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Statistical Learning for Predicting Dengue Fever Rate in Surabaya
Siana Halim*, Felecia!, Tanti Octavia!

Abstract: Dengue fever happening most in tropical countries and considered as the fastest spreading
mosquito-borne disease which is endemic and estimated to have 96 million cases annually. It is
transmitted by Aedes mosquito which infected with a dengue virus. Therefore, predicting the dengue fever
rate as become the subject of researches in many tropical countries. Some of them use statistical and
machine learning approach to predict the rate of the disease so that the government can prevent that
incident. In this study, we explore many models in the statistical learning approaches for predicting the
dengue fever rate. We applied several methods in the predictive statistics such as regression, spatial
regression, geographically weighted regression and robust geographically weighted regression to predict
the dengue fever rate in Surabaya. We then analyse the results, compare them based on the mean square
error. Those four models are chosen, to show the global estimator's approaches, e.g. regression, and the
local ones, e.g. geographically weighted regression. The model with the minimum mean square error is
regarded as the most suitable model in the statistical learning area for solving the problem. Here, we look
at the estimates of the dengue fever rate in the year 2012, to 2017, area, poverty percentage, precipitation,
number of rainy days for predicting the dengue fever outbreak in the year 2018. In this study, the pattern
of the predicted model can follow the pattern of the true dataset.

Keywords: Global Moran 1 statistics; Local Moran I statistics; Regression, Spatial Regression,
Geographically Weighted Regression.

Introduction

Dengue fever happening most in tropical countries and considered as the fastest spreading mosquito-
borne disease, which is endemic and estimated to have 96 million cases annually. It is transmitted by
Aedes mosquito which infected with a dengue virus. There are several factors that cause dengue fever: the
failure to control the Aedes mosquito populations, uncontrolled urbanization, and high population growth
[1]. Dengue Fever most commonly happens in the urban environment. Indonesia, with its tropical climate
and high humidity, has a high possibility for Dengue transmission. Indonesia reported as the second
largest with dengue fever cases among 30 endemic countries [2]. Dengue fever increased rapidly over the
past 45 years in Indonesia, with victims shifting from young children to older age groups [3]. The
increasing number of dengue fever cases is more likely followed by the spread of the cities infected in all 34
provinces in Indonesia. From a total of 497 cities in Indonesia, about 80% reported the dengue fever cases
in 2017 [2].

Therefore, predicting the dengue fever outbreak has become the subject of researches in many tropical
countries. Some of those researchers predicted dengue fever outbreak in Srilanka [4], in Thailand [5], in
the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico [6]. These groups of researchers
modelled the dengue fever outbreak using neural network approaches. In Indonesia, Mahdiana et al. [7]
predicted dengue hemorrhagic fever (DHF) using vector autoregressive spatial autocorrelation (varsa).
Mahdiana et al. [7] used five years dataset from Sleman, a district in Central Java, Indonesia, to predict
the DHF outbreaks. In the model, they include min, max and average temperature, average humidity,
and rainfall and irradiation time.

In Surabaya’s case, additional to the weather condition, we also explore the population density, the
precipitation and the poverty percentage as the factors that may affect the DHF. In the previous study,
we [8] used the geographically weighted regression to predict the dengue fever outbreak in Surabaya, to
continue the exploration, in this paper we model the outbreak prediction using statistical learning
approaches.

Methods




We describe the data by clustering the location based on the Dengue fever rate, poverty rate and the
number of rainy days. We use partition around medoids clustering. Partitioning around medoids (PAM) is
a clustering algorithm which is based on k-medoids instead of k-means. In the k-medoids clustering, each
cluster is represented by one of the data points in the cluster. These points are named as cluster medoids.
A medoid is an object within a cluster in which average dissimilarity between the point and all other
members of the cluster is minimal [17]. The k-medoids is a robust alternative to k-means clustering. The
PAM algorithm [18], is the most common algorithm for performing the k-medoids clustering. It consist of
five steps: (1) Select k object to become a medoid, (2) calculate the dissimilarity matrix, (3) assign each
object to its closest medoid, (4) for each cluster search if any object of the cluster can decrease the average
dissimilarity coefficient if it does, select the object, (5) if there is one medoid changed then go to (3) else end
the algorithm.

