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Abstract, Studies on structure design optimization have been conducted extensively over the
past decades because it can increase structural efficiency and maximize the engineers’ profit.
One of the significant current discussions is the reliability aspect of structure design in addition
to optimal design. This problem becomes more important especially in sizing and shaping
optimization of truss structures. To address the problem, this paper applies Reliability-based
Design Optimization (RBDO) by combining Latin Hypercube Sampling (LHS) and
metaheuristic algorithms which are Particle Swarm Optimization (PSO) and Barebone PSO
(BBPSO). The presence of uncertainty is modeled using LHS and the reliability constraint is
added to measure the probability of structural failure. This study aims to investigate the
performance of these metaheuristic algorithms in optimizing the structure design while still
satisfying the reliability constraints. Two case studies, a welded beam design problem and 15-
bar planar truss problem, are used in this study. The performance of these two algorithms will
be compared. The obtained results indicate that BBPSO has a better performance than PSO.
Keywords: Optimization, PSO variants, Reliability, Truss structure

1. Introduction

In civil engineering, structure optimization has become an important and challenging topic because it
can increase the structural efficiency. Structure optimization is the act of designing and developing
structures to achieve maximum profit from available resources [1]. To minimize cost and the weight of
structures, many researchers seek to optimize the diameter of steel pipe and the thickness or cross-
sectional area of steel elements [3]. Moreover, the number of elements and the constraints in a
structure’s design increase the complexity of structure optimization. For this reason, the metaheuristic
approach has become a popular method than the gradient metlfef for solving structure optimization
cases [9] because randomness is useful to find a global solution. Particle Swarm Optimization (PSO) is
a frequently used metaheuristic algorithm in optimization problems [2].

In structure optimization, uncertainty is an inevitable problem because truss structures are
sensitive to uncertain design variables, such as cross section, or uncertain parameters, such as force
and the material’s modulus of elasticity [5]. The robustness and safety of a structure are also affected
by the changing g8 those variables and parameters, thus, uncertainty must be calculated in the design
[5]. As a result, Reliability-based Design Optimization (RBDO) has become an important matter in
structure optimization. There are three approaches used to analyze the probability of failure and
structural reliability: the moment method, simulation method, and heuristic method [6].

This research aims to optimize a single variable—the structure’s weight—by using Latin
Hypercube Sampling (LHS) to model and simulate the uncertainty of variables with certain mean




value and standard deviation. Structural reliability was analyzed using LHS because it can converge
with a smaller sample size than Simple Random Sampling or Monte Carlo Sampling [7]. In order to
achieve a reliable smallest weight, we employed PSO and its variant, Barebone PSO (BBPSO), and
then provided some constraints in the process with a probability of success not less than 99%.

2. Metaheuristic algorithms

2.1. Particle swarm optimization

The@irticle Swarm Optimization (PSO) algorithm was developed by Kennedy and Eberhart in 1995
[2], inspired by the behavior of social organisms in groups such as bird and fish schooling. When bird
flocks search for food, they will search for the best location. To find the best location, each bird will
move with their own velocity based on its personal best location, its group’s best location, and the
previous location [10]. One of the advantages of PSO is that this algorithm is simple and it can be
simply applied in a computer program [2]. The initialization of this method is random the population
in a specified range. These particles have their own velocity so that they can move randomly from one
place to another. Equation (1) is the particle’s velocity and Equation (2) is used to update the location.
When the particle discovers the optimal location, the location is saved in pbestX and the result is saved
in pbestF. The optimal locations from all particles are saved in gbestX and the result is saved in

estF, which represents the solution for the problem:

vt + 1) = woi () + 7161 (Xpbest 0 = Xi®) + 1262 (Xgese ) = Xi(D)), (1)
Xi(t+ 1D = X;(t) +v(t+ 1), 2)

({flere v; is the velocity of particle i, w is the inertia weight parameter, c; is the cognitive factor
parameter, X« is the locationffijordinate of personal best. x; is the coordinate of particle i. ¢ is the
social factor parameter, X 15 the location coordinate of global best, and r; and r: are a random
numbers from zero to one. Figure 1 displays the pseudo-code for PSO.
Algorithm 1 Particle Swarm Optimization

1 Initialize PSO parameters

2 Initialize a population of random particles (solutions)

3 Evaluate the objective value of each particle

4 Determine initial pbestX and gbestX

while termination criteria are not satisfied do

6 for each particle do

7 Update the velocity for the particle

8 Update the new location for the particle

9 Determine the objective value for the particle in its new location
10 Update pbestX and pbestF if required
11 end for

12 Update gbestX and pbestF if required
13  end while
Figure 1. Psecudo-code for particle swarm optimization.
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2.2. Barebone zm‘ide swarm optimization
Barebone Particl@EJwarm Optimization (BBPSO) is a variant of PSO that has been simplified.
However, it can be trapped into local optima for high-dimensional and complicated optimization
problems [4]. This algorithm igffres all parameters and does not need to use velocity to find a new
location fBBPSO mainly uses a jump strategy, which is implemented based on a Gaussian distribution
[4]. The particle’s next position is only calculated by its personal best location and swarm global best
location:
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o = |pi — gbest| @)

N(u o) if(w > 0.5)

pi  else ©)

x(i+1) = {
where p; is the personal best location of each particle, gbest is the best location of the whole swarm,
and o is a random number from zero to one. Figure 2 displays the pseudo-code for BBPSO.

