erdogan and Timor [18] presented
the relationship of university students between the entrance exams and the results of
success. The study was carried out using algorithm techniques of group analysis and K-
Means. Bhardwaj and Bhardwaj [19] presented the application of data mining in the
environment of engineering education. the relationship between the university and the
results obtained by students, through the analysis of K-algorithm techniques.

3 Data Analysis and Modeling

This chapter focuses on the understanding of the data where visualization techniques
are applied, such as histograms, in order to perform a preliminary exploration of the
records and verily the quality of the data. Once the analysis is done. we proceed with
the data preparation phase. which includes the tasks of selecting the data to which the
modeling techniques will be applied for their respective analysis.

The first task is collecting the initial data. The objective of this task is to obtain the
data sources of the academic information system of the University. The first set of data
grouped the socioeconomic information and the result of the admission tests (Language,
English, Mathematics and Logic). The second set of data is made up of the academic
and grading history obtained by the students: the academic year and period of the
student's admission; the program in which he/she is enrolled: the student's academic
situation (academic blocking due to low academic performance and no academic
blocking): and number of academic credits registered. approved. lost. canceled and
failed. The generated queries were made through the PostgreSQL. database management
system. A process of concatenation of the two data sets was performed, obtaining a flat
file with 55 attributes and 1665 records of students admitted and enrolled in the systems
and electronics engineering programs.

The next task is data exploration. Exploratory analysis is a task that allows detailed
analysis of some variables and identifying characteristics; for this, some of the
visualization tools such as tables and graphs were used. with the purpose of describing
the data mining objectives of the comprehension phase.

The task of checking the quality of the data specifies a revision of the same as the
lost or those that have missing values committed by coding errors. In this section, the
quality of the data corresponding to the socioeconomic information of the admitted
student is verified.

The next task is data selection. In this task. the process of selecting the relevant
data for the development of the data mining objectives is carried out. A first pre-
processing, for the final selection of the data, is the selection of attributes. It was
obtained that there are 55 attributes or variables that contain values that may or may not
contribute to the study: this is based on the exploration initial of the data and in the
description of the fields defined in the variable dictionary, In the dataset selected for
the modeling, no errors were found in the fields: differences in the selected records, the
errors that were presented in some cases were missing, due to the fact that the
processing was not adequate at the time of the typing such as email. residence address,
telephone number. date of birth. type of blood, and ethnicity that are attributes
considered not relevant to the case under study.

To develop the model. the application RapidMiner was used for automatic learning
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for analysis and data mining; this program allows the development of data analysis
processes through the linking of operators through a graphic environment, For the
implementation of the algorithm, the KMeans operator of the grouping and
segmentation library using the Euclidean distance was used to evaluate the quality of
the groups found. The algorithm is responsible for both numerical and categorical
values. However, additional pre-processing was performed to normalize all the
numerical attributes between 0 and 1 with the normalize operator. All attributes must
have the same scale for a fair comparison between them.

A grouping model was applied to the dataset for the characterization of the admitted
students, create the different profiles of the students in the different groups found and
determine what other factors define the separation of groups produced by the K-Means
algorithm.

Repeated interaction was performed to determine the value of K or the number of
groups. The value of K varied from 2 to 14. The results were evaluated based on the
quadratic error of each iteration; for the selection of the group number, the elbow
method was used.

S 5E

Fig. 1. Selection of the Group number (K) for students admitted

Figure 1 shows the iterations performed to find the value of k in the first dataset of the
admitted students. the k with value of 5 was selected, where the SSE is equal to 7.954.
The K-Means algorithm produced a model with five groups, from the deseription of
these groups is expected to characterize the profiles of admitted students. Table 1 shows
the distribution of the number of records and the percentage of each of the resulting
groups. Group 2 and 4 group the largest number of records, on the contrary, the lowest
percentage of records are in group 1.

Table 1. Distribution of the registration number in the application of the K-Means algorithm

Group 0 Group 1 Group2  Group3  Group 4

The 317 130 418 389 409
Number of
Record
Percentage 19% 8% 25% 23% 25%

The model was necessary to “de-normalize” it, to put each one of the values of the
variables in their original ranges. The analysis of the model was made with the
socioeconomic information and the results of the admission tests: then. an analysis was
made about the academic situation of the students who in each group had academic
block with four enrollments.

Table 2 shows the distribution of the number of records in each of the groups in
the first four semesters or academic enrollments. Groups 2 and 3 are characterized by
grouping the largest number of records with 28% in each group. In group 0, on the other
hand, there is the smallest number of records with 6%. 47% of the registers are students
of the first semester, 21% present second enrollment, 19% with third enrollment and
13% of the remaining registers have four academic enrollments.