There are many approaches to modelling the dengue fever outbreak. They can be classified into two
approaches, 1.e., machine learning and statistical learning. In this study, we are exploring the statistical
learning approach to find the most suitable model for predicting the DHF outbreaks. We applied several
methods in the predictive statistics such as regression, spatial regression, geographically weighted
regression and robust geographically weighted regression to predict the dengue fever outbreak in
Surabaya. We then analyses the results, compare them based on the mean square error. Those four
models are chosen, to show the global estimator’s approaches, e.g. regression, and the local ones, eg.
geographically weighted regression. The model with the minimum mean square error is regarded as the
most suitable model in the statistical learning area for solving the problem.

We also test the spatial correlation of the dengue fever outbreak rate in each Puskesmas, we used the
spatial local Moran I statistics. Anselin [19] suggested the local Moran’s 1 statistics for identifying local
clusters and local spatial outliers. The Local Moran’s I statistics can be formulated as:
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where y is the variable of interest. w;; is the weight for the i, j observations.

We then modeled the data based on the statistical learning. The first model is the well-known regression
model that can be formulated as

Y=Xf+¢ 2)

where X is the independent variables, ¥ is the number of dengue fever infected in each location, § is the
global parameter and ¢ is the random error. The global parameter means for the whole locations they will
have the same f. In the regression model, we all know that the error term should be independent.
Moreover, in the regression, the spatial dependencies of the dataset do not appear in the model. Therefore,
to accommodate those spatial dependencies, the spatial models should be considered.

First, we consider the first-order Spatial Autoregressive (SAR) model
Y=pWY+XG+ & (3)
where W is the spatial weigh matrix, (see Anselin [19] for the detail)

Another spatial class model is Spatial Error Model (SEM) model

Y=XB+(U,—AW)te (9

where I, is identity matrix, 1 is a scalar parameter, W is the spatial weight matrix, e~N(0,1,,0?) is a
vector of disturbance (see Anselin [19] for the detail)

The last spatial class model used in this paper is Spatial Durbin Model (SDM). The SDM concerns about
the spatial heterogeneity (see Anselin [19] for the detail)

Y=XB+U,— W) u (5

But X and u = Xy + £ are correlated.

The spatial autoregressive models [20] have assumption that the structure of the models remains
constant, i.e., there is no local variations in the parameter estimates. The GWR [21] allows the estimated

parameters vary locally.

The geographically weighted regression models [21] can be formulated as




yi=XBi+e (6)
where i is the location in which the local parameters will be estimated.

The f3; is the parameters at the location { and can be estimated as
Bi = (X'WX)'X'Wyy (N
where wy; is the weight for the observation at location i and location j and formulated as the Gaussian
function
(9
wy =e\h (8
The d;; is the Euclidean distance between the location i and location j, while h is the bandwidth. The
bandwidth h can be selected such that the root mean square prediction error is minimum.

To identify and to reduce the effects of the outliers in GW @gression, then various robust GW regression
has been proposed. Two of them are deseribed in [21]. The first robust model re-fits a GW regression with
a filtered data set that has been found by removing observations that correspond to large externally
studentised residuals of an initial GW regression fit. An externally studentised residual for each
regression location [ is defined as [22]:

i
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where e; is the residual at location i; §_; is a leave-one-out estimate of &; and q;; is the i th element of
(I —S)(I —S)T. Observations are deemed outlying and filtered from the data if they have |r;| > 3. The
second robust model, iteratively down-weights observations that correspond to large residuals. This (non-
geographical) weighting function w, on the residual e;is typically taken as:

1, if |e;| < 26
we(e) = {[1- (g2,  if26< |e <38 (10
0, otherwise

Observe that both approaches hfle an element of subjectivity, where the filtered data approach depends
on the chosen residual cut-off and the iterative (automatic) approach depends on the chosen down-
weighting function, with its associated cut-offs.

