
 

 
Abstract—This paper extends and generalizes the 

approximations of fuzzy rough sets dealing with fuzzy coverings 
of the universe induced by a weak fuzzy similarity relation. The 
weak fuzzy similarity relation is considered as a generalization 
of fuzzy similarity relation in representing a more realistic 
relationship between two objects in which it has weaker 
symmetric and transitive properties. Since the conditional 
symmetry in the weak fuzzy similarity relation is an asymmetric 
property, there are two distinct fuzzy similarity classes that 
provide two different fuzzy coverings. The generalization of 
fuzzy rough sets approximations is discussed based on two 
interpretations: object-oriented generalization and class-
oriented generalization. More concepts of generalized fuzzy 
rough set approximations are introduced and defined, 
representing more alternatives to provide level-2 interval-
valued fuzzy sets. Moreover, through combining several pairs of 
proposed approximations of the generalized fuzzy rough sets, it 
is possible to provide the level-2 type-2 fuzzy sets as an extension 
of the level-2 interval valued fuzzy sets. Some properties of the 
concepts are examined. 
 

Index Terms— fuzzy rough sets, fuzzy covering, weak fuzzy 
similarity relations, conditional probability relations 
 

I. INTRODUCTION 

AWLAK introduced the theory of rough sets in 1982 
dealing with granularity of the universe [11]. The theory 

of rough sets is mainly implemented as mathematical tools to 
recognize partial or total dependencies, discover hidden 
patterns, remove redundancy, and others in relational 
database [10]. A rough set might be considered as a 
generalization of crisp set by means that a given crisp set is 
approximate into two approximated subsets, called lower and 
upper approximations generated from a crisp partition of a 
universal set of objects [9]. The crisp partition is built by 
equivalence classes of objects in the universe. It means that 
similarity relation among the members of the universe is 
related based on equivalence relation. Formally, the concept 
of rough sets is discussed as follows. Given 𝑈 be a non-empty 
universal set of objects, and 𝑅 be an equivalence relation on 
𝑈. The crisp partition of 𝑈, denoted by 𝑈/𝑅, is a quotient set 
where [𝑥]  is an equivalence class in 𝑈/𝑅 that contains 𝑥 ∈
𝑈. A rough set of 𝐴 ⊆ 𝑈 is represented by a pair of lower and 
upper approximations. The lower approximation is given by 

the following equation. 
 
𝐿𝑜(𝐴) = {𝑥 ∈ 𝑈 |[𝑥] ⊆ 𝐴} = {[𝑥] ∈ 𝑈/𝑅|[𝑥] ⊆ 𝐴}   (1) 
 
The lower approximation is a union of all equivalence classes 
in 𝑈/𝑅 that are subsets of 𝐴. On the other hand, the upper 
approximation is given by a union of all equivalence classes 
in 𝑈/𝑅 that overlap with 𝐴 as given by the following 
equation. 
 
             𝑈𝑝(𝐴) = {𝑥 ∈ 𝑈 |[𝑥] ∩ 𝐴 ≠ ∅}, 
                         = {[𝑥] ∈ 𝑈/𝑅|[𝑥] ∩ 𝐴 ≠ ∅}            (2)  
 
As discussed in [12], the concept of rough sets built on a crisp 
partition dealing with equivalence relations may be 
considered less applicable in representing a real-world 
problem. It is because the equivalence relation used in 
constructing the crisp partition having too strong symmetric 
and transitive properties in representing relationships 
between two objects. Therefore, a covering of the crisp 
universe [15] as a generalization of the crisp partition was 
introduced to provide a more general concept of rough sets. 
Formally, a crisp  covering of a non-empty universal set of 
objects 𝑈, denoted by 𝐶 = {𝐶 , 𝐶 , ⋯ , 𝐶 } is given by a 
family of subsets of 𝑈 such that 𝑈 = ⋃{𝐶 |𝑖 = 1 , ⋯ , 𝑛}. 
Since it is a covering, 𝐶 ∈ 𝐶 and 𝐶 ∈ 𝐶 as two distinct 
elements in 𝐶 may not be necessarily disjoint. In this case, 
similarity of relationship between two distinct objects in 𝑈 is 
an asymmetric and non-transitive relationship. To provide a 
more realistic and relationship between two objects in the 
universe, Intan, Mukaidono and Yao [3] introduced a weak 
fuzzy similarity relation as a generalization of fuzzy similarity 
relation to provide a more realistic and applicable relation 
representing relationships between two objects. The weak 
fuzzy similarity relation has weaker symmetric and transitive 
properties than the fuzzy similarity relation. (Fuzzy) 
conditional probability relation proposed in [2] was an 
example of formulation characterized by the weak fuzzy 
similarity relation. A fuzzy covering [4] is then constructed 
by relationship between two objects based on the weak fuzzy 
similarity relation.  

