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Abstract: Intan and Mukaidono discussed that knowledge playﬁn important role in determining the
membership function of a given fuzzy set by introducing a concept, called Knowledge-based Fuzzy Sets (KFS)
in 2002. Here, thgnembership degree of an element given a fuzzy set is subjectively determined by the
know]eda. Every knowledge may have each different membership degree of the element given the fuzzy set.
In 1988, Wang et al. extended the concept of azzy set, called Dynamic Fuzzy Sets (DFS) by considering that
the membership degree of an element given a fuzzy smight be dynamically changeable over the time. Both
generalized concepts, KFS and DE§, were hybridized by Intan et al. to be a Knowledge-based Dynamic Fuzzy
Set (KDFS). As usually happened in the real-world application, the KDFS showed thata membership function
of a given fuzzy set subjectively determined by a certain knowledge may be dynamically changeable over time.
Moreover, the concept of fuzzy granularity was discussed dealing with the KDFS. Related to ta concept of
fuzzy granularity in KDFS, this paper discusses the concept of approximate reasoning of KDFS in representing
fuzzy production rules as generally applied in the fuzzy expert system.

Key words: Knowledge-based dynamic fuzzy sets, fuzzy granularity, fuzzy expert system, fuzzy rules.

1q:ntroduction
1]

as a generalization of crisp sets dealing with the gradual membership degree of elements in a real number

econcept of fuzzy set was proposed by L.A. Zadeh in 1965 [1], [2]. The concept of fuzzy set 'ﬂ:onsider‘ed

started from 0 (non-member) to 1 (member).

In the concept of fuzzy se amembership function ofagiv fuzzy set is consistently unchangeable during
the time variable. However, in the real-world application, the membership degree of an element given a fuzzy
set may be changeable dealing with time. Therefore, Wang et n (1988) [3], [4] proposed an extended concept
of fuzzy sets, called Dynamic Fuzzy Sets (DFS) in which every membership degree of an element in DFS might
be dynamically changeable dealing with time’'s variable. In this case, the DFS may also be regarded as an
example of multi-fuzzy sets by means thata given fuzzy label might be represented by many fuzzy sets dealing
with time variable.

In2002, Intan au Mukaidono [5]-[7] discussed differences between probability and fuzziness. Probability
is considered as a concept to present the situation of objective uncertainty. On the other hands, fuzziness is
for the situation of subjective uncernty. Through fuzziness, a certain knowledge may subjectively
determine a merﬂership function of a given fuzzy set. To express this reality, Intan and Mukaidono (2002)
[5]-[7] proposed the concept of Knowledge-based Fuzzy Sets (KFS) as a generalization of fuzzy sets. Similar to
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1
the DFS, the KFS is also an example of the gu]ti-fuzzy sets by means that a given fuza' label might be
represented by many fuzzy sets dealing with the variable kwleclges. In this case, fuzziness may be
considered as a deterministic uncertainty by (nsidering that a person through his/ her knowledge may be
subjectively able to determine wiven object even in an uncertain (unclear) situation or definition of the
object. Therefore, in the KFS, a given fuzzy label may have n different membership functions (fuzzy sets)
related to n different knowledge.

Both DFS and KFS are two generalized concepts of fuzzy sets dealing with different interpretations or
variables, time and knowledgmspectively. Therefore, both concepts are possibly combined to construct a
more comprehensive concept of fuzzy sets. By considering that a membership function of a a‘ren fuzzy set
given by a certain knowledge may possibly change over time, Intan et al [8] proposed a hybrid concept, called
Knowledge-based Dynamic Fuzzy Set [uFS) as a more generalized concept of fuzzy sets compared than both
KFS and DFS. In the concept of KDFS, the membership function of a given fuzzy set determined by a certain
knowledge may be dynamically changeable over time as usually shown in the real-world application.
Moreover, the KDFS may be considered as an example concept of two-dimensional multi-fuzzy sets dealing
with both time and knowledge. Relan:l to KDFS, three summary fuzzy sets were discussed and constructed
using the functions of aggregation. Some basic operations and pmperﬁsuch as equality, contentment,
union, intersection and complement were also defined and examined. Also, the fuzzy granularity dealing with
the crisp and fuzzy coverings of knowledge was discussed in terms of KDFS [9].