Table 2. Distribution of the number of students with four enrollments

Mo of Groups Enrollment | Enrollment 2 Enrollment 3 Enrollment 4 Total
Group 0 32 13 11 10 66
Group 1 127 63 47 29 266
Group 2 178 58 72 23 331
Group 3 160 90 48 41 339
Group 4 66 32 45 52 195

Number of Records 563 256 223 155 1197
Percentage 47% 21% 19% 13% 100"

Table 3. Distribution of the number of students with four enrollments

No. of Enrollment 1 Enrollment 2 Enrollment 3 Enrollment 4
groups Mo Block No Block Mo Block No Block
Block Acad. Block Acad. Block Acad. Block Acad.
Group 0 23 26 18 2 14 3 15 0
Group 1 17 30 13 11 15 2 9 2
Group 2 43 11 15 3 22 0 T 0
Group 3 22 26 21 [ 14 1] 11 1
Group 4 16 17 12 5 23 1] 26 1

Table 3 shows in each group the academic status of the students in the first four

enrollments. Group 1 is characterized by grouping the highest percentage of students
with academic block, in contrast to group 2 where you can see the lowest percentage of
students with academic block. The group 0 is characterized by good performance in the
admission tests, grouped 26% of students with blocking in the first enrollment, 2% in
the second and 3% in the third enrollment. Group 1 groups the students with the lowest
performance of the admission tests similar to group 2. 30% of the students present
blocking in the first enrollment. 11% in the second and 2% are in the third and fourth
enrollment,
Group 2 1s characterized by grouping the students with the lowest performance of the
admission tests and the least number of students with blocks. 11% of the students have
ablock in the first enrollment and 3% in the second enrollment. Group 3 is characterized
by grouping the students with good performance in the admission tests similar to group
0.26% of students present blockage in the first enrollment. 6% with two and 1% with
four enrollments. Finally. group 4 is characterized by grouping the smallest number of
students with blocks. 17% of students with a registration have a block, 5% correspond
to students with two enrollments and 1% with four enrollments.

4 Result and Analysis

In this section, two models of data mining to analyze the academic and non-academic
data of the students are presented. The models used two classification techniques,
decision tree and Naive Bayes. in order to predict the loss of academic status due to low
academic performance in their study. The historical academic records and the data
collected during the admission process were used to train the models. which were
evaluated using cross-validation,

Table 4. Registration number and academic blocks per academic period

Academic Penod

Academic 2010-  2010- 2011- 2011- 2012- 2012- 2013- 2013- 20014- 2014-
Condition i 2 1 2 | 2 1 2 1 2
No Block 115 145 137 119 100 146 131 151 110 166
Acad. Block 70 32 49 30 31 22 25 35 27 23

Total Record 185 177 186 149 131 168 156 186 137 189




6

Table 4 presents the total number of registrations or students with first enrollment or
enrollment and number of students with academic block due to underperformance,
Table 5 shows the number of students with academic block in each period or enrollment.
The largest number of students with academic block is presented in the first enrollment.
The second, third and fourth enrollment shows a decrease in the number of students
with blocks. In the 2010-01 entry period, the highest number of students with academic
blocks was presented in each academic enrollment.

Table 5. Academic block by entry period or first enrollment

Academic Block
Income 2010-  2010-  20011-  20011-  2012-  2012- 2013-  2013-  2014-  2014-

Penod 1 2 1 2 1 2 1 2 1 2
2010-1 40 15 7 5 0 1 2 0 0 0
2010-2 28 0 0 3 0 0 ] 0 0
2011-1 39 6 2 2 0 0 0 0
2011-2 22 8 0 0 1] 0 0
2012-1 20 11 0 t] i 0
2012-2 14 8 0 0 0
2013-1 15 10 0 0
2013-2 28 7 0
2014-1 26 1
2014-2 13

The classification model proposed in this research uses the socioeconomic information.
The classification model uses two widely used techniques, decision trees and a
Bavesian classifier. The reason for selecting these algorithms is their great simplicity
and interpretability.

The decision tree is the first technique used to classify the data: this algorithm
generates a recursive decision tree when considering the criterion of the highest
proportion of information gain — that is. it chooses the attribute that best classifies the
data. It is a technique where an instance 1s classified following the path of conditions,
from the root to a leaf. which will correspond to a labeled class. A decision tree can
caflly be converted into a set of classification rules. The most representative algorithm
is C4.5, which handles both categorical and continuous attributes. It generates a
decision tree recur.’cly when considering the criterion of the highest proportion of
information gain. The root node will be the attribute whose gain is maximum.
Algorithm C4.5 uses pessimistic pruning to eliminate unnecessary branches in the
decision tree and to improve classification accuracy.

