
 
 
 
 
 
 

Reliability-based Design Optimization for Structures using 

Particle Swarm Optimization 

D Prayogo1, G Gaby1, B H Wijaya1, F T Wong1, D Tjandra1 

Department of Civil Engineering, Petra Christian University, Jalan Siwalankerto 121- 

131, Surabaya 60236, Indonesia 

m21416086@john.petra.ac.id 

 

Abstract. Studies on structure design optimization have been conducted extensively over the 

past decades because it can increase structural efficiency and maximize the engineers’ profit. 

One of the significant current discussions is the reliability aspect of structure design in addition 

to optimal design. This problem becomes more important especially in sizing and shaping 

optimization of truss structures. To address the problem, this paper applies Reliability-based 

Design Optimization (RBDO) by combining Latin Hypercube Sampling (LHS) and 

metaheuristic algorithms which are Particle Swarm Optimization (PSO) and Barebone PSO 

(BBPSO). The presence of uncertainty is modeled using LHS and the reliability constraint is 

added to measure the probability of structural failure. This study aims to investigate the 

performance of these metaheuristic algorithms in optimizing the structure design while still 

satisfying the reliability constraints. Two case studies, a welded beam design problem and 15-

bar planar truss problem, are used in this study. The performance of these two algorithms will 

be compared. The obtained results indicate that BBPSO has a better performance than PSO.  
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1. Introduction 

In civil engineering, structure optimization has become an important and challenging topic because it 

can increase the structural efficiency. Structure optimization is the act of designing and developing 

structures to achieve maximum profit from available resources [1]. To minimize cost and the weight of 

structures, many researchers seek to optimize the diameter of steel pipe and the thickness or cross-

sectional area of steel elements [3]. Moreover, the number of elements and the constraints in a 

structure’s design increase the complexity of structure optimization. For this reason, the metaheuristic 

approach has become a popular method than the gradient method for solving structure optimization 

cases [9] because randomness is useful to find a global solution. Particle Swarm Optimization (PSO) is 

a frequently used metaheuristic algorithm in optimization problems [2]. 

 In structure optimization, uncertainty is an inevitable problem because truss structures are 

sensitive to uncertain design variables, such as cross section, or uncertain parameters, such as force 

and the material’s modulus of elasticity [5]. The robustness and safety of a structure are also affected 

by the changing of those variables and parameters, thus, uncertainty must be calculated in the design 

[5]. As a result, Reliability-based Design Optimization (RBDO) has become an important matter in 

structure optimization. There are three approaches used to analyze the probability of failure and 

structural reliability: the moment method, simulation method, and heuristic method [6]. 

 This research aims to optimize a single variable—the structure’s weight—by using Latin 

Hypercube Sampling (LHS) to model and simulate the uncertainty of variables with certain mean 



 
 
 
 
 
 

value and standard deviation. Structural reliability was analyzed using LHS because it can converge 

with a smaller sample size than Simple Random Sampling or Monte Carlo Sampling [7]. In order to 

achieve a reliable smallest weight, we employed PSO and its variant, Barebone PSO (BBPSO), and 

then provided some constraints in the process with a probability of success not less than 99%. 

2. Metaheuristic algorithms 

2.1. Particle swarm optimization 

The Particle Swarm Optimization (PSO) algorithm was developed by Kennedy and Eberhart in 1995 

[2], inspired by the behavior of social organisms in groups such as bird and fish schooling. When bird 

flocks search for food, they will search for the best location. To find the best location, each bird will 

move with their own velocity based on its personal best location, its group’s best location, and the 

previous location [10]. One of the advantages of PSO is that this algorithm is simple and it can be 

simply applied in a computer program [2]. The initialization of this method is random the population 

in a specified range. These particles have their own velocity so that they can move randomly from one 

place to another. Equation (1) is the particle’s velocity and Equation (2) is used to update the location. 

When the particle discovers the optimal location, the location is saved in pbestX and the result is saved 

in pbestF. The optimal locations from all particles are saved in gbestX and the result is saved in 

gbestF, which represents the solution for the problem: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑟1𝑐1 (𝑋𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)) + 𝑟2𝑐2 (𝑋𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)),     (1) 

𝑋𝑖(𝑡 + 1) =  𝑋𝑖(𝑡) + 𝑣𝑖(𝑡 + 1),       (2) 

where vi is the velocity of particle i, w is the inertia weight parameter, c1 is the cognitive factor 

parameter, Xpbest is the location coordinate of personal best, xi is the coordinate of particle i, c2 is the 

social factor parameter, Xgbeset is the location coordinate of global best, and r1 and r2 are a random 

numbers from zero to one. Figure 1 displays the pseudo-code for PSO. 