Related to the Approximate Reasoning, this paper continually extends the concept of KDFS by discussing
how to generate fuzzy production rules in KDFS. The concept of approximate reasoning dealing with KDFS as
proposed in this paper plays important role in constructing rule base in Fuzzy Expert System, since the fuzzy
production rule store in the rule base of fuzzy expert system is generally given by the knowledge of experts.
Four categories of the fuzzy production rules, namely Strong Implication, Weak Implication, Strong Bi-
implication and Weak Bi-implication, are proposed and discussed together with their properties. Several
equations are proposed to measure validation's degree of the fuzzy production rules. Finally, four rules of
conditions are given to justify the construction of Strong Implication, Weak Implication, Strong Bi-implication

and Weak Bi-implication.

2. Knowledge-Based Dynamic Fuzzy Sets
2.1. Definition

The Knowledge-based Fuzzy Sets {KDFSES a hybrid concept of both dynamic fuzzy sets and knowledge-
based fuzzy sets. It on be verified that in the real-world application, even a certain knowledge k has
already determined a membership function of fuzzy set A, next time the same knowledge, he/she may
provide a dilhent membership function to the fuzzy set A.It can be said that any membership function of
KFS may be dynamically cangeab]e over the time variable. Formally, the definition of knowledge-based
dynamic fuzzy sets is given as follows:

Definition 1 Let U be a universal set ofe]ements,alcl K ={ky,ky,+, k, } be a set of knowledges,and T
be a discrete set of time, where T = {t;,t,,+,t,}. Then a knowledge-based dynamic fuzzy set of A on U
denoted by D(A) = {A,(t))|vk; € K,Vt; € T} iséeﬁned as a set of fuzzy sets dealing with the set of
knowledges K and the setof time T. A, (t) € D(A4) is a knowledge-based dynamic fuzzy set dealing with

knowledge k attime ¢, and itis characterized by the following membership function.

Ha, (- U—-[01] (1)
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Related to (1), pu,(w) € [1] is a the membership degree of element u € U on fuzzy set 4 dealing
with the knowledge k € K at the time t € T. Similarly, u,, )(u) =1 means v has full membership in 4
according to k at the time t. On the other hand, 4, ()(u) = 0 means u is not a member of A,(t). Thus,
the membealip degree of uin A could be changeable depending on both k and t.Here, A4, (t) € F(U) is
considered as a knowt'edge-bﬂsedgnﬂmicfuzzy set of A dealing with knowledge k at the time ¢.In this
case, Ay(t) isa fuzzy set that has a similar concept with the concept of fuzzy set proposed by Zadeh in 1965
[1]. [2], where F(U) aa fuzzy power set of U.Every A, (t) € D(A) has its membership function given by
Ka, ) - Therefore, a knowledge-based fuzzy set of A, D(A) = {4,,(t;)|¥k; € K,¥t; €T} has mxn
membership functions as given by {pﬂk!(t}.ﬂvki EK, Vi €T}

2.2. Summary Fuzzy Sets

The relationship among DFS, KFS and KDFS as shown in Table 1. Let A be a fuzzyseton U, K be aset
of knowledges and T be a set of times, where K = {k, ko, ..., k,;,} and T = {t;, t,,...,t,}.
Table 1. Relation among KFS, DFS and KDFS

A(t1) A(ty)
Ay, A, (ty) A, (ty)
A, Ay, (t) A, (t)

Furthermore, both A;, and A(¢;) could be interpreted as results of aggregating A, (tj) by taking two

different aggregate functions, Y and 0, respectively over their membership degrees as follows.
Vu € U, pa, (W) =Y (1ay e, - ay, 2,0 (W)) (2)
where Y:[0,1]" — [0,1]
Vu € U, pae)y (W) = 0y, ()W), s iy, (¢ (W) (3)

where 0:[0,1]™ — [0,1]