Results and Discussions

The data were collected data from 63 community health centers (pusat kesehatan masyarakat) in
Surabaya. Community health centers are government- mandated community health clinics located across
Indonesia [XX], and provide healthcare for population on sub-district level (Kelurahan). In Surabaya, each
community health center provides healthcare for one up to two sub-districts level. The community health
center recorded diseases the often affects the community. One of the diseases is the dengue fever.
Surabaya government focus more on preventive action to reduce dengue fever outbreak. Therefore, the
health center will promote dengue prevention through environmental cleaning programs, especially
during wet season [23]. This study will help the Surabaya government to predict outbreaks in the
neighborhoods of the center of DHF outbreak.
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60 \
I
\
40 . Al P
A \ I\ \
VA I A A A [\ 7\
SEAVS AV ANLOV\A A\ S YAV SN IRAN
/ 1 [ - s - /

o AL NMNASACCALL SSISATQIL DA 20
o ' a ¥ £ :IDJ:.E—\CE:I})EEID_QELE;LJD.EJ: :IE)J:EDE;DJ::'C.‘E w 4
=z @ @ S £ 5 W2 @mCc @ C 8 @m 2 5 gpx @ c oo oa E Q=0 g = C =

n oo 5 x5 m = T 3 = @ E E x £ x w5 O o= C O 5 8 v ap o =

S w ® 2 a5 "2 50 ¥Logg 2o g UW®e gy 2 E B0

ES 223883 =gcs2s252573 355{%8%525535

9 ® £ 2 z 2 s = 7 = § 5 ix g T - =
< @ m oh ] & a
= =

—— #DFInfected2016 —— #DFInfected2017 #DFInfected2018




Figure. 1 The numbers of Dengue Fever Infected from 2016-2017 in each community health centers.

We collected data of the number of rainy days in a year, precipitation, maximum and minimum
temperature, maximum and minimum humidity, population density, and poverty percentage in each
Surabaya’s district [24]. The weather is collected from the Perak II Meteorology Station Surabaya. The
Data in reported in Surabaya in numbers (Surabaya dalam Angka [24]) monthly. The poverty percentage
is calculated per family. It is the percentage of total family in a sub-district to the number of considered as
poor families by the government.

The summary statistics for the Surabaya in 2018 can be seen in Table 1.

Table 1. Surabaya Statistics 2018

Min Mean Average
Population (thousand) 13617  49427.44 94440
Number of family 4127  14659.48 29055
Density (thousand/Km?2) 1618.65 2174346  141407.7
Poverty percentage (%) 3.32 16.15746 45.99
Area (Km?2) 0.915 2.001 144
#Rainy day (days/month) 9.83 13.99 16
Precipitation (mm/month) 17442 4829797  530.308
Max Humidity per month 70 73.3873 80
Min Humidity per month 46.08 53.14 57.83
Max Temperature 28.21 333 34.43
Min Temperature 23.11 26.29 28.73
Six years in education percentages (Elementary school) 1.09 17.1254 35.96
Nine years in education percentages (Middle high school) 517  12.83492 38.54
Twelve years in education percentages (High school) 10.25  26.41603 37.82
The total percentage for less than or equal to twelve years in education 31.85007  56.37647  73.80726
More than twelve years in education percentage (University) 2.98  11.64683 238

*Summarized from Surabaya in numbers [24]
Clustering

First, we assumed there is any relationship between poverty and the number of dengue fever incidence
(DFI) or the dengue fever rate. To prove our assumption, we then cluster the location based on the dengue
fever rate (DFR), and the poverty percentage (based on [24]). The DFR is calculated as the number of
dengue fever infected in the location at year divided by populations in the same location at the same year
for 10,000 people, 1.e.:

#DFI(t)

DFRi(t) = —————— 10,000
(@® #Population;(t)

While the number of optimal clusters is determined based on the optimum average silhouette width.
Rousseeuw [25] defined the silhouette value as a measure of similarity of an ohject to its own cluster
compare to the other clusters. Based on the optimum average silhouette, we get the optimal number of
clusters is two (see Figure 3). We then used the partitioning around medoids with the number of clusters
equal to two to cluster the regions with respect to the poverty percentage, DFI dan DFR. As a result, we
get a Surabaya map which is clustered based on the poverty percentage, DFI dan DFR (Figure 4)




Figure 3. Number of optimum cluster Figure 4. Map of Surabaya which is clustered based on the
poverty percentage, DFI dan DFR

Table 2. Cluster summary for poverty percentage to DFR and DFI

Cluster  Poverty?s  DFR2018 DFI2018

32.54 1.18 537
2 11.75 1.15 498

T _Test
(P-value) 0.457 0.356

We then test the hypothesis to prove the DFR and DFI between those two clusters are significantly
different. The P-value of t-Test: Two-Sample shows that nor mean value of DFR or DFI 2018 is
significantly different (see Table 2). We can conclude that poverty percentage does not influence the
number of dengue fever incidence nor dengue fever rate.