 

Algorithm 1 Particle Swarm Optimization  

1 Initialize PSO parameters  

2 Initialize a population of random particles (solutions) 

3 Evaluate the objective value of each particle  

4 Determine initial pbestX and gbestX  

5 while termination criteria are not satisfied do  

6  for each particle do  

7   Update the velocity for the particle  

8   Update the new location for the particle 

9   Determine the objective value for the particle in its new location 

10   Update pbestX and pbestF if required  

11  end for  

12  Update gbestX and pbestF if required 

13 end while  

Figure 1. Pseudo-code for particle swarm optimization. 

2.2. Barebone particle swarm optimization 

Barebone Particle Swarm Optimization (BBPSO) is a variant of PSO that has been simplified. 

However, it can be trapped into local optima for high-dimensional and complicated optimization 

problems [4]. This algorithm ignores all parameters and does not need to use velocity to find a new 

location. BBPSO mainly uses a jump strategy, which is implemented based on a Gaussian distribution 

[4]. The particle’s next position is only calculated by its personal best location and swarm global best 

location: 

  𝜇 =
 𝑝𝑖+𝑔𝑏𝑒𝑠𝑡 

2
  (3) 



 
 
 
 
 
 

  𝜎 = |𝑝𝑖 − 𝑔𝑏𝑒𝑠𝑡|  (4) 

  𝑥(𝑖 + 1) = {
 𝑁(𝜇, 𝜎)   𝑖𝑓(𝜔 >  0.5) 

𝑝𝑖       𝑒𝑙𝑠𝑒
  (5) 

where pi is the personal best location of each particle, gbest is the best location of the whole swarm, 

and ω is a random number from zero to one. Figure 2 displays the pseudo-code for BBPSO. 

 

Algorithm 2 Barebone Particle Swarm Optimization   

1 Initialize PSO parameters                

2 Initialize a population of random particles (solutions) 

3 Evaluate the objective value of each particle  

4 Determine initial pbestX and gbestX  

5 while termination criteria are not satisfied do  

6         for each particle do  

7                  Determine the objective value for the particle in its new location 

8                  Update pbestX and pbestF if required  

9         end for  

10 Update gbestX and pbestF if required 

11 end while  

Figure 2. Pseudo-code for barebone particle swarm optimization. 

3. Latin Hypercube Sampling 

Latin Hypercube Sampling (LHS) was used to assure a good estimation of the statistical moments of 

response function [11]. In this method, sample points are well spread out when projected onto a 

subspace spanned by several coordinate axes. First, we need to select n different values of k variables 

where the range of each variable is divided into n nonoverlapping intervals on the basis of equal 

probability. Then, select a value randomly from each interval. The sampled cumulative probability can 

be written as Equation (6): 

  𝑃𝑟𝑜𝑏𝑖 = (
1

𝑁
) 𝑟𝑢 +  

(𝑖−1)

𝑁
  (6) 

 where ru is a uniformly distributed random number ranging from zero to one. Then, the 

probability of failure can be obtained from Equation (7): 

  𝑃𝑓 ≅  
𝑁𝐻

𝑁
,  (7) 

 where NH is the number of failures and N is the number of simulations. 

 

4. Methodology 
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Figure 3. Flow chart for structure optimization. 



 
 
 
 
 
 

Reliability-based Design Optimization was modeled by combining two metaheuristic algorithms, 

Direct Stiffness Method (DSM) and LHS. The metaheuristic algorithms used in this research are PSO 

and BBPSO, which were used to find the optimal structure design, DSM was used to obtain the 

displacement, axial force, and stress of each element in the truss structure, and LHS was used to model 

the uncertainty. The outputs were utilized to detect the number of structures that failed after some 

number of simulations (N). The probability of failure was obtained from LHS; i.e., if the structure is 

not reliable, then a penalty is given to the calculation of weight as the fitness value. This process will 

be repeated until reaching the maximum number of iterations that has been set before. DSM, PSO, and 

BBPSO are all written using MATLAB 2018b. A flow chart of the optimization process is presented 

in Figure 3. 

 

5. Test Problems and Results 

5.1. Welded beam problem 

 

 
Figure 4. Welded beam structure [5]. 