The second technique to be considered for the construction of the model is a
Bavesian classifier. It 1s one of the most effective classification models. Bayesian
classifiers are based on Bayesian networks: these are models probabilistic graphs that
allow modeling in a simple and precise way the underlying probability distribution to a
data set. Bayesian networks are graphic representations of dependency and
independence relationships between the variables present in the data set that facilitate
the understanding and interpretability of the model. Numerous algorithms have been
proposed to estimate these probabilities. Naive Bayes is one of the practical leamning
algorithms most used for its simplicity. resistance to noise, short time for processing
and high predictive power.

Different models were trained and tested to predict if a student will be blocked in a
particular enrollment. The first model analyzed the loss of academic status based on
socioeconomic information and the results of the tests collected during the admission
process. The second model was analyzed with the initial information of the enrollment
process and the academic records of the first four registrations. Table 6 describes the
number of registrations in the first four enrollments with academic status (No Block




and Academic Block).

Table 6. Academic situation in the first four enrollments

Academic Situation Enrollment 1 Enrollment 2 Enrollment 3 Enrollment 4
No Block 309 190 214 145
Acad, Block 255 66 9 10
Total Record 364 256 223 155

For the design of the model. the RapidMiner application was used: this is a program for
automatic learning and data mining process, through a modular concept. which allows
the design of learning models using chain operators for various problems. For the
validation of the classification model Stratified Sampling stratified sampling technique
was used. The operator to partition the data set called split data: this operator creates
partition to the dataset in subsets according to the defined size and the selected
technique. For the implementation of the decision tree algorithm, the Decision Tree
operator and the Bayesian algorithm Naive Bayes were used. Table 7 shows the number
of records in the first four enrollment, 80% of the records were taken as training set and
10-fold cross-validation and 20% of the sample was used as a test set.

Table 7. Test, Training and Validation dataset

Number of Total Training and Validation Data 80% Test Data 20%
Enrollment Record Mo Block Acad. Block No Block Acad. Block
Enrollment 1 564 247 204 62 51
Enrollment 1 256 152 53 38 13
Enrollment 1 223 171 7 43 2
Enrollment | 155 116 8 29 2

To estimate the performance of the model, the X-Validation operator was used.
This operator allows to define the process of cross-validation with 10-fold on the input
data set to evaluate the learning algorithm. The performance of the model was measured
with the operator Performance Binomial Classification. This operator presents the
performance results of the algorithm in terms of accuracy. precision, recall, error and
ROC curve. To analyze the errors generated from a classification model. the confusion
matrix is used. It is a visualization tool that is used in supervised learning. Each column
of the matrix represents the number of predictions of each class. while each row
represents the instances in the real class.

The following measurements are calculated during the experiment: accuracy,
classification error., exhaustiveness (Recall). Precision. f measure, Specificity,
Sensitivity, False Negative rate, False Positive Rate and Area under the Curve (AUC).
In this stage. different models were trained and tested to classify students with academic
block in the first four academic enrollments: using the socio-economic information. For
the configuration of the experiments. we used cross-validation with 10-fold to train the
models and the evaluation of the model we used the test dataset. The performance of
the model was evaluated with 80% of the training and validation data, 20% of the
sample was used as a test set. In the decision tree technique with training and validation
data. the tree depth was varied from 1 to 20: the lowest classification error was found
in depth 3, where the error begins to show some stability in each of the four academic
periods. Finally, the training and validation models were evaluated with the test dataset.

Table 8 presents the results of the pre-condition model of the loss of the academic
condition with training and validation data. comparing the different classification

techniques in terms of the different performance parameters.

Table 8. Prediction model of the loss of academic condition with the Training and Validation dataset




Prediction Decision Tree Naive Baves

Enrollment Enrollment Enrollment Enrollment Enrollment  Enrollment

2 3 4 2 3 4

Measure-I 0 0 30.77% 0 53.41% 38.51%
Precision 0 0 33.33% 0.00% 56.27% 44.17%
Exhaustive 0.00% 0.00% 28.57% 0.00% 51.45% 36.00%
Accuracy 54.76% T4.14% 94.93% 92.76% 59.43% 69.81%
Error 45.24% 25 86" 5.07% 7.24% 40.57% 30.19%
Curve (ALIC) 0.5 0.5 0 0 0.608 0.63
Kappa 0.0 0.0 0.282 -0.015 0.177 .19
Specificity 100% 100% 97.61% 99.23% 06.02% 81.65%
Sensitivity 0.00%, 0.00% 28.57% 0.00% 51.45% 36.00%
False Positive 0% 0% 2% 19 19% 149%%
False 45% 26% 3% 6% 22% 17%
Negalive

Analyzing the results of the training and validation dataset with the admission
information of the admission process, it is observed how the Bayesian classifier
presents the best accuracy of academic block records that were correctly classified. In
the third, enrollment increased by 7% with respect to the decision tree. Similarly, after
by reviewing the area under the curve (AUC). the decision tree in the first and second
enrollment shows a poor performance below 0.5. The Naive Bayes algorithm presents
the highest percentage of cases with no academic blockade that were classified
incorrectly with academic block. The decision tree presents the highest proportion of
class with academic block that were classified incorrectly with no academic block.
Table 9 presents the results of the model of the pre-condition of the loss of the academic
condition with the admission information of the admission process and the academic
record of the previous semester with the data of training and validation. the different
classification techniques are compared in terms of different performance parameters.