Using the concept of fuzzy covering, Intan and Mukaidono 
[5,6] proposed a concept of generalized fuzzy rough sets in 
2002. This paper is an extended work of the concept of fuzzy 
rough sets. Therefore, this paper firstly recalls and discusses 
the generalized concept of fuzzy rough sets as proposed by 
Intan and Mukaidono in [5] and [6]. The concept of 
generalized rough sets is dealing with two generalized 
interpretations: object-oriented generalization and class-
oriented generalization. This paper then proposes more 
concepts of approximations based on the concept of 
generalized fuzzy rough set. The proposed concepts of 
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approximations can be considered to represent more 
alternatives in providing the interval-valued fuzzy sets. Some 
properties to show the relations of the proposed concepts are 
examined. Finally, an illustrative example is given to clarify 
the proposed concepts.  

II. WEAK FUZZY SIMILARITY RELATIONS 

The fuzzy similarity relation or fuzzy equivalence relation 
proposed by Zadeh [16] is a weaker similarity relation than 
the equivalence relation. The properties of fuzzy similarity 
relation are given by Definition 1. 

 
Definition 1 A fuzzy similarity relation is a mapping, 𝑅: 𝑈 ×
𝑈 → [0,1], such that for 𝑥, 𝑦, 𝑧 ∈ 𝑈,  
(a) Reflexivity:  𝑅(𝑥, 𝑥) = 1, 
(b) Symmetry:   𝑅(𝑥, 𝑦)  =  𝑅(𝑦, 𝑥),  
(c) Max−min Transitivity: 
  𝑅(𝑥, 𝑧) ≥ max

∈
[min [𝑅( 𝑥, 𝑦), 𝑅(𝑦, 𝑧)]],  

The weak fuzzy similarity relation as proposed in [3] has 
weaker symmetric and transitive properties than the fuzzy 
similarity relation as seen in the following definition.  
 
Definition 2 A weak fuzzy similarity relation is a mapping, 
𝑅: 𝑈 × 𝑈 → [0,1], such that for 𝑥, 𝑦, 𝑧 ∈ 𝑈, 
(a) Reflexivity: 𝑅(𝑥, 𝑥) = 1,  
(b) Conditional Symmetry: if 𝑅(𝑥, 𝑦) > 0 then 𝑅(𝑦, 𝑥) > 0,  
(c) Conditional Transitivity: if 𝑅(𝑥, 𝑦) ≥ 𝑅(𝑦, 𝑥) > 0  and  
  𝑅(𝑦, 𝑧) ≥ 𝑅(𝑧, 𝑦) > 0 then 𝑅(𝑥, 𝑧) ≥ 𝑅(𝑧, 𝑥) .  
 The fuzzy conditional probability relation proposed in [2] 
was an example of formulation characterized by the weak 
fuzzy similarity relation. Fuzzy conditional probability 
relation is an extended concept of a conditional probability 
relation dealing with the fuzzy sets. The concept of 
conditional probability relation is given by Definition 3. 
 
Definition 3 A conditional probability relation is a mapping, 
𝑅: 𝑈 × 𝑈 → [0,1], such that for 𝑥, 𝑦 ∈ 𝑈, 
  𝑅(𝑥, 𝑦) = 𝑃(𝑥|𝑦) = 𝑃(𝑦 → 𝑥), (3) 
where 𝑅(𝑥, 𝑦) means the degree 𝑦 supports 𝑥 or the degree 𝑦 
is similar to 𝑥. 

The probability values, 𝑥 and 𝑦 in Definition 3, may be 
regarded as the semantic relationships between two objects 
by using the epistemological point of view in terms of 
probability theory. Calculating degree of relationship 
between 𝑥 and 𝑦 can be illustrated by assuming x and y are 
two objects in a given binary information table. Simply, 
degree of similarity, 𝑅(𝑥, 𝑦), can be calculated by (4), 
 

   𝑅(𝑥, 𝑦) = 𝑃(𝑥|𝑦) =
| ∩ |

| |
,           (4) 

 
where |·| denotes the cardinality of a set.  
For illustrative example, given Table I shows a binary 
information table, where set of objects, 𝑈 =
 {𝑂 , 𝑂 , 𝑂 , 𝑂 , 𝑂 , 𝑂 , 𝑂 }, is characterized by a set of eight 
attributes, 𝐴𝑡 =  {𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 }. Therefore, 
every object in 𝑈 might be represented by a subset of 
attributes that belong to the object. From Table I, it can be 
seen that 𝑂 =  {𝑎 , 𝑎 , 𝑎 , 𝑎 }, 𝑂 =  {𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 }, 
𝑂 =  {𝑎 , 𝑎 , 𝑎 }, etc. Using (4), it can be followed that, 

𝑅(𝑂 , 𝑂 ) =
3

5
,       𝑅(𝑂 , 𝑂 ) =

3

4
, 

 

𝑅(𝑂 , 𝑂 ) =
1

3
,       𝑅(𝑂 , 𝑂 ) =

1

4
, 

 
𝑅(𝑂 , 𝑂 ) = 0,       𝑅(𝑂 , 𝑂 ) = 0. 

 
It can be verified that 𝑅(𝑂 , 𝑂 ) > 0 ⇒ 𝑅(𝑂 , 𝑂 ) > 0 
means that the conditional probability relation satisfies 
conditional symmetry of the weak fuzzy similarity relation. 
The property of conditional symmetry might be asymmetry 
as shown in the calculation, 𝑅(𝑂 , 𝑂 ) ≠ 𝑅(𝑂 , 𝑂 ). 
 