In 2018, the three highest DFR was Tambak Wedi, Putat Jaya and Medokan Ayu. In Putat Jaya there
were 9 DF infected, but since the population only 15155 people then per 10000 citizens, the DFR is 5.93.
While in Putat Jaya, the DFI is 17 (the highest one in number), since the population is 44913 people, then
per 10000 citizens the DFR is only 3.78. It is lower compared to Tambak Wedi. For Medokan Ayu, the DFI
is 16, the population is 57647, and the DFR is 2.78 per 10000 citizens.

Secondly, we also assumed that precipitation and number of rainy days influence the DFI and DFR. Using
a similar approach, we have three clusters, and the summary of the clusters is given in Table 3. Using
one-way ANOVA, we test the DFR and DFI with respect to cluster 1, 2 and 3. The cluster 1 has average
precipitation 156.09(mm/year) and the average number of rainy days 13.42 (days/month) the DFR is 1.09
and DFT is 4.94. The DFR for each cluster is significantly different (p-value 0.018) while the DFT is not
significantly different (p-value 0.706). We can conclude that precipitation and number of rainy days
influence the dengue fever rate. The regions which are registered in cluster 3 are Sidotopo Wetan,
Tambak Rejo, and Tanah Kali Kedinding. Those three regions have a precipitation rate of 129.86 mm/year
and an average number of rainy days per month 13.92. Among those three regions, the highest DFR isin
Tambak Rejo (5.94, DFI = 9), then followed by Tanah Kali Kedinding (1.31, DFI = 7) and Sidotopo Wetan
(0.88, with DFI =5)

Table 3 Cluster summary for precipitation, number of rainy days to DFR and DFI

Cluster Precipitation  #RainyDays  DFR2018 DFI2018
156.09 13.42 1.09 4.94
2 177.30 14.61 1.08 5.07
[ 3 | 129.86 13.92 2.71 7.00
One-way
anova(Pvalue)

(one-way 0.018 0.706




Figure 5. Map of Surabayva which is clustered based on the Precipitation, number of rainy days to DFI and DFR

Global Linear and Spatial Model

The summary statistics and the clustering above give us a clear description of the dengue fever rate and
the number of infected persons that occurred in Surabaya. In this section, we want to explore the global
and spatial models to predict the DFR.

At the first step, we use the global Moran’s I statistics to test the data are under randomization (Ho) or
have spatial dependencies. The test shows that the data significantly have spatial dependencies (p-value =
0.0154. To see which districts are spatially correlated strongly, we then use the local Moran’s I statistics.
Figure 6 shows that there are two districts which have very strong spatial correlation, they are Tenggilis,
and both districts have 13 dengue fever infected, and the rate is 2.34 per 10000 citizens. This correlation
means that the DFR in Tenggilis highly influenced its neighbourhoods. Tenggilis has the highest DFR in
the neighbourhood. The Tenggilis neighborhoods are Sidosermo (DFR = (.74, DFI = 3), Menur (DFR = 0,
DFI = 0), Kalirungkut (DFR = 1.18, DFI = 6). Since the data has dependencies spatially globally and
locally, we then use the spatial models for predicting the DFR.

