
Optimization of Computer Resources Using OpenStack
Private Cloud

Agustinus Noertjahyana
Petra Christian University

Siwalankerto 121-131
Surabaya, Indonesia

+6282233442989

agust@petra.ac.id

Henry Novianus Palit
Petra Christian University

Siwalankerto 121-131
Surabaya, Indonesia

hnpalit@petra.ac.id

Daniel Kuntani
Petra Christian University

Siwalankerto 121-131
Surabaya, Indonesia

agust@petra.ac.id

ABSTRACT
The rapid development of computer technology and applications

has caused the increasing need for computer use in an

organization. The performance of personal computers has

increased rapidly, but they cannot be utilized properly. Therefore,

personal computers can be used together to perform parallel

processing, in order to shorten data processing time. This paper

discusses Private cloud, which could be utilized as an alternative

solution to provide cloud services to organizations that are in the

same network. The service provided was Infrastructure as a

Service (IaaS), where users can request certain types of services

and use certain operating systems.

Most universities have many computers in the laboratory that

have considerable resources for a superb processing potential if

they optimized properly. Supported by high specification on each

computer, the laboratory is suitable for private cloud

implementation. The use of the OpenStack framework can

produce sufficient performance to perform parallel data

processing. The test results showed that the parallel processing

performance worked as expected.

CCS Concepts
Computer systems organization → Architectures →

Distributed architectures → Cloud computing: 500

Keywords
Computer Resources; IaaS; OpenStack; Private Cloud.

1. INTRODUCTION
Application development is in line with the development of

computing technology, which is very fast. As a result, distributed

applications and parallel processing require large computer

resources. Cloud computing is a system that combines several

computers into a unified system with the availability of more

processors and memory [1]. Although the technology is up-to-date,

according to IBM Research Report, CPU usage at various Data

Centers is very low, ranging from 7% to 25% with an average of

18%. This means that computers in various Data Centers use more

processor specifications to perform activities on the Data Center

[2].

In a university, computers with the latest specifications are also

not utilized optimally. Therefore, computer resources can be used

to perform parallel processing using cloud computing. The

OpenStack framework, as an alternative to cloud computing, is an

excellent tool to test computer performance simultaneously[3-4].

2. THEORY

2.1 Cloud Computing
Cloud computing is a computational model enabling scattered,

convenient and on-demand computer network access to share

configurable computer resources, such as networks, servers,

storage, applications and services [5]. Cloud computing has 3

service models offered: Software as a Service (SaaS), Platform as

a Service (PaaS) and Infrastructure as a Service (IaaS) [4].

Computers in the same network can perform parallel processing

using the OpenStack framework; OpenStack provides

Infrastructure as a Service (IaaS).

2.2 OpenStack
OpenStack is a cloud system software platform that acts as a

middleware. Middleware is a software layer that provides

programming abstraction and combines the various layers below,

such as networks, hardware, operating systems and programming

languages [6]. This means that OpenStack is a service that

provides hardware capabilities and is a part of Infrastructure as a

Service (IaaS) OpenStack consists of various components that

communicate with each other to provide services to users.

2.3 Keystone
Keystone provides identity service and access policy services to

all components in OpenStack. Keystone also implements REST-

based APIs as identity.

Keystone provides authentication and authorization for all

OpenStack components. Authentication verifies that the actual

request is coming from the correct source. There are two

authentication methods, namely username / password-based and

Token based. Authorization verifies user permissions to the

requested service [7]. Components inside the Keystone consist of

tenant, service endpoint, region, user and role [7].

2.4 OpenStack System
Registered users can access the IaaS feature provided by the cloud

system through the user interface of the website. Users can

request a virtual machine by selecting a flavor (specs such as CPU,

RAM and disk capacity) and image (operating system) [8].

The controller node, where the website is located, will perform the

scheduling, which selects the IP address for the virtual machine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
WSSE 2019, September 20–23, 2019, Wuhan, China

© 2019 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.
ACM ISBN 978-1-4503-7213-8/19/09…$15.00

DOI: https://doi.org/10.1145/3362125.3362138

and compute nodes that meet the criteria according to the capacity

requested by the cloud user. At this stage, various OpenStack

services will work together to check user rights over hardware,

image, network and storage before running an instance (virtual

machine).

A number of instances that run will be on a virtual network that is

formed on the host where the virtual machine is operating. It is as

if the number of instances is a set of nodes in a cluster.

The user already has a virtual environment created from a

collection of virtual machines. Each virtual network formed is

connected to the network bridge on the host's physical interface so

that it can connect to the network outside the virtual network, in

this case, the private network belonging to Petra Christian

University.