TABLE I.  BINARY INFORMATION TABLE 

𝑈 
𝐴𝑡 

𝑎  𝑎  𝑎  𝑎  𝑎  𝑎  𝑎  𝑎  

𝑂  1 1 1 0 0 0 0 1 

𝑂  0 1 1 1 0 1 0 1 

𝑂  1 0 0 0 1 0 1 0 

𝑂  1 0 0 1 0 0 0 1 

𝑂  1 0 0 1 1 0 0 1 

𝑂  1 0 0 1 1 0 1 1 

𝑂  1 0 1 1 0 1 1 0 
 
 When objects are fuzzy sets, the degree of similarity two 
objects can be calculated by a fuzzy conditional probability 
relation as proposed by Intan and Mukaidono in [2] as defined 
in Definition 4.  
 
Definition 4 Let 𝑥, 𝑦 ∈ 𝑈 be two objects in 𝑈. 𝑥 and 𝑦 are 
fuzzily characterized by a set of attributes 𝐴 that means 𝑥 and 
𝑦 are represented as fuzzy sets over a set of attribute 𝐴𝑡 as 
given by: 𝑥, 𝑦: 𝐴𝑡 → [0,1]. A fuzzy conditional probability 
relation is defined by: 
 

  𝑅(𝑥, 𝑦) =
∑  [ ( ), ( )]∈

∑ ( )∈
                (5) 

 
For example, three fuzzy sets, Short (S), Medium (M) and Tall 
(T), are represented as three objects over set of attributes, 
{3 , 4 , 5 , 6 , 7 , 8 , 9 } in feet as given in Table II.  
 

TABLE II.  FUZZY INFORMATION TABLE OF HEIGHT 

𝑈 3  4  5  6  7  8  9  
S 1.0 0.8 0.2 0.0 0.0 0.0 0.0 

M 0.0 0.2 0.8 0.2 0.0 0.0 0.0 

T 0.0 0.0 0.0 0.8 1.0 1.0 1.0 

 
From Table II, 𝑆(3 ) = 1.0 means 3  is fully a member of 
Short (S). 𝑆(6 ) = 0 means 6  is fully non-member of Short 
(S). Asymmetric degrees of similarity relationship between 
two fuzzy objects, S and M, are calculated by: 
 

𝑅(𝑆, 𝑀)

=
min(1,0) + min(0.8,0.2) + min(0.2,0.8) + min(0,0.2)

0.2 + 0.8 + 0.2
 

 
𝑅(𝑆, 𝑀) = 0.33 
 



 

𝑅(𝑀, 𝑆)

=
min(1,0) + min(0.8,0.2) + min(0.2,0.8) + min(0,0.2)

1.0 + 0.8 + 0.2
 

 
𝑅(𝑀, 𝑆) = 0.2 

 
Similarly, it can be verified that 𝑅(𝑆, 𝑀) > 0 ⇒ 𝑅(𝑀, 𝑆) >
0 means that the fuzzy conditional probability relation also 
satisfies conditional symmetry of the weak fuzzy similarity 
relation.  
 It can be clearly proved that fuzzy conditional probability 
relation R in Definition 4 satisfies all properties of weak fuzzy 
similarity relation. More properties have been discussed 
clearly in [5] and [6] as summarized by the following 
properties:  
For 𝑥, 𝑦, 𝑧 ∈ 𝑈, 
(r0) 𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥) = 1 ⇔ 𝑥 = 𝑦, 
(r1) [𝑅(𝑦, 𝑥) = 1, 𝑅(𝑥, 𝑦) < 1] ⇔ 𝑥 ⊂ 𝑦, 
(r2) 𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥) > 0 ⇒ |𝑥| = |𝑦|, 
(r3) 𝑅(𝑥, 𝑦) < 𝑅(𝑦, 𝑥) ⇒ |𝑥| < |𝑦|, 
(r4) 𝑅(𝑥, 𝑦) > 0 ⇔ 𝑅(𝑦, 𝑥) > 0, 
(r5) [𝑅(𝑥, 𝑦) ≥ 𝑅(𝑦, 𝑥) > 0, 𝑅(𝑦, 𝑧) ≥ 𝑅(𝑧, 𝑦) > 0]  
        𝑅(𝑥, 𝑧) ≥ 𝑅(𝑧, 𝑥).    

III. GENERALIZATION OF FUZZY ROUGH SETS 

The concept of rough fuzzy sets and fuzzy rough sets as a 
hybrid concept of fuzzy sets and rough sets was introduced 
by Dubois and Prade in 1990 [1]. To provide a more general 
concept of fuzzy rough sets, Intan and Mukaidono [5,6] 
discussed and proposed a generalization of fuzzy rough sets 
in 2002. The concept of generalized fuzzy rough sets is 
derived from a fuzzy covering of the universal set of objects. 
First, it is necessary to define fuzzy covering before 
discussing how to generalize the fuzzy rough sets. In the 
relation to the fuzzy conditional probability relations that 
have a weaker symmetric property, the property can be used 
to provide two asymmetric similarity classes of a particular 
object 𝑥 as a foundation of generating two asymmetric 
coverings, as given by the following definition. 