Table 9. Prediction model of the loss of the academic condition using the Training and Validation data

Prediction Decision Tree Maive Baves
Enrollment  Enrollment  Enrollment  Enrollment  Enrollment  Enrollment

2 3 4 2 3 4
Measure-F 74.42% 0 11.11% T100% 41.67% 40.00%
Precision 66.40% 0.00 10.00% 60.75% 29.41% 33.33%
Exhaustive 86.67% 0.00% 12.50% 87.00% 71.439% 50.00%
Accuracy 84.45% 94.31% 87.05% #1.02% 92.06% 90.19%
Error 15.55% 5.69% 12.95% 18.98% 23.86% 9.81%
Curve (AUC) 0851 0 0 0912 0 0
Kappa 0.637 -0.224 0.042 0.578 0.295 0.350
Sp\:ciﬁcily ¥3.58% 98.20% 02.12% TRO0%, 92.93% 92.94%
Sensitivity 86.67% 0.00% 12.50% R7.00% T1.43% 50.00%
False Positive 13% 2% 7% 16% 7% 6%
False 1% 4% 6% 3% 1% 3%
Negative

Analyzing the results of the training and validation dataset, we observe how the decision
tree increased its level of accuracy in the second and fourth enrollment. The Bayesian
classifier mncreased the accuracy of records with academic blocks that were correctly
classified. Similarly, by reviewing the area under the curve (AUC), both algorithms in
the second enrollment have a good performance above 0.7.

Table 10 presents the results of the model of pre-condition of the loss of the academic
condition with the admission information of the admission process and the academic
record of the previous semester with the test data; the different classification techniques
are compared in terms of performance parameters.




Table 10. Prediction model of the loss of academic condition using the test data

Prediction Decision Tree Maive Bayes

Enrollment Enrollment Enrollment  Enrollment  Enrollment  Enrollment

2 3 4 2 3 4

Measure-F T4.29% 0 0 70.27% 0% 0%
Precision 59.09%, 0.00% 0.00% 54.17% 0.00% 0.00%
Exhaustive L00%% 0.00% 0.00%% 100%% 0.00% 0.00%
Accuracy 17.65% 4.44% 6.45% 21.57% 6.67% 9.68%
Error 82.35% 95.56% 93.55% 78.43% 93.33% 90.32%
Curve (AUC) 0.882 0.500 0.534 0.913 0907 0.828
Kappa 0.622 0.00 0.000 0.556 -0.031 0.045
Specificity 76.32% 100% 100% 71.05% 97.67% 96.55%
Sensitivity 100%0 0.00% 0.00% 100%% 0.00% 0.00%
False Positive 18% 0% 0% 22% 2% 6%
False Negative (1% 4% 6% 0% 4% 3%

Analyzing the results of the test dataset, we observe how the decision tree presents the
highest number of predictions with academic blocking that were correctly classified in
the second enrollment. Likewise, by reviewing the area under the curve (AUC), the
Naive Bayes algorithm presents a good performance with an area greater than 0.9 in
comparison to with the algorithm of the decision tree,

5 Conclusion

In recent years, there has been great interest in data analysis in educational institutions,
in which high volumes of data are generated. given the new techniques and tools that
allow an understanding of the data. For this research, a set of data was compiled from
the database of the "X’ University with socioeconomic information and the academic
record of the previous enrollment, for the training and validation of the descriptive and
predictive models.

The objective of the application of the K-Means algorithm of the descriptive model
was to analyze the student population of the university to identify similar characteristics
among the groups. It was interesting to establish that some initial socio-economic
characteristics allowed to define some profiles or groups. In the evaluation of the model.
it was observed that the student's socioeconomic information affects the results of their
academic performance. showing that the groups with the highest academic performance
in the knowledge test results were found in the schools with low socioeconomic status.

The classification model presented in this paper analyzed the socioeconomic

information and the academic record of the student’s previous enrollment. The decision
tree algorithm with the test data presented a better performance with the addition of the
academic record of the previous semester compared to the Naive Bayes algorithm. The
analysis of the data could show that there are different types of performance according
to the student's socioeconomic profile and academic record, demonstrating that it 1s
feasible to make predictions and that this research can be a very useful tool for decision
making.
This research can be used for decision making, by the permanency and graduation
program of the University and can be used as a starting point for future data mining
research in education. Another important recommendation is that to improve the
performance of the model. other sources of data should be integrated. such as the
information of the student who is registered as a senior in high school in the Senior
High School, before entering the university.
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