The user as the instance owner must access the instance through

the console interface provided on the website only at the first

instance of the instance. This step is the stage where the cloud

users do the initial setup of the operating system, as well as the

installation of other programs if desired.

Users can enable connections on certain ports according to the

security group, a type of OpenStack's firewall. Furthermore, a

direct connection can be done to the instance without going

through the web interface.

3. SYSTEMS DESIGN
OpenStack required 2 networks: Management Network and Public

Network. Management Network was used to provide a line of

communication systems and cloud administration. Public Network

provided access from cloud users; in case of private cloud, this

network was a private network (or also called Flat Network). Flat

network used the available arrangement, which was a private

network (192.168.32.0/248). The network (172.16.1.0/24) was

then shared into a management network and partly for use on a

virtual machine that would operate on a cloud system, which was

172.16.0.0/24. The network design can be seen in Figure 1.

Figure 1. Network Design.

3.1 Basic Environment
The basic environments needed to build an OpenStack system

were nodes with Ubuntu Server 14.04 LTS operating system. For

each node, the hardware specification was as follows:

Processor: Intel Core i5-3340 @ 3.1 GHz

(2 cores / 4 threads)

RAM: 16 GB

Disk: 250 GB

Connection: 1 interface 100Mbps Ethernet

In addition, the installation process required the basic components

needed by OpenStack. The basic components were as follows:

OpenStack Packages

For OpenStack packages installation, Juno cloud repository

should be added to the source-list of Advanced Package Tool

(APT). The APT on each node had to be updated and upgraded.

MariaDB

The Database Management System (DBMS) was mandatory

because it was used to store information for every service running

on OpenStack. The DBMS installation was performed on the node

controller. MariaDB was an open source DBMS that was

suggested in making the cloud using OpenStack since the Juno

version.

MariaDB had many performance optimizations compared to

MySQL in performing simple query execution. So MariaDB was

able to handle more SQL commands in units of time.

RabbitMQ

RabbitMQ was a message broker, which received and continued

messages. The RabbitMQ installation was performed on the node

controller. In RabbitMQ, all components of OpenStack (services)

acted as guest. The settings on RabbitMQ were not changed,

except for the guest password.

Network Time Protocol (NTP)

NTP installation was done to all nodes residing on the private

cloud system. However, the role of the node controller differed

from that of the other nodes. NTP on the node controller had a

function, to provide timing to all other nodes in a private cloud

system. For that reason, the NTP setting on the node controller

must use itself as the time provider and answer the NTP request

from another node.

On the nodes other than the controller, the NTP was directed to

adjust timing settings to the time provided by the node controller,

so all nodes in the private cloud system had the same time settings

as the node controller.

3.2 Application Network
The framework used was Juno's OpenStack version, a number of

components that operated on OpenStack-based cloud systems.

These components were separated into several nodes: a controller

node with multiple compute nodes and additional nodes such as

storage nodes and network nodes. Node design can be seen in

Figure 2.

Figure 2. Node Design.

3.3 Compute Node and Storage Node
The compute node acted as the host for the virtual machine run by

the user. For that, the compute node had a hypervisor, KVM, a

most widely used and tested virtual machine manager (VMM) for

the OpenStack system.

Another arrangement was made to form the nova-network that

assigns the IP address to the virtual machine. The Nova API was

located on the node controller, such that the network and work

settings and distribution were not performed on the compute node.

Storage node was an additional node that was added as a storage

medium used as the virtual hard drive in a virtual machine. Before

the arrangement took place, a partition was required as a storage

medium. The partition provided on each computer was 250 GB,

so the partition created was 200 GB by providing the remaining

50 GB for the Ubuntu system including root and swap.

The partition could be shared with the user and served as a

removable disk between virtual machines. For its use, the user

would need to allocate some capacity to be a virtual disk. Then,

the virtual disk could be attached to a VM and the user could

access the virtual disk via NFS using a VM in the form of a

physical disk.

3.4 Virtual Machine Image
The designed private cloud had to have an image provided to the

user. The image contained the operating system provided by the

developer of the operating system and had been verified by

OpenStack as a decent operating system, functioning as a virtual

machine. The selected images were:

Windows Server 2012 R2 Standard Evaluation Edition

Ubuntu Server 14.04

Debian (CLI)

Windows XP 32-bit

Flavor was a template provided as a virtual machine specification.

Flavor included CPU, RAM and disk capacity. The list of the

Flavor can be seen in table 1.