 
Definition 5 Let 𝑈 be a non-empty universal set of objects, 
and 𝑅 be a fuzzy conditional probability relation on U. For 
any object 𝑥 ∈ 𝑈, 𝑅  and 𝑅  are defined fuzzy similarity 
class that supports 𝑥 and fuzzy similarity class supported by 
𝑥, respectively as follows. 
 

∀𝑦 ∈ 𝑈, 𝑅 (𝑦) = 𝑅(𝑥, 𝑦),  (6) 
 
∀𝑦 ∈ 𝑈, 𝑅 (𝑦) = 𝑅(𝑦, 𝑥)  (7) 
 

where 𝑅(𝑥, 𝑦) ∈  [0,1]  be degree 𝑦 that supports 𝑥 or the 
degree 𝑦 is similar to 𝑥  as calculated by the fuzzy conditional 
probability. 
Here, 𝑅 (𝑦) and 𝑅 (𝑦) are also interpreted as membership 
degree of 𝑦 in 𝑅  and 𝑅 , respectively. By using both 
asymmetric fuzzy similarity classes, two asymmetric fuzzy 
coverings of the universe can be generated as follows. 
 
    Ψ = {𝑅 |𝑥 ∈ 𝑈},   (8)  
 

    Ψ = {𝑅 |𝑥 ∈ 𝑈},   (9) 
 
Fuzzy covering might be regarded as a case of fuzzy 
granularity in which its similarity class is a fuzzy set. 
 Now, it is time to discuss how to generalize fuzzy rough 
sets. As mentioned before, Intan and Mukaidono extended the 
concept of fuzzy rough sets induced by asymmetric fuzzy 
covering [6]. The proposed concept of fuzzy rough sets 
provided more generalized concept of fuzzy rough sets than 
the initial concept of fuzzy rough sets. Extended concept of 
fuzzy rough sets as proposed in [6] is formally defined as 
follows.  
 
Definition 6 Let 𝑈 be a non-empty universal set of objects, 
and 𝐴 be a given fuzzy set on 𝑈. Two oriented generalizations 
of fuzzy rough sets (namely, object-oriented generalization 
and class-oriented generalization) are approximated on fuzzy 
covering Ψ  as follows. 
 
(i) object-oriented generalization: 
  𝐿𝑜(𝐴) (𝑥) = inf

{ ∈ | ( ) }
{min [𝑅 (𝑦), 𝐴(𝑦)]} , 𝑥 ∈ 𝑈,         (10) 

 
  𝑈𝑝(𝐴) (𝑥) = sup

{ ∈ | ( ) }
{min [𝑅 (𝑦), 𝐴(𝑦)]} , 𝑥 ∈ 𝑈,         (11) 

 
(ii) class-oriented generalization, for 𝑦 ∈ 𝑈: 
 𝐿𝑜(𝐴) (𝑦) = inf

{ ∈ | ( ) }
{ inf

{ ∈ | ( ) }
{min [𝑅 (𝑧), 𝐴(𝑧)]}},   (12) 

 
 𝑈𝑝(𝐴) (𝑦) = inf

{ ∈ | ( ) }
{ sup

{ ∈ | ( ) }

{min [𝑅 (𝑧), 𝐴(𝑧)]}},     (13) 

 
 𝐿𝑜(𝐴) (𝑦) = sup

{ ∈ | ( ) }
{ inf

{ ∈ | ( ) }
{min [𝑅 (𝑧), 𝐴(𝑧)]}},     (14) 

 
 𝑈𝑝(𝐴) (𝑦) = sup

{ ∈ | ( ) }
{ sup

{ ∈ | ( ) }
{min [𝑅 (𝑧), 𝐴(𝑧)]}},      (15) 

 
Where 𝐿𝑜(𝐴) (𝑥)  and 𝑈𝑝(𝐴) (𝑥) are grades of membership 
of 𝑥 in 𝐿𝑜(𝐴) (𝑥) and 𝑈𝑝(𝐴) (𝑥), respectively. Similarly, 
𝐿𝑜(𝐴) ∗(𝑦) and 𝑈𝑝(𝐴) ∗(𝑦) are grades of membership of 𝑦 
in 𝐿𝑜(𝐴) ∗(𝑦) and 𝑈𝑝(𝐴) ∗(𝑦), respectively (note: ∗ ∈
 {𝑚, 𝑀 }). 
From Definition 5, it is seen that 𝑅 (𝑥) = 𝑅 (𝑦)  by which 

all equations in Definition 6 may be represented using 𝑅 (𝑥) 
as follows: 
 
(i) object-oriented generalization: 
    𝐿𝑜(𝐴) (𝑥) = inf

{ ∈ | ( ) }
{min [𝑅 (𝑥), 𝐴(𝑦)]} , 𝑥 ∈ 𝑈,            (16) 

 
 𝑈𝑝(𝐴) (𝑥) = sup

{ ∈ | ( ) }

{min [𝑅 (𝑥), 𝐴(𝑦)]} , 𝑥 ∈ 𝑈,           (17) 