 

The first test problem is a welded beam problem as diagrammed in Figure 4. This problem has four 

random variables and five probabilistic constraints. The problem objective is to find the minimum 

welding cost. The probabilistic constraints are limitation of shear stress, bending stress, buckling, and 

displacement. All random variables are statistically independent and of normal distribution. This test 

problem is run 30 times with 1000 iterations, 30 populations, and 100 simulations. The mathematical 

RBDO model of the welded beam problem is formulated as: 

find   𝑥 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} 

minimize  𝑓(𝑥) = 𝑐1𝑥1
2𝑥2 + 𝑐2𝑥3𝑥4(𝑧1+𝑑2) 

subject to Prob. {gj(x) < 0} ≥ 99%, j = 1, …, 5 

where   g1 = τ/z6-1 ;  g2 = σ/z7-1 ; g3 = x1/x4 ; g4 = δ/z5-1 ; g5 = 1-Pc/z1; 

   τ = (𝑡2+2t*tt*𝑥2/2R+𝑡𝑡2)1/2 

   t = 
𝑧1

√2𝑥1 𝑥2
 ; tt = M*R/J  

   J = √2𝑥1 𝑥2{𝑥2
2/12+(𝑥1+𝑥3)2/4}  

   M = z1(z2+
𝑥2

2
) ; R = 

√𝑥2
2+(𝑥1+𝑥3 )2

2
  

   σ = 
6∗𝑧1∗𝑧2

𝑥3
2𝑥4

 ; δ 
4∗𝑧1∗𝑧22

𝑧3𝑥3
3𝑥4

  

   Pc = 
4.013𝑥4

3𝑥3

6𝑧22 √𝑧3𝑧4(1-
𝑥3

4𝑧2
√𝑧3/𝑧4 

   xi ~ N(xi, 0.16932) for i = 1, 2 

   xi ~ N(xi, 0.01072) for i = 3, 4 

   3.175 ≤ x1 ≤ 50.8; 0 ≤ x2 ≤ 254; 0 ≤ x3 ≤ 254; 0 ≤ x4 ≤ 50.8 



 
 
 
 
 
 

   z1 = 2.6688 x 104 (N); z2 = 3.556 x 102 (mm); z3 = 2.0685 x 105 (MPa) 

   z4 = 8.274 x 104 (Mpa); z5 = 6.35 (mm); z6 = 9.377 x 10 (Mpa) 

   z7 = 2.0685 x 102 (Mpa) 

   c1 = 6.74135 x 10−5 /mm3; c2 = 2.93585 x 10−6 /mm3 

 

Table 1. Optimization results for welded beam problem 

Design Variable PSO BBPSO Ho-Huu, et al. 

[5] 

x1 (mm) 5.7833 5.8706 5.730 

x2 (mm) 179.4049 181.5337 201.00 

x3 (mm) 217.2732 210.3381 210.63 

x4 (mm) 6.1813 6.2499 6.240 

Best f 2.5140 2.4948 2.5926 

Average f 3.1000 2.6400 - 

Standard deviation 0.4734 0.1832 - 

  

 The RBDO results of this test problem are summarized in Table 1. It is seen that BBPSO 

obtains the smallest best cost, which is 2.4948 compared with PSO. From Tabel 1, it is seen that 

BBPSO also obtains the average cost and standard deviation so that BBPSO has a better performance 

compared to PSO in this test problem. Thus, the convergence behaviors of these two algorithms areas 

graphed in Figure 5. As seen in Figure 5, PSO can converge faster than BBPSO but it cannot find the 

best solution. 

 

 

Figure 5. Convergence behavior of PSO and BBPSO for welded beam problem. 

5.2. 15-bar planar truss structure problem 

The second test problem is a 15-bar planar truss structure as diagrammed in Figure 6. The goal is to 

minimize the cross-sectional area so that the minimum weight can be obtained without violating any 

constraints. The constraints used in this research are for reliability, stress, and shape. The 

mathematical formulation of this optimization problem can be performed as: 

find  𝑋 = {𝐴1, 𝐴2, … . , 𝐴𝑚, 𝜉1, 𝜉2, … . , 𝜉𝑛} 

minimize  𝑓(𝑥) =  ∑ 𝐴𝑖𝜌𝑖𝐿𝑖
𝑚
𝑖=1  

subjected to g1: Check probability of success ≥ 99% 

g2: Stress constraints, |𝜎𝑖| − |𝜎𝑖
𝑚𝑎𝑥| ≤ 0 

g3: Shape constraints, 𝜉𝑗
𝑙𝑜𝑤𝑒𝑟 ≤ 𝜉𝑗 ≤ 𝜉𝑗

𝑢𝑝𝑝𝑒𝑟
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where i = 1, 2, ...., m and j = 1, 2, ...., n. Ai, ρi, Li, and σi are cross-sectional area, weight density, 

length, and stress of element (i), respectively. 