According to the need and the context of applications, Y and ©® may utilize any existed functions of
aggregation such as maximum, mim‘rﬂm, average, etc. in order to summarize from KDFS to KFS and DFS,
respectively. Here, (3) is the same as the knowledgﬁmsed summary fuzzy set which discussed by Intan and
Mukaidono in 2002 [5]-[7]. In practical application, tha(now]edge-based summary fuzzysetof A as defined
in (3) could be understood as an agreement among a group of personepresented by a set of knowledge to
describe fuzzy set A atthe time t;. Similarly, (2) mightbe cogdered to provide a time-based summary fuzzy
set. Ftait is usually happened in the real-world application, subjective opinion of someone toward aven
fuzzy set A may be changeable atglrding to the changing of times. Thus, the objective of the time-based

summary fuzzy set as given in (2) is to summarize the multiple opinions of a certain knowledge k; to the
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fuzzy seta because of time variable. Depending on the reasorﬂehind calculating, to be more flexible and
accurate, both summary fuzzy sets as given in (2) and (3) may use the weighted average as their aggregate

function as shown in the following equations.

E?; W;'F‘Ak![t}](u.}

mn )
E;’:l wj

Y, (69 @), Bty (6 W) = )

where w; € R*, R* =0,0)

Zin W"“nk![r}-](u)

ZTiawi

O (a (c) W, - stay, (e W) = )

where w; € R*, R* = [0, »)

The usage ofweig}ad average in calculating the summary fuzzy sets may have some benefits in which w;
and w; as are able to express the importance of an opinion. For instance, in the case to calculate the
knowledge-based summary fuzzy sets, more prominent knowledge k; is considered to determine the
summary fuzzy set, alarger w; is given to k;.In the case to calculate the time-based summary fuzzy sets, a
larger weight may usually be given to the more recent opinion, since a more recent opinion may represent a
more real-time situation. Therefore, in the case of calculating the time-based summary fuzzy sets, the
relationship between time and weight may satisfy ¢; > t, = w; = w,, Vt; t, €T, where ¢; is considered
more recent than ¢,

It is also necessary to propose a general summary fuzzy set in order to summarize all inteﬂreta‘don{
opinion based on the knowledge as well as the times into only one summary fuzzy set. In this case, the general
summary fuzzy set may be interpreted as an agreement made to sum up all opinions given by multiple
knowledge over several times. Formally, given A be a fuzzy set on U. Let K ={k,,-- ,k,,,} and T =
61, -+, t, }. Similar to the concept of weighted average as defined in (4) and (5), three different equations of

general summary fuzzy set are introduced as follows.

e (General Summary Fuzzy Set (A1) is constructed from the Knowledge-based Summary Fuzzy Sets:

EP:llwl'lunk!(uJ
Haer (W) = Wpa,, (W), 1y, (W) = T (6)
where w; € R*, R* = [0, =)

e (General Summary Fuzzy Set (A%2) is constructed from the Time-based Summary Fuzzy Sets:

e wyn ()
a2 0) = T (a0, e ) = gy — ™

where w; € R*, R* =[0,0)

e General Summary Fuzzy Set (A%) is constructed from the Knowledge-based Dynamic Fuzzy Sets:

#Akl(fl)(u] #Ak,,,(_rl)(u) Ealawirn,, )@

.H-AGg (u) = n‘ 2?:12:’;1“’!} {SJ

Mag, @)Wty (6 (W)
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where w;; € R*, R* = [0,0).

The calculaticeof these three different equations of General Summary Fuzzy Set may provide different
results in which it depends on the need and context of application to choose which one is better to use.
2.3. Basic Operations and Properties

Related to thaoncept of KDFS, this paper proposes sgge basic operations of the KDFS, and verifies their
properties. The basic operations of the KDFS are defined as the following definition.