 
(ii) class-oriented generalization, for 𝑦 ∈ 𝑈: 
 𝐿𝑜(𝐴) (𝑦) = inf

{ ∈ | ( ) }
{ inf

{ ∈ | ( ) }
{min [𝑅 (𝑥), 𝐴(𝑧)]}},  (18) 

 𝑈𝑝(𝐴) (𝑦) = inf
{ ∈ | ( ) }

{ sup
{ ∈ | ( ) }

{min [𝑅 (𝑥), 𝐴(𝑧)]}},   (19) 

 
 𝐿𝑜(𝐴) (𝑦) = sup

{ ∈ | ( ) }

{ inf
{ ∈ | ( ) }

{min [𝑅 (𝑥), 𝐴(𝑧)]}},    (20) 

 
 𝑈𝑝(𝐴) (𝑦) = sup

{ ∈ | ( ) }

{ sup
{ ∈ | ( ) }

{min [𝑅 (𝑥), 𝐴(𝑧)]}},  (21) 



 

 
Obviously, 𝐿𝑜(𝐴)  and 𝑈𝑝(𝐴)  as well as 𝐿𝑜(𝐴) ∗ and 
𝑈𝑝(𝐴) ∗ are considered as fuzzy sets, where we have some 
relations and properties such as ∀𝑦 ∈ 𝑈, 
 

𝐿𝑜(𝐴) (𝑦) ≤ 𝐴(𝑦) ≤ 𝑈𝑝(𝐴) (𝑦), 
 
𝐿𝑜(𝐴) (𝑦) ≤ 𝐿𝑜(𝐴) (𝑦) ≤ 𝐴(𝑦) ≤ 𝑈𝑝(𝐴) (𝑦) ≤ 𝑈𝑝(𝐴) (𝑦). 
 

Moreover, some relationships between lower and upper 
approximations based on object-oriented generalization and 
class-oriented generalization is represented by 𝐿𝑜(𝐴) (𝑦) ≤

𝐿𝑜(𝐴) (𝑦) and 𝑈𝑝(𝐴) (𝑦) ≤ 𝑈𝑝(𝐴) (𝑦), where relation 
between 𝐿𝑜(𝐴) (𝑦) and 𝐿𝑜(𝐴) (𝑦) as well as relation 
between 𝑈𝑝(𝐴) (𝑥) and 𝑈𝑝(𝐴) (𝑦) cannot be inquired. 
Similar to Definition 6, when fuzzy set 𝐴 is approximated on 
fuzzy covering Ψ , it will provide distinct generalized fuzzy 
rough sets as given by the following equations. 
 
(i) object-oriented generalization: 
  𝐿𝑜(𝐴) (𝑥) = inf

{ ∈ | ( ) }
{min [𝑅 (𝑦), 𝐴(𝑦)]} , 𝑥 ∈ 𝑈,     (22) 

 
  𝑈𝑝(𝐴) (𝑥) = sup

{ ∈ | ( ) }

{min [𝑅 (𝑦), 𝐴(𝑦)]} , 𝑥 ∈ 𝑈,     (23) 

 
(ii) class-oriented generalization, for 𝑦 ∈ 𝑈: 
 𝐿𝑜(𝐴) (𝑦) = inf

{ ∈ | ( ) }
{ inf

{ ∈ | ( ) }
{min [𝑅 (𝑧), 𝐴(𝑧)]}},     (24) 

 
 𝑈𝑝(𝐴) (𝑦) = inf

{ ∈ | ( ) }
{ sup

{ ∈ | ( ) }

{min [𝑅 (𝑧), 𝐴(𝑧)]}},     (25) 

 
 𝐿𝑜(𝐴) (𝑦) = sup

{ ∈ | ( ) }

{ inf
{ ∈ | ( ) }

{min [𝑅 (𝑧), 𝐴(𝑧)]}},     (26) 

 
𝑈𝑝(𝐴) (𝑦) = sup

{ ∈ | ( ) }

{ sup
{ ∈ | ( ) }

{min [𝑅 (𝑧), 𝐴(𝑧)]}},  (27) 

 
Similarly, by considering 𝑅 (𝑦) = 𝑅 (𝑥), equations (22) to 
(27) might be reformulated by the following equations. 
 
(i) object-oriented generalization: 
  𝐿𝑜(𝐴) (𝑥) = inf

{ ∈ | ( ) }
{min [𝑅 (𝑥), 𝐴(𝑦)]} , 𝑥 ∈ 𝑈,        (28) 

 
 𝑈𝑝(𝐴) (𝑥) = sup

{ ∈ | ( ) }
{min [𝑅 (𝑥), 𝐴(𝑦)]} , 𝑥 ∈ 𝑈,          (29) 

 
(ii) class-oriented generalization, for 𝑦 ∈ 𝑈: 
 𝐿𝑜(𝐴) (𝑦) = inf

{ ∈ | ( ) }
{ inf

{ ∈ | ( ) }
{min [𝑅 (𝑥), 𝐴(𝑧)]}},   (30) 

 
𝑈𝑝(𝐴) (𝑦) = inf

{ ∈ | ( ) }
{ sup

{ ∈ | ( ) }
{min [𝑅 (𝑥), 𝐴(𝑧)]}},        (31) 