Algorithm 2 Barebone Particle Swarm Optimization

Initialize PSO parameters
Initialize a population of random particles (solutions)
Evaluate the objective value of each particle
Determine initial pbestX and ghestX
while termination criteria are not satisfied do
for each particle do
Determine the objective value for the particle in its new location
Update pbestX and pbestF it required
end for
Update gbestX and pbestF if required
end while

—
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Figure 2. Pseudo-code for barebone particle swarm optimization.

3. Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) was used to assure a good estimation of the statistical moments of
response function [11]. In this method, sample points are Bl spread out when projected onto a
subspaffiipanned by several coordinate axes. First, we need to select n different values of k variables
where the range of each variable is divided into n nonovedf@pping intervals on the basis of equal
probability. Then, select a value randomly from each interval. The sampled cumulative probability can
be written as Equation (6):

Probi = (3)n + 52 (6)

where r, is a uniformly distributed random number ranging from zero to one. Then, the
probability of failure can be obtained from Equation (7):
~ Nu
Pf = N (N

27
where Ny 1s the number of failures and N is the number of simulations.

4. Methodology
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Reliability-based Design Optimization was modeled by combining two metaheuristic algorithms,
Direct Stiffness Method (DSM) and LHS. The metaheuristic algorithms used in this research are PSO
and BBPSO, which were used to find the optimal structure design, DSM was used to obtain the
displacement, axial force, and stress of each element in the truss structure, and LHS was used to model
the uncertainty. The outputs were utilized to detect the number of structures that failed after some
number of simulations (N). The probability of failure was obtained from LHS; ie., if the structure is
not reliable, then a penalty is given to the calculation of weight as the fitness value. This process will
be repeated until reaching the maximum number om.tions that has been set before. DSM, PSO, and
BBPSO are all written using MATLAB 2018b. A flow chart of the optimization process is presented
in Figure 3.

5. Test Problems and Results

5.1. Welded beam problem

Structure L

weldment X3 |
Figure 4. Welded beam structure [5].
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The first test problem is a welded beam problem as diagrammed ifgFigure 4. %is problem has four
random variables and five probabilistic constraints. The problem objective is to find the minimum
welding cost. The probabilistic constraints are limitation of shear stress, bending stress, buckling, and
displacement. All random variables are statistically independent and of normal distribution. This test
blem is run 30 times with 1000 iterations, 30 populations, and 100 simulations. The mathematical
RBDO model of the welded beam problem is formulated as:

find x = {Xx1,X2,X3, X4}

minimize F(xX) = cyxdxy + coxg x4 (2 +dy)

subject to Prob. {gifx) <0} =99%.j=1,....5

where g1 =1/726-1; g2=0/77-1 ; gs=x4/xy: ga= 6/25-1; gs = 1-Pc/z1;
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2

:tt= M*R/J

_ Gxzlz2 Axzlez2?

2 s ]
X5Xy 23x5%,

_ 4.013x3x; X3
— et Vz3z4(1 e \23/z4
X ~ N(x;,0.1693%) fori=1,2
-~ N(x,, 00107 fori=3,4

3175<x;=508; 0<x;<254; 0 <x3=254; 0= x4 < 50.8




71 =2.6688 x“ (N); 22 =3.556 x 10* (mm); z3 = 2.0685 x 10° (MPa)
74 =8.274 x 10* (Mpa); z5 = 6.35 (mm); z6 = 9.377 x 10 (Mpa)

27 =2.0685 x 10* (Mpa)

c;=6.74135 x 10-° /mm’*; ¢2 = 2.93585 x 10°°/mm’*

Table 1. Optimization results for welded beam problem

Design Variable PSO BBPSO  Ho-Hifjet al.
[5]

x; (mm) 5.7833 5.8706 5.730

Xz (mm) 179.4049 181.5337 201.00

x3 (mm) 217.2732  210.3381 210.63

x¢ (mm) 6.1813 6.2499 6.240

Best f 2.5140 2.4948 2.5926
Average f 3.1000 2.6400 -
Standard deviation 0.4734 0.1832 -