2
Definition 2 Let U be a universe of elements and K = {k, k,, -, km} be a set of knowledges, and be
a discrete set of time, where T = {t,,t;,+, t,}. D(4) and D(B) aretwo KDFSon U dealingwith K.Some
basic operations and properties of Equality, Containment, Complementation, Intersection and Union are given
by the following equations.

Equality

a)  A() = B, (1) & wa (W) = up, (W), Yu e U,

b) A, =B, uﬂk(t)(u) = ka(t)(u],b’u el vteT,

c) Ap=Bre )= ka(q)(u),Vu EUVt, G ET,

d) A(t) =B(t) © ua, @) = pp, (W), Vu € U, Vk EK,

&) AWM =B® <, 0@ = g, ),V € U, Vi by € K,

f) A=B e ,nl) =) YVuel vk eKVteT,

g) A=B ey, )= ka(t}_)(u),Vu EUVkEK, Vi, €T,

h) A2B e pﬂkl(t)(u) = ka}_(t)(u), Vue U, vk, kjeK, VteT,

i) A=Be uAk!(féu) = uBk}_(t})(u),Vu €U, Yk k; €K, Yt Eé

) oki=ke pﬂkl(t)(u) =y, ), YueU,vteT, Vée F(U), where F(U) isfuzzy powerseton U.
!

k) =t = pAk(t}_)(u),Vu e U, vk e K, VA€ F(U), where F(U) is fuzzy powerseton U.

Containment

a)  A(t) € Bi(t) & @) < pg (W), Yu e U,

b) Ay € By = w0 < pg @), Yu €U, VL ET,

Q) Ax € Br @ paep(W) = wp, (i)W, Vu € U, VL, G €T,

d) A(t) S B(t) © W) < g, (W), Vu € U, VK €K,

e) A(t) €B(t) & uAk!(t)(u) < ugk}_(;)(u),b’u €U, Yk kj €K,

f) AcBe pﬂk((u) S ppp),YueU vk EK VLET,

g) AEB ey, p) < ka(t}_)(u).Vu EUVkEK, Vi;,ET,

h) A<Be uAk!(t)(u] < ugk}_(t)(u),v’u EU,Vky,k €K, VLET,

) A€eBo u) < uBk}_[t}_)(u).Vue U, Ykl e K, Y, 4 €T,

) ke pﬂk!(t)(u) < Hay (©) (w),YueU,vteT, YA e F(U), where F(U) isfuzzy powerseton U.

k) 32t pa,ep < pAk(t}.)(u),VuE U, vk € K, YA € F(U), where F(U) isfuzzy powerseton U.
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Union
a) .N(Aua)k(:)(u) = max(.uAk(r)(u)-.uBk(r) (u)),
b) .’-‘Ak!(t!)uBk}.(tj) (1) = max (#Akl (t!_}(u]-.uBk}.(r}-}(u])-
c) .’-’-Ak!\,k}(t) (u) = max (#Akl(t)(u]-.uﬂk} (:)(u))-
d) #Ak(r.v:}-)(u) = max (#Ak(r.)(u)-#Ak(r,-)(u))-
e) PAkka}.(t,vr})(u] = max (Pﬂk!(rl}(u)-.uAk!(r}-)(u)- #Ak}.(t,} (u)-.uAk}.(t}-)(u])-
Intersection
a) .u(AnB)k(t)(u) = min(.uﬂk(t)(u),,ugk(t)(u)).
b)  Hay (B t) (w) = min (.N-Ak!(t!) ON-NG) (u)).
c) g ) () = min (#Ak!(t)(u)-.uﬂki(t) (u]).
d)  maae (@) = min (#Ak(:,) (W), tagep (u]),
e) #Ak!,\k}.(tm:})(u) = min ('uAkl(t‘) (u)-.u-Akl(t}-)(u)r#Ak}.(t!)(u)v.uAk}(t}-)(u))v
Complementation
a) Mo =1— ),
a0, # LIK| =2,
b) pﬂﬂk!(t}(u) = (I)(a'kl,‘-- 'akl—l'akl-l-l"“'akm)' |K| > 2, where & isan aggregate function.
Ap, = #Akp(r)(u)-
#Ak(t}-}(u)'j * i- ITI = 2-
c)  Mau-ep@) = (D(atl,‘--,an_l,atm,‘--,atn),lTI > 2, where & isanaggregate function.