 
𝐿𝑜(𝐴) (𝑦) = sup

{ ∈ | ( ) }
{ inf

{ ∈ | ( ) }
{min [𝑅 (𝑥), 𝐴(𝑧)]}},         (32) 

 
𝑈𝑝(𝐴) (𝑦) = sup

{ ∈ | ( ) }
{ sup

{ ∈ | ( ) }

{min [𝑅 (𝑥), 𝐴(𝑧)]}},      (33)  

 

IV. MORE GENERALIZATION OF FUZZY ROUGH SETS 

Besides the above generalizations of fuzzy rough sets as 
proposed in [5,6], this paper introduces a new concept of 
generalized fuzzy rough sets by focusing on objects in the 

given fuzzy set as an extended version of [7]. The reason 
behind the idea is that all objects in the given fuzzy set should 
be regarded as centers of approximating its fuzzy rough sets. 
Formally, the concept of the generalized fuzzy rough sets is 
defined as follows. 

 
Definition 7 Let 𝑈 be a non-empty universal set of objects, 
and 𝐴 be a given fuzzy set on 𝑈. Generalized fuzzy rough sets 
of 𝐴 on fuzzy covering Ψ  is simply calculated by the 
following equations.  
For 𝑥 ∈ 𝑈, 

𝐿𝑜(𝐴) (𝑥) =
inf

{ ∈ | ( ) }
{min[𝑅 (𝑦), 𝐴(𝑦)]},   𝐴(𝑥) > 0

0,    𝐴(𝑥) = 0
.   (34) 

 
For 𝑦 ∈ 𝑈, 
𝑈𝑝(𝐴) (𝑦) = inf

{ ∈ |( ( ) )∧( ( ) )}
{ sup

{ ∈ | ( ) }
{min [𝑅 (𝑧), 𝐴(𝑧)]}}  

(35) 

 
𝑈𝑝(𝐴) (𝑦) = sup

{ ∈ |( ( ) )∧( ( ) )}
{ sup

{ ∈ | ( ) }
{min [𝑅 (𝑧), 𝐴(𝑧)]}}  

(36) 
 
 Definition 7 introduces triple approximations (one lower 
and two upper approximations) of generalized fuzzy rough 
sets as shown in (34), (35) and (36). Relation among these 
three approximations is given by: 
 

𝐿𝑜(𝐴) (𝑥) ≤ 𝐴(𝑥) ≤ 𝑈𝑝(𝐴) (𝑥) ≤ 𝑈𝑝(𝐴) (𝑥). 
 
Related to the previous generalized fuzzy rough sets, it can be 
examined that, 

𝐿𝑜(𝐴) (𝑥) = 𝐿𝑜(𝐴) (𝑥). 
 
However, it can be verified that it is faster to find 𝐿𝑜(𝐴) (𝑥) 

than 𝐿𝑜(𝐴) (𝑥), since the process of constructing 𝐿𝑜(𝐴) (𝑥) 
only considers all objects in A. Compared to other class-
oriented generalization, another relation is given by:  
 

𝑈𝑝(𝐴) (𝑦) ≤ 𝑈𝑝(𝐴) (𝑦), 
 

𝑈𝑝(𝐴) (𝑦) ≤ 𝑈𝑝(𝐴) (𝑦). 
 

Based on the previous explanation of 𝑅 (𝑥) = 𝑅 (𝑦), 
equations in (34), (35) and (36) are reformulated to be the 
following equations. 
Similar to Definition 7, when fuzzy set 𝐴 is approximated on 
fuzzy covering Ψ , the approximation of 𝐴 will provide other 
distinct fuzzy rough sets as given by the following equations. 
 
For 𝑥 ∈ 𝑈, 

𝐿𝑜(𝐴) (𝑥) =
inf

{ ∈ | ( ) }
min 𝑅 (𝑥), 𝐴(𝑦) ,   𝐴(𝑥) > 0

0,    𝐴(𝑥) = 0
.   (37) 

 
For 𝑦 ∈ 𝑈, 
𝑈𝑝(𝐴) (𝑦) =

                      inf
{ ∈ |( ( ) )∧( ( ) )}

{ sup
{ ∈ | ( ) }

{min [𝑅 (𝑥), 𝐴(𝑧)]}}   (38) 

 



 

𝑈𝑝(𝐴) (𝑦) = sup
{ ∈ |( ( ) )∧( ( ) )}

{ sup
{ ∈ | ( ) }

{min [𝑅 (𝑥), 𝐴(𝑧)]}} 

(39) 
 
Similar to the previous explanation that actually 𝑅 (𝑥) =

𝑅 (𝑦), equations (40), (41) and (42) are reformulated to be 
the following equations. 
For 𝑥 ∈ 𝑈, 

𝐿𝑜(𝐴) (𝑥) =
inf

{ ∈ | ( ) }
{min[𝑅 (𝑦), 𝐴(𝑦)]},   𝐴(𝑥) > 0

0,    𝐴(𝑥) = 0
.           