Table 1. List of Flavor

Flavor CPU Core
Memory

Capacity (GB)

Disc Capacity

(GB)

Tiny 1 1 20

Small 1 2 40

Medium 2 4 60

Large 2 8 100

XLarge 4 14 200

4. SYSTEM IMPLEMENTATION
Installation Process

The Implementation of OpenStack Framework used 8 computers,

namely: Cont1 as Controller Node, Sto1 as Storage Node and

Cm1, Cm2, Cm3, Cm4, Cm5 and Cm6 as Compute Node.

Each node included a Node Controller using 2 connected

networks, for settings and virtual interfaces. The IP Address on

the computer used the network configuration in Fig. 2. The IP

address of the main interface was 192.168.38.xxx, where xxx was

the computer number. The IP address of the virtual interface was

172.16.1.xxx, where xxx was the computer number.

For each node to recognize another node on the network, the IP

address had to be logged into the IP Address-Hostname pair list in

the /etc/hosts file for each node.

The OpenStack installation process was done by following the

steps provided by OpenStack document. The OpenStack

installation manual contained a complete guide to the installation

process [8].

4.1 Error Handling
In the implementation process, there were several problems:

* Nova Service

Nova Service had a dependency on the database (MariaDB).

Problems were found on the Controller Node. Nova services

(including nova-cert, nova-consoleauth, nova-scheduler and nova-

conductor) were first run by the operating system before the

database service was successfully executed. This caused Nova

Services to fail and stop. The solution was to change the script at

the initializing service by the operating system (Ubuntu 14.04).

The location of the script was in the /etc/init/directory. The

addition of the script made Nova Service wait for the database

before running the service.

* Cinder Error

Cinder or block storage divided a partition into small parts

according to the user and gave it to the user. When the request

was submitted to the cinder, the application could not share the

partition and, thus, returned the error message.

This happened because the app did not have permissions to

change the hardware settings. The solution was to provide cinder

access as a super user, by editing the /etc/sudoers file on Storage

Node (Sto1) at the end of the file with the command:

Cinder ALL = (ALL) NOPASSWD: ALL (1)

4.2 System Result
Testing was based on the base cache functionality that occurred in

the system. Nodes that had cache for base image, needed

spawning time between 5 to 10 seconds, while nodes that did not

have cache took time depending on the size of the image used.

The time required to run each image without using the cache can

be seen in table 2.

Table 2. Image, Size and Spawning Time without Cache

Image name Size (MB) Spawning

Time

Cirros-0.3.3-x86_64 13 10 – 15 sec

Ubuntu 14.04 Trusty 251 30 – 40 sec

Debbian Jessie 64-bit 447 40 – 60 sec

Windows XP 1.699 2 – 3 min

Windows Server 2012 16.780 25 – 30 min

The placement of the instance (Virtual Machine) could form

several host sharing scenarios. The test used only 2 scenarios:

 An instance in a host

 Multiple instances in a host

Using these two scenarios, testing was done by calculating the

time required by the system to run an instance until the operating

system ran. Test results can be seen in Table 3.

Table 3. Test results from multiple instances

Image Scenario

1 (s)
Scenario 2

Instances Time (s)
Debian Jessie 31

4
60

Windows XP 30 90
Ubuntu 14.04 180 240
Windows Server 2012 720 2 660

4.3 System Benchmark
For performance testing using 3 benchmarks, namely: Sysbench,

HPCC and Blender.

4.3.1 Sysbench
Sysbench is a benchmark tool and is used to calculate CPU,

memory and I / O capabilities. Testing was done by making an

instance closest to a node using the largest flavor (m1.xlarge).

Testing aimed to determine the ability achieved by an instance

compared with the actual host. Therefore, testing was performed

against a host and an instance. Test results on CPU can be seen in

Table 4.

Table 4. Sysbench result on CPU

Parameter Instance Host

Maximum prime number

checked in CPU test

20000 20000

Test execution summary

Total time 7.4611s 6.8509s

Total number of events 10000 10000

Total time taken by event

execution

29.8209 27.3939

Per-request statistics:

Min

Avg

Max

approx.95 percentile

2.63ms

2.98ms

22.76ms

2.90ms

2.69ms

2.74ms

14.76ms

2.75ms

Threads fairness:

Events (avg/stddev) 2500.0000/37.93 2500.0000/15.78

Execution time

(avg/stddev)

7.4552/0.00 6.8485/0.00

4.3.2 HPCC
HPCC (High Performance Computer Challenge) was a benchmark

software used to measure the performance of a distributed system

(cluster). HPCC is another name for LINPACK Benchmark, a

benchmark software provided by top500.org that provides high-

performance computer related statistics.