Local Moran's | (|z] scores)

20

Figure 6. Local Moran’s | statistics

To predict the dengue fever rate in 2018 globally, we used simple linear regression. We regressed the
DBR2018 to the area, poverty percentage, precipitation, number of rainy days and the dengue fever rate
from 2012-2017. As a result, the global model shows only estimated parameters of DFR in 2013, 2016 and
2017 are significant for predicting the DFR2018. The models also not good, since the R2 only 37 percent.
So, we cannot use this model for predicting the DFR 2018. The linear regression and the spatial models
give similar results (Table 4) shows the summary statistics of those models. Among external parameters
used to models the dengue fever rate in 2018, only three variables are significant, they are, DFR 2013,
DFR 2016 dan DFR 2017. The external variables such as the area, poverty percentage, precipitation,
number of rainfall days rate are not significant.




Tabel 4. The statistics summary for global model using linear regression and spatial models

Model LM SAR SEM SDM
Intercept 2.1509 2.2232 2.1908 2.2232
Area 0.0405 0.0417 0.0432 0.0417
PovertyPercentage 0.0115 -0.0115 0.0116 0.0115
Precipitation -0.00438 -0.0049 -0.0046 -0.0049
RainfallDays -0.0054 -0.0554 -0.0590 -0.0554
DFR2013%** 0.0285 0.0285 0.0286 0.0285
DFR2014 -0.0062 -0.0059 0.0059 -0.0059
DFR2015 -0.0093 -0.0096 -0.0098 -0.0096
DFR2016%** -0.0386 -0.0388 -0.0389 -0.0388
DFR2017*** 0.0483 0.4851 0.4825 0.4851
R2 0.3748

AIC 170.3100 170.3200 170.3100
MSE 0.5974 0.5971 0.5972 0.5971
Moran Residual Test

(p-value) 0.4527 0.4108 0.4205 0.4108

LM — Linear Model, SAR — Spatial Auto Regressive, SEM — Spatial Error Model, SDM - Spatial Durbin Model

The p-value of Moran residual test shows that for all models, the residual is randomly distributed, i.e., the
spatial process promoting the residual pattern of values is a random chance.

To improve the model performance, we then use the Geographically Weighted Regression (GWR) to model
the Dengue Fever Outbreak Rate.

Geographically Weighted Regression

The geographically weighted regression (GWR) models permit the parameters to estimate locally in each
district in which the community health centers locate. Table 5 presents the summary of GWR coefficient
estimates at data points. The number of rainfall days, precipitation, max and min humidity, and
temperature are not varied too much since those community health centers are located in the same
climate. Therefore, we only look at the local coefficient estimates at the dengue fever rate (DFR) 2016 and
2017 and poverty percentage. The global parameter weight resulting from the GWR model is the same as
the parameter weight resulting from the linear model (compare Table 4 and Table 5).

Tabel 5. Summary of GWR coefficient estimates at data points

Global Min. 1st Qu. Median  3rd Qu. Max.

Intercept 2.1509 0.0076 1.3770 2.1073 2.9258 3.7791
Area 0.0405 -0.0364 0.0001 0.0127 0.0313 0.1018
PovertyPercentage -0.0115 -0.0149 0.0129 -0.0103 -0.0075 -0.0016
Precipitation -0.0048 -0.0148 0.0088 -0.0032 0.0002 0.0110
RainfallDays -0.0538 -0.1156 0.0812 0.0663 -0.0534 -0.0211
DFR2013 0.0285 0.0062 0.0175 0.0229 0.0307 0.0391
DFR2014 -0.0062 -0.0130 0.0109 -0.0086 -0.0054 0.0022
DFR2015 -0.0093 -0.0161 0.0090 -0.0027 0.0036 0.0129
DFR2016 -0.0386 -0.0500 0.0405 -0.0331 -0.0242 -0.0113
DFR2017 0.4835 0.3592 0.4396 0.5079 0.5860 0.6941
MSE 0.4368

Moran Residual

Test (p-value) 0.4894

The local coefficients estimate for each explanatory variable are depicted in Figure 5.
In this research, we decided to divide the local coefficients into three intervals. We want to analyze the
low, middle and high local coefficient intervals with respect to the regions, It is well known that the
absolute value of the coefficient parameter indicates the strongness of the relationship between the
response to the respective explanatory variables. In contrast, the sign of the coefficient parameter
indicates the direction of that relationship.
Therefore, in this research, we used two different ways in defining the interval
(1) If the whole local coefficients are positive or negative, we then divide the local coefficient into three
intervals, from the lowest coefficient (in absolute value) to the highest one (in absolute value).