Journal of Computers

e, = #Ak(:p)(u)-

The basic operations as defined in Definition 2 provide some properties as follows.

e From Equality:

(A=B)={(A=B),(A2B)} = (A=B).

« From Containment:

(A€B)=((Ac B),(A< B)} = (A< B).

3. Granularity of Knowledge

As discussed by Intan and Mukaidono [5]-[7] in proposing the concept of knowledge-based fuzzy sets, the
granularity of knowledge was constructed to obtain the similarity classes of knowledge. All knowledge in a
specific similarity class will consider having a similar perception subjectively toward aven fuzzy set.
Through the similarity classes of knowledge, Intan et al. (8) discussed and introduced three necessary
measures, namely Objectivity Measures, Individuality Measures and Consistency Measure in the knowledge-
based dynamic fuzzy sets. Here, the similarity classes of knowledge are provided by a fuzzy conditional

probability relation [5]-[7] which is an asymmetric relation as defined in Definition 3.
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Definition 3 A fuzzy conditional probability relation is a mapping, R:F(U) x F(U) — [0,1] such that for
X,Y € F(U),

Byey min (py ), pyw))
RX,Y)="rrrrr————— 9
x.) Zuev py () ©)

where R(X,Y) meansthe degree Y supports X orthe degree Y issimilarto X orsimilarity degree of X
given Y.
An interesting mathematical relation characterizes the concept of fuzzy conditional probability relation.
This relation is called weak fuzzy similarity relationship and defined as follows.
Definition 4 A weak fuzzy similarity relation is a mapping, S:F(U) x F(U) — [0,1], such thatfor X,Y,Z €
F(),
1. Reflexivity: S(X,X) =1
2. Conditional symmetry: if S(X,Y) >0 then S(V,X) >0
3. Conditional transitivity:
If S(X,Y) =S¥, X) ﬁ] and S(Y,Z2) =S(Z,Y) > 0 then
S(X,2)=85(Z,X)>0
where U isan ordinary set of elements and F(U) is fuzzy power sets of U.
Furthermore, in the relation to (9), similarity degree of k; given k; concerning fuzzy set A in time ¢ is

given by the following equation.

Zyeymin (pa, !tguJ,#Ak}.m(uD

Bueu 'u“‘k}-(r) )

R(A, (1), Ay, (D) = (10)

It can be followed clearly that the degree of similarity between two knowledge satisfy the following
properties.

rl. [R%l(t],Ak}.(t)) = R(4;,(6), 4, (1)) = 1,VA € F(U), vt € T] ok =k
12. [RCAy (6), Ay () = 1, R(A, (6), 4, (0) < LYA EFU), VL €T| & kg 2 kg
r3. [R(Ak (©), A, ()) = R(Ak (D), Ay, () > 0,¥A € F(U), vt € T] & ki~k;
r4. [R (?kl(t),Ak}.(t)) <R (Ak;(t),Akl(t)),VA e F(U), vt € T] o k<k

r5. R(A,(6),A,(t)) = 1Vt € T,Vk € K,¥A € F(U)

6. [R (A,q(t),Ak}.(t]) >0vAEFW),vteT| o [R A,q(t),A,q(t)) > 0]

~1

7. [R (Akl{t),Ak}.(tJ) >R (Ak}.(t),A;q (c)), R (Ak}.(c),Akm(c)) >R (Akm(tJ,Aki(t)) VAEFW), VteT|

= [R(A,(6), Ay, ©)) = R(Ay,, (£),45,(6)]