(40) 
 
For 𝑦 ∈ 𝑈, 
𝑈𝑝(𝐴) (𝑦) = inf

{ ∈ |( ( ) )∧( ( ) )}
{ sup

{ ∈ | ( ) }

{min [𝑅 (𝑧), 𝐴(𝑧)]}} 

(41) 
 
𝑈𝑝(𝐴) (𝑦) = sup

{ ∈ |( ( ) )∧( ( ) )}

{ sup
{ ∈ | ( ) }

{min [𝑅 (𝑧), 𝐴(𝑧)]}} 

(42) 
 
Similar to the previous explanation that actually 𝑅 (𝑥) =

𝑅 (𝑦), equations (40), (41) and (42) are reformulated to be 
the following equations. 
For 𝑥 ∈ 𝑈, 

𝐿𝑜(𝐴) (𝑥) =
inf

{ ∈ | ( ) }
min 𝑅 (𝑥), 𝐴(𝑦) ,   𝐴(𝑥) > 0

0,    𝐴(𝑥) = 0
.    

(43) 
 
For 𝑦 ∈ 𝑈, 
𝑈𝑝(𝐴) (𝑦) = inf

{ ∈ |( ( ) )∧( ( ) )}
{ sup

{ ∈ | ( ) }
{min [𝑅 (𝑥), 𝐴(𝑧)]}} 

(44) 
 
𝑈𝑝(𝐴) (𝑦) = sup

{ ∈ |( ( ) )∧( ( ) )}
{ sup

{ ∈ | ( ) }
{min [𝑅 (𝑥), 𝐴(𝑧)]}} 

(45) 
 

V. ILLUSTRATIVE EXAMPLE 

To be more understandable, it is necessary to demonstrate 
the proposed concept using a simple example. Given a binary 
information tables as shown in Table I, firstly it is necessary 
to construct two asymmetric fuzzy coverings, Ψ and Ψ . 
Since the objects are simply characterized by crisp attributes 
as represented by a binary information table, the degree of 
similarity between two objects is calculated dealing with the 
conditional probability relations using Equation (4). 
Furthermore, fuzzy similarity class of a given object is then 
constructed based on the degree of similarity between the 
object and others. The number of fuzzy similarity classes is 
the same as the number of objects. The fuzzy similarity 
classes are then used to construct the fuzzy covering of 
objects. There are two kinds of fuzzy similarity classes. They 
are the fuzzy similarity class that supports 𝑂  and fuzzy 
similarity class supported by 𝑂 , denoted by 𝑅  and 𝑅 , 

respectively. These two kinds of fuzzy similarity classes are 
used to construct two different fuzzy coverings, Ψ and Ψ , 
as given as follows. 

 
Ψ = 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅 , where 

𝑅 = , , , , , , , 

𝑅 = , , , , , , , 

 𝑅 = , , , , , , , 

𝑅 = , , , , , , , 

𝑅 = , , , , , , , 

𝑅 = , , , , , , , 

𝑅 = , , , , , , . 

 
Ψ = 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅 , where 

𝑅 = , , , , , , , 

𝑅 = , , , , , , , 

𝑅 = , , , , , , , 

𝑅 = , , , , , , , 

𝑅 = , , , , , , , 

𝑅 = , , , , , , , 

𝑅 = , , , , , , . 

 
All values of fuzzy coverings, Ψ and Ψ , might be 
represented using |𝑈| × |𝑈| matrices, 𝑀  and 𝑀 , 
respectively. Related to the above values of Ψ and Ψ , 
matrices 𝑀  and 𝑀  are given by: 
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Clearly, it can be seen that 𝑀 = (𝑀 )  (transpose matrix). 
Now, given 𝐴 be a fuzzy set on set of objects as given by: 

𝐴 =
2

6
𝑂

,
5

6
𝑂

,
1

𝑂
,

1

𝑂
,
1

6
𝑂

,
2

6
𝑂

 

By (10), it can be calculated that the only non-zero result is x 
= O2 as given by the following calculation. 



 