7 7

The RBDO results of this test problem a.re summarized in Table 1. It is seen that BBPSO
obtains the smallest best cost, which is 2.4948 compared with PSO. From Tabel 1, it is seen that
BBPSO also obtains the average cost and standard deviation so that BBPSO has a better performance
compared to PSO in this test problem. Thus, the convergence behaviors of these two algorithms areas

graphed in Figure 5. As seen in Figure 5, PSO can converge faster than BBPSO but it cannot find the
best solution.
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Figure 5. Convergence behavior of PSO and BBPSO for welded beam problem.
5.2. 15-bar planar truss structure problem
The second test problem is a 15-bar planar truss structure as diagrammed in Figure 6. The goal is to
minimize the cross-sectional area so that the minimum weight can be obtained without violating [y
constraints. The constraints used in this research are for reliability, stress, and shape. The
mathematical formulation of this optimization problem can be performed as:

find X = {4149 ., Ay 61,2, e En}
minimize f0 = T Aupily
subjected to gi: Check probability of success = 99%

g2 Stress constraints, |o;| — |6/ <0

g3 Shape constraints, f}ower << ffpper




where i =1, 2, ...m and j= 1,2, ..., n. Ai, pi, Li, and o; are cross-sectional area, weight density,
length, and stress of element (7). respectively.

120 in. T 120 in. T 120 in.
1 B 3
12 14
10
7 8 9 120in.
11 13 15
4 5 6
360 in.

Figure 6. 15-bar problem [8].

Thirty experimental runs with 1000 iterations and 30 popufEjons resulted in the same 120000
function evaluations. This case is also simulated 100 times with modulus of elasticity (E) = 10* ksi,
weight density (p) = 0.1 Ib/in.?, and available cross-sectional areas D = [0.111, 0.141, 0.174, 0.220,
0.270,0.287,0.347,0.440,0.539,0.954, 1.081, 1.174, 1.333, 1.488,1.764,2.142, 2.697, 2.800, 3.131,
3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180] in.
Stress limits in tension or compression were 25 ksi. There were 23 design variables in this problem:g}5
cross-sectional area variables and eight configuration variables. The configuratfgn variables were the
x- and y-coordinates of nodes 2, 3, 6, and 7 and y-coordinates of nodes 4 and 8. However, nodes 6 and
7 were constrained to have the same .\:—ccndinates as nodes 2 and 3, respectively. The side constraints
for the configuration variables were 100 in < x, < 140 in, 220 in < x3 < 260 in, 100 in < y> < 140 in,
100 in<y; <140 in, 50 in<ys<901in, —20 in < v =20 in, =20 in < y7 < 20 in, and 20 in < yg < 60 in.

This case is given a non-deterministic load (Effusing normal distribution with mean 10 kips on
node 8. The sectional area A; of the i-th element is treated as a normal random design variable and its
mean value is the design variable. All random variables are Efflowing normal distribution with
dispersion + 5%. These random variables are modeled by LHS. The results of this test problem are
summarized in Table 2, which shows BBPSO also obtains smaller best weight, i.e., 96.583 Ib
compared with PSO. Other than that, BBPSO also obtains smaller avergf) weight and standard
deviation which means BBPSO has a better performance in the second test problem. Figure 7 shows
the iteration process of a 15-bar truss structure optimization. In terms of consistency, the convergence
behaviors of PSO and BBPSO are graphed in Figure 8. It is seen in Figure 8 that in this case BBPSO
can converge faster than PSO and obtain the best solution.
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Table 2. Final design ofgze and shape for the 15-bar truss problem

_ ¥Pxiable PSO BBPSO Variable PSO  BBPSO
Al (ind) 1.333 1.081 Al4 (in?) 0.539 0.539
A2 (in?) 0.954 0.954 Al5 (in?) 0.174 0.111
A3 (in?) 0.111 0.111 X2 (in) 118.997  119.0362
A4 (in?) 1.174 1333 X3 (in) 232.9781 220
AS (in?) 0.954 0.954 Y2 (in) 130.1803  108.9745
A6 (in?) 0.44 0.44 Y3 (in) 119.835 100
A7 (in?) 0.287 0.111 Y4 (in) 775552 545177
A8 (in?) 0.174 0.111 Y6 (in) 6.5362 199913
A9 (in?) 0.111 0.111 Y7 (in) -13.1163  -17.9019
A10 (in%) 027 0.539 Y8 (in) 59985 510149
All(in) 0539 0.141 Best weight (Ib)  104.0628  96.5828
Al2(in) 0347 0.141 Average (Ib) 1.30 1.070

Al3 (in?) 0.347 0.539 Standard deviation 14,9555 6.0024
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Figure 7. Iteration process of 15-bar truss structure: (a) iteration number 1; (b) iteration number 100;
(c) iteration number 1.,000.
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Figure 8. Convergence behavior of PSO and BBPSO for 15-bar truss problem.

6. Conclusion

This research compared the perforfifhce of PSO and BBPSO in solving optimization problems. By
reviewing these two test problems, it can be seen in Table 1 and Table 2 that with the same number of
iterations, BBPSO can obtain a smaller best solution, average solution, and standard deviation
compared with PSO which leads to a conclution that BBPSO has a better performance compared to
PSO. It is also shown that combining PSO and LHS can deliver a reliable and robust truss structure
design. Moreover, this research shows that RBDO is important in structure design and cannot be
neglected.
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