Property (r1) proves thatboth k; and k; are the same, and it is similar to Equality (j). (r2) shows that k;

vers k;, or k; containsin k;. It means thatin all the time, k; gives ahigher degree of membership for all
element of all fuzzy sets than k;, and it is the same as Containment (j). Property (r3) points to similar
cardinality between k; and k; for all fuzzy sets in all the time. On the other hand, (r4) means the
“rdinality of all fuzzy sets and all the time is given by k; isalwaysless orequal to k;.As related to the weak
fuzzy similarity relation, (r5) is the property of reflexivity. (ré) is a conditional similarity, and (r7) is a
conditional transitivity.
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Using degree of similarity between two pieces of knowledge as calculated by (10), two asymmetric

similarity classes of a given element of knowledge .

Definition 5 Let K bea n-empty universal set of knowledge,and A beafuzzyseton U.Forany k; €
K, S4(k;,t) and PA(k;t) are defined as the set of knowledge that supports k; and the set supported by
k; attime t € T, respectively by:

Sa ki, t) = {k € K|R(Ay, (), A (D) > ) (11

P (ki t) = {k € K|R(Ax(t), Ay, (1)) > a} (12)
where « € [0,1].

54(k;, t) can also be interpreted as the set of knowledge that is similar to k; at time t with respect to
fuzzy set A. On the other hand, P#(k;,t) can be considered as the set of knowledge to which k; is similar
at time t. In this case, S2(k;,t) and P/ (k;t) are regarded as two different semantic interpretations of
similarity classes in providing the crisp granularity of knowledge.

For two asymmetric similarity classes of knowledge, S4 (k;,t) and Sé(kj, t), the complement, intersection

and union are defined by:

a
~SA (ki t) = {k € K|k & SA(ky, )} (13)
Sa k) N SA(k;, ©) = (k € K|k € SA(ky, t) and k € SA(k;, ©) (14)
S& 3k t) USA (k) = (k € K|k € SA(ky t) or k € SA(K;, ) (15)

1

gmi]ar]y, the complement, intersection and union might be defined on P/ (k;,t) and P&“(kj, t). Since the
similarity classes of knowledge are crisp sets, they satisfy the Boolean Lattice. Based on these two asymmetric
similarity classes, wﬁlen construct two dynamic crisps covering of the univeru knowledge regarding fuzzy
set A, Y§(t) = {PA(k,t)|k € K} and W§(t) = {SZ(k,t)|k € K}, where a« € [0,1]. Here the crisp, dynamic
covering means that the crisp covering will be dynamically changed depending on time t.
By removing «, crisp similarity classes, S4(k;,t) and P§(k;,t) will be generalized to the fuzzy similarity
classes, .S',‘a (t) and P,‘?! (t), respectively. Naturally, the fuzzy similarity classes of a specific knowledge k;

with respect to fuzzy set A at time ¢ is given by the following equations.

S‘,ﬁ(t,k] = R(Ay (8, A (t)), Yk €K (16)
P;;‘! (t, k) = R(A (1), A, (£)) Yk E K 17
Basic operations, such as the complement, intersection and union of the fuzzy similarity classes are defined

by

_'SJ‘:; (t-k) =1 _S;é(t.k).b'k eEK {18)

S (&, k) AS,f}.(t,k] = min(Sg (¢, k),s,q_(t, k), vk €K (19)
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Sie (& k) vs,g_(t, k) = max(Sg (t, k),.S‘,f}.(t, k), vk € K (20)

Furthermore, two dynamic fuzzy coverings of the universal set of knowledge arﬂunstructed dealing with
a fuzzy set A as defined by 04(t) = {PA(t)|k € K} and Q4(t) = {S{ (t)|k € K}. Here, the fuzzy coverings

of the universal set of knowledge are also dynamically changed based on the time t.