(2) If some of the coefficients are negative, and some of them are positive, we divide the interval from
the most negative to zero, and then zero to the highest positive. Between those two intervals, we divide
longer one into two again so that in overall, we will have three intervals.

The interval is calculated from the min local coefficient — max local coefficient divided by three (See Table
4). For the Poverty percentage, the local coefficients are varied from -0.0149 to -0.0016. All local coefficients
are negative. This sign shows that the highest the poverty percentage the lowest the estimate DFR2018
will be and vice versa. The color map of local coefficients with respect to the poverty percentage (PP) is
presented in Figure 7a. As an example, we highlighted three regions in the red area with high poverty
percentage but low DFR2018, and low poverty percentage but high DFR2018. Those regions are Bulak
Banteng (PP = 30.24, DFR2018 = 0.95); Tambak Wedi (PP = 9.45, DFR2018 = 5.94); Wonokusumo (PP =
37.69, DFR2018=0.72). While for the regions in the blue area will not have strong differences as in the red
area. For the precipitation, the local coefficients are varied from -0.0148 to 0.011. Some coefficients have
negative signs, and others have positive signs. The color map for the negative signs is red and yellow,
while the positive sign is blue. Three regions that we already highlighted in clustering based on
precipitation section, i.e., Tambak Rejo, Tanah Kali Kedinding and Sidotopo Wetan have the negative
signs (in the red area). They have a low precipitation rate but high DFR in 2018. The positive signs
indicate that area with higher precipitation tends to have high DFR and vice versa.

By studying the local parameters estimate with respect to the external factors such as poverty percentage
and precipitation we hope the Surabaya public health officials can use this information to prevent the
spread of dengue fever in the coming year. Figure 8 presented the predicted and the true value of dengue
fever rate in 2018. There are four regions in Surabaya that had zeros DFR in 2018. They are Jemursari,
Jeruk, Menur, Mulyorejo and Siwalankerto. In the prediction those regions are not predicted as zero but
consecutively are 0.53; 0.78; 0.51; 0.81; 0.11. This prediction could happen since the neighbourhood of
these regions does not have zero DFR in previous years. For example, since the neighborhoods of
Jemursari are Jagir (DFR2017 = 0.78); Sidosermo (DFR2017=0.74), Siwalankerto (DFR2017=0),
Gayungan(DFR2017 =0.90), then the DFR of Jemursari in 2018 is predicted as 0.53. In overall, the mean
square error of the forecast is 0.4368.

Tabel 4. Local coefficient estimate interval

Red Yellow Blue
Poverty% [0.0149, -0.0105)  [-0.0105, -0.006] [-0.006, -0.0016)
Precipitation [-0.0148, -0.0074) [-0.0074,0) [0,0.011]

Lacal Cosfciant E48mates of Poverty Percentage
W 00000108 B [0.0M05:0008) W [-0.008-0 0018

Figure 7a. Local Coefficient estimate for Poverty Figure 7h. Local Coefficient estimate for Precipitation
Percentage
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Figure 8. Dengue Fever Rate 2018 vs Predicted Dengue Fever Rate 2018
Conclusion

In this paper, we described the influences of poverty percentage, precipitation and number of rainy days to
the 2018 dengue fever rate in Surabaya using partitioning around medoids approach. We then explored
statistical learning to predict the DFR2018 using external factors and the DFR2012-DFR2017. The
geographically weighted regression in the best model for solving this problem compared to the linear
regression model and the spatial models. We also studying the characteristics of local parameters estimate
with respect to poverty percentage and precipitation. There is no positive correlation between poverty to
the DFR as we presumed in the beginning of the study, in fact the area with high poverty percentage yet
has lower DFR compare to the area with the lowest poverty percentage. However, the precipitation has
negative correlation even though it is not significant. It's meant the areas with high precipitation tend to
have low DFR. This situation fit to the nature of the mosquitos. Mosquitoes breed in pools of water. As a
result, we hope that the Surabaya public health officials can use this information to prevent the spread of
dengue fever in the coming year. In future research, we will use the machine learning approach for solving
the problems and present the result interactively as an app.
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