Before running the benchmark, the host used should form a

cluster. The first step was to make SSH authentication without a

password from one host to all other hosts in the cluster. After the

cluster was formed, the installation process could proceed, and the

test could be performed.

Testing was done by comparing the benchmark results using

physical instances and hosts. The results of the measurement and

performance comparison between instances and physical hosts

generated using HPCC Benchmark can be seen in Table 5.

Table 5. HPCC benchmark result

No.

Test
Node

Core/

Node

Result (Gflops)
Overhead

(%) Instance
Physical

Host

1 1 1 2.7670 2.7830 0.575%

2 1 2 4.6320 4.6600 0.601%

3 2 1 1.5180 1.5340 1.043%

4 1 4 7.6600 7.7780 1.517%

5 2 2 0.9660 1.0320 6.395%

6 4 1 0.8419 0.9171 8.199 %

7 2 4 1.1030 1.1720 5.887 %

8 4 2 0.7225 0.7478 3.383 %

9 8 1 0.7823 0.8512 8.094 %

10 4 4 0.5649 0.5951 5.074 %

11 8 2 0.5596 0.6031 7.212 %

12 8 4 0.5782 0.6130 5.676 %

Based on the data in Table 5, the performance of an instance /

virtual machine was slightly lower against the physical host. On

the other hand, each benchmark result using multi-nodes produced

a low performance compared to a host. This means that the use of

multi-nodes through the network did not improve application

performance.

4.3.3 Blender
Blender is a software for rendering animations and can be used as

a cluster render farm. Blender is a loose-couple software, which

means breaking the animation into several frames separated by its

rendering process on many computers.

Testing was done by using animation consisting of 50 frames. The

number of nodes used was 5 pieces of virtual machine instance.

The configuration used 1 master node and 4 slave nodes. The

results of the tests performed can be seen in Table6.

Table 6. Blender benchmark result

No.

Test

Node

Slave

Rendering Time

(s)

1 1 5,400

2 2 10,474

3 3 6,566

4 4 4,756

5. CONCLUSION
Implementing private cloud by utilizing computer resources has

satisfactory results in several ways:

A good computer network is capable of supporting the

performance of private cloud, although it still takes a long time to

deliver an image. Image caching feature can help in solving this

problem.

An instance on the system is able to achieve performance close to

physical host performance, so the CPU capacity can be used

optimally.

By using OpenStack as a private cloud storage, the existing

computer can utilize the remaining storage capacity to be able to

store images from several Operating Systems and other data.

In the next research, the private cloud that has been developed

will be used to store user data so that it can optimize the storage

capacity of all client computers.

The disadvantage of this private cloud is on network capabilities

that do not support applications such as HPCC. These tight-

coupled apps have dramatically reduced performance when run on

more than a computer/node.

6. ACKNOWLEDGMENTS
This research project was sponsored by the Directorate General of

Higher Education Indonesia on the scheme "Penelitian Terapan

Unggulan Perguruan Tinggi” in 2019. Many thanks to Center of

Research, Petra Christian University, Surabaya, Indonesia for the

great wonderful piece.

7. REFERENCES
[1] J. Glanz. The Cloud Factories: Power, Pollution and the

Internet.

URI=http://www.nytimes.com/2012/09/23/technology/data-

centers-was-te-vast-amounts-of-energy-belying-industry-

image.html. 2012.

[2] R. Birke, L. Y. Chen, and E. Smirni. Data Centers in the

Wild: A Large Performance Study. URI=

http://domino.research.ibm.com/lib-rary/cyberdig. 2012.

[3] Li Z, Li H, X. Wang, and Li K. A generic cloud platform for

engineering optimization based on OpenStack. Adv Eng

Softw [Internet]. 2014. pp:42–57.

[4] O. Litvinski, and A. Gherbi. Experimental Evaluation of

OpenStack Compute Scheduler. Procedia Comput Sci

[Internet]. 2013. pp:16–23.

[5] P. Mell, and T. Grance. The NIST Definition of Cloud

Computing. Gaithersburg, United State: National Institute of

Standards and Technology. 2011.

[6] G. Coulouris, J. Dollimore, Kindberg, and G. Blair.

Distributed Systems Concepts and Design. Boston: Addison-

Wesley. 2012.

[7] A. Jha, D. Johnson, K. Murari, M. Raju, V. Cherian, and Y.

Girikumar. OpenStack Beginner's Guide (for Ubuntu -

Precise). 2012.

[8] OpenStack Foundation. OpenStack Installation Guide for

Ubuntu 14.04. URI=http://docs.openstack.org/openstack-

ops/openstack-ops-manual-.pdf. 2014

http://domino.research.ibm.com/lib-rary/cyberdig