 

Figure 6. 15-bar problem [8]. 

Thirty experimental runs with 1000 iterations and 30 populations resulted in the same 120000 

function evaluations. This case is also simulated 100 times with modulus of elasticity (E) = 104 ksi, 

weight density (ρ) = 0.1 lb/in.3, and available cross-sectional areas D = [0.111, 0.141, 0.174, 0.220, 

0.270, 0.287, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 

3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180] in2. 

Stress limits in tension or compression were 25 ksi. There were 23 design variables in this problem: 15 

cross-sectional area variables and eight configuration variables. The configuration variables were the 

x- and y-coordinates of nodes 2, 3, 6, and 7 and y-coordinates of nodes 4 and 8. However, nodes 6 and 

7 were constrained to have the same x-coordinates as nodes 2 and 3, respectively. The side constraints 

for the configuration variables were 100 in ≤ x2 ≤ 140 in, 220 in ≤ x3 ≤ 260 in, 100 in ≤ y2 ≤ 140 in, 

100 in ≤ y3 ≤ 140 in, 50 in ≤ y4 ≤ 90 in, −20 in ≤ y6 ≤ 20 in, −20 in ≤ y7 ≤ 20 in, and 20 in ≤ y8 ≤ 60 in. 

 This case is given a non-deterministic load (P) using normal distribution with mean 10 kips on 

node 8. The sectional area Ai of the i-th element is treated as a normal random design variable and its 

mean value is the design variable. All random variables are following normal distribution with 

dispersion ± 5%. These random variables are modeled by LHS. The results of this test problem are 

summarized in Table 2, which shows BBPSO also obtains smaller best weight, i.e., 96.583 lb 

compared with PSO. Other than that, BBPSO also obtains smaller average weight and standard 

deviation which means BBPSO has a better performance in the second test problem. Figure 7 shows 

the iteration process of a 15-bar truss structure optimization. In terms of consistency, the convergence 

behaviors of PSO and BBPSO are graphed in Figure 8. It is seen in Figure 8 that in this case BBPSO 

can converge faster than PSO and obtain the best solution. 

 

Table 2. Final design of size and shape for the 15-bar truss problem 

Variable PSO BBPSO Variable PSO BBPSO 

A1 (in2) 1.333 1.081 A14 (in2) 0.539 0.539 

A2 (in2) 0.954 0.954 A15 (in2) 0.174 0.111 

A3 (in2) 0.111 0.111 X2 (in) 118.997 119.0362 

A4 (in2) 1.174 1.333 X3 (in) 232.9781 220 

A5 (in2) 0.954 0.954 Y2 (in) 130.1803 108.9745 

A6 (in2) 0.44 0.44 Y3 (in) 119.835 100 

A7 (in2) 0.287 0.111 Y4 (in) 77.5552 54.5177 

A8 (in2) 0.174 0.111 Y6 (in) 6.5362 19.9913 

A9 (in2) 0.111 0.111 Y7 (in) -13.1163 -17.9019 

A10 (in2) 0.27 0.539 Y8 (in) 59.985 51.0149 

A11 (in2) 0.539 0.141 Best weight (lb) 104.0628 96.5828 

A12 (in2) 0.347 0.141 Average (lb) 1.30 1.070 

A13 (in2) 0.347 0.539 Standard deviation 14.9555 6.0024 



 
 
 
 
 
 

 

  
(a)                                                                            (b) 

 
         (c) 

Figure 7. Iteration process of 15-bar truss structure: (a) iteration number 1; (b) iteration number 100; 

(c) iteration number 1,000. 
 

 

 

Figure 8. Convergence behavior of PSO and BBPSO for 15-bar truss problem. 

6. Conclusion 

This research compared the performance of PSO and BBPSO in solving optimization problems. By 

reviewing these two test problems, it can be seen in Table 1 and Table 2 that with the same number of 

iterations, BBPSO can obtain a smaller best solution, average solution, and standard deviation 

compared with PSO which leads to a conclution that BBPSO has a better performance compared to 

PSO. It is also shown that combining PSO and LHS can deliver a reliable and robust truss structure 

design. Moreover, this research shows that RBDO is important in structure design and cannot be 

neglected. 
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