 
𝐿𝑜(𝐴) (𝑥) = inf

{ ∈ | ( ) }
{min [𝑅 (𝑦), 𝐴(𝑦)]} , 𝑥 ∈ 𝑈, 

 
𝐿𝑜(𝐴) (𝑂 ) = inf {min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) }, 
 

𝐿𝑜(𝐴) (𝑂 ) = inf {min 1, 2
6 , min 3

5 , 5
6 , min 1

3 , 0 , min 2
3 , 1 , 

min 2
4 , 1 , min 2

5 , 1
6 , min 2

5 , 2
6 } = 0, 

𝐿𝑜(𝐴) (𝑂 ) = inf {min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) }, 
 

𝐿𝑜(𝐴) (𝑂 ) = inf {min 3
4 , 2

6 , min 1, 5
6 , min 2

3 , 1 , 

min 2
4 , 1 , min 2

5 , 1
6 , min 3

5 , 2
6 } = 1

6, 

 
𝐿𝑜(𝐴) (𝑂 ) = inf {min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) }, 
 

𝐿𝑜(𝐴) (𝑂 ) = inf {min 1
4 , 2

6 , min[1,0], min 1
3 , 1 , 

min 2
3 , 1 , min 3

5 , 1
6 , min 2

5 , 2
6 } = 0, 

 
𝐿𝑜(𝐴) (𝑂 ) = inf {min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) }, 
 

𝐿𝑜(𝐴) (𝑂 ) = inf {min 2
4 , 2

6 , min 2
5 , 5

6 , min 1
3 , 0 , min[1,1], 

min 3
4 , 1 , min 3

5 , 1
6 , min 2

5 , 2
6 } = 0, 

 
𝐿𝑜(𝐴) (𝑂 ) = inf {min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) }, 
 

𝐿𝑜(𝐴) (𝑂 ) = inf {min 2
4 , 2

6 , min 2
5 , 5

6 , min 2
3 , 0 , min[1,1], 

min[1,1], min 4
5 , 1

6 , min 2
5 , 2

6 } = 0, 

 
𝐿𝑜(𝐴) (𝑂 ) = inf {min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) }, 
 

𝐿𝑜(𝐴) (𝑂 ) = inf {min 2
4 , 2

6 , min 2
5 , 5

6 , min[1,0], min[1,1], 

min[1,1], min 1, 1
6 , min 3

5 , 2
6 } = 0, 

 
𝐿𝑜(𝐴) (𝑂 ) = inf {min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) , 

min 𝑅 (𝑂 ), 𝐴(𝑂 ) , min 𝑅 (𝑂 ), 𝐴(𝑂 ) }, 
 

𝐿𝑜(𝐴) (𝑂 ) = inf {min 2
4 , 2

6 , min 3
5 , 5

6 , min 2
3 , 0 , min 2

3 , 1 , 

min 2
4 , 1 , min 2

5 , 1
6 , min 1, 2

6 } = 0. 

 
From the above results of calculation, 𝐿𝑜(𝐴)  is given by the 
following equation. 

𝐿𝑜(𝐴) = .  

 
Similarly, result of upper approximation based on object-
oriented generalization as calculated by (11) is given as 
follow. 

𝑈𝑝(𝐴) = , , , , , , .  

 
Generalization of fuzzy rough sets based on class-oriented 
generalization are constructed by (12), (13), (14) and (15) as 
following results. 

𝐿𝑜(𝐴) = {}.  
 

𝑈𝑝(𝐴) = , , , , , , .  

 

𝐿𝑜(𝐴) = , , , , , , .  

 

𝑈𝑝(𝐴) = , , , , , , .  

 
Finally, Definition 7 provides other approximations of fuzzy 
rough sets as calculated by (34), (35) and (36) as follows. 

By (34), it can be found that 𝐿𝑜(𝐴) = 𝐿𝑜(𝐴) = . 

By (35 and (36), 

𝐿𝑜(𝐴) = , , , , , , ,  

 

𝑈𝑝(𝐴) = , , , , , , .  

 
 In the same way, other approximations of generalized 
fuzzy rough sets based on Ψ  may provide different 
interesting results. The usage of fuzzy coverings either Ψ or 
Ψ  depends on the contextual application.  
 The above illustrative example used binary information 
table. In this case, fuzzy information table as shown in Table 
II can also be used as a generalization of binary information 
table. In case of using fuzzy information table, degree of 
similarity between two fuzzy object can be calculated using 
fuzzy conditional probability relation as defined in Definition 
4. Since the objects are fuzzy sets, fuzzy similarity classes 
such as 𝑅  as well as 𝑅  are considered as level-2 fuzzy sets. 
Moreover, generalized fuzzy rough sets provide several 
approximations of membership degrees started from lower to 
upper approximations in which they are regarded as interval 
valued fuzzy sets. Thus, it can be said that generalized fuzzy 
rough sets are one of the concepts than can be used to develop 
level-2 interval valued fuzzy sets from data. Furthermore, 
several pairs of approximations proposed in this paper may 
also be combined or used together to develop not only interval 
valued fuzzy sets, but also type-2 fuzzy sets. 

VI. CONCLUSION 

This paper discussed the concept of generalized fuzzy 
rough sets dealing with weak fuzzy similarity relations. The 
weak fuzzy similarity relation is considered as a 
generalization of fuzzy similarity relation in representing a 
more realistic relationship between two objects. Here, the 
weak fuzzy similarity relation has conditional symmetry and 
conditional transitivity that are weaker than symmetric and 
transitive properties in the fuzzy similarity relation. 
Conditional symmetry in the weak fuzzy similarity relation is 
actually an asymmetric property. Consequently, the weak 
fuzzy similarity relations provide two asymmetric fuzzy 
similarity classes as basic elements in constructing two 
asymmetric fuzzy coverings. Some concepts of generalized 
fuzzy rough sets were recalled and reformulated more detail. 
In addition, a new concept of generalized fuzzy rough sets 
was introduced also dealing with the weak fuzzy similarity 
relations. In order to understand the concept well, an 
illustrative example was given to demonstrate how to 
calculate and generate the generalized fuzzy rough sets 



 

simply from binary information table using conditional 
probability relation. Finally, the generalized fuzzy rough sets 
proposed and discussed in this paper may be regarded as a 
solution how to generate the level-2 interval valued fuzzy sets 
directly from the data. Moreover, through combining several 
pairs of proposed approximations of the generalized fuzzy 
rough sets, it is possible to provide the level-2 type-2 fuzzy 
sets as an extended of the level-2 interval valued fuzzy sets.  
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