4. Approximate Reasoning

Related to the granularity of knowledge as discussed in Section 3, this paper introduces the concept of
approximate reasoning Ealing with KDFS. Approximate reasoning provides approximate solution using
fuzzy production rules. Let fuzzy label of A be a given premise and fuzzy label of B be the conclusion.
Through fuzzy production rules [9], relation between inand B will connect problem with solution,
antecedent with consequence, or premise with conclusion, as usually applied in rewsenting knowledge in
fuzzy expert system. In general, fuzzy production rules have the form of if-then rule as follows:

If 4, then B,
where A and B are fuzzy sets.

In constructing a fuzzy production rule, assume two persons y)resented by two knowledge, k; and k;
have different conclusions at the time ¢ given a certain premise. Related to the concept ofknowledge-based
dynamic fuzzy sets, nc]usions of k; and k; are denoted by By (t) and Bk}(t), respectively, in which
B, (t) # By, (t). The problem is how to determine which one has the right conclusion, k; or k;. Possibly,
different views or understanding of premise perceived by k; and k; is the cause of different conclusions.
Comparing perception of k; and k; regarding premise and conclusion may be summarized into four
possibilities of relemls:

1. Premise: A, (t) = Ay, (t), Conclusion: By, (t) = By, (t): There is no problem because both k; and k;

have exactly the same perception of premise and conclusion.
2

2. Premise: A, (t) = Ay, (t), Conclusion: By, (t) # B,q(t): Both /; and k; have the same perception of

premise, but different perception of conclusions; That is the problem.
12

3. a"emise: Ay, (8) # Ak; (t), Conclusion: By (t) = Bkj(t): Since both k; and k; have different perception
of the premise, even though they have the same conclusion, their conclusions should be treated

independently.

4. Premise: A, (t) thk;(t]. Conclusion: By (&) # Bk;(tJ: Similar to point 3, their conclusions are

independent so that their different conclusions can be understood and tolerated.

From all four possibilities, the problem is only in Point 2. Suppose there are only two knowledge, k; and
kj, the situation as happened in Point 2 gives the same validation's degree to k; and k;. In probability measure,
their validation's degree will be 0.5 each. For there are more than two knowledge, intuitively, validation’s degree
will depend on support @ther knowledges. More supports should cause higher validation's degree. Therefore,
validaa‘m's degree of a fuzzy production rule given by a certain knowledge can be approximately calculated

using granularity of knowledge as proposed in the previous section, as follows.

Definition 6 Let K be a non-empty universe of knowledge, and SZ(k,t), SE(k,t) be crisp granularity of
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k
knowledge of k € K at the time t dealing with fuzzy label A and fuzzy label B, respectively. 65(4 — B)
is defined as the validation’s degree of a fuzzy production rule (if A then B) given by k at the time ¢ as
follows.
k A B
5L(4 ~ By= PRl (21)
o L
where « € [0,1] and | | be a cardinality of set.
ke
The set of knowledge, K, provides a family of values {5%(A — B) |k € K}. To summarize all degrees of

correctness, three aggregate formulas will be defined as follows.

K _m K
a) Minimum: 85(A > B) = min{85(A— B) |k € K} (22)
) K M ke
b) Maximum: §5(A — B) = max{8.(A— B) |k € K} (23)
K .t K
c) Average:5L(A— B) = avg{6L(A— B) |k € K} (24)

Some properties and summaries can be verified from (21) to [24)ch as:

e if relation between premise A and conclusion B is totally valid at time t then SZ(k,t) € SZ(k,t)
for all k € K; if relation between premise a and conclusion B is totally valid all the time then
S§2(k,t) € SB(k,t), Yk € K, ¥t € T. Here, the similarity classes of knowledge dealing with fuzzy label
A is finer than the similarity classes of knowledge dealing with fuzzy label B.

Kk _m Kk "
o VIET, 8L(A>B) =1 85(A>B) = 1;
Kk _m k"
e Similarly, Vt€ T, §L(A—B) <1<6L(A—B) <1;

*

K
e IfVEtET, 6(A—B) =1 then B isregarded as permanent absolute conclusion given premise A.

K *
o If VieW,WcT, §(A—B) =1 then B is regarded as temporary absolute conclusion given
premise A during W.

*

P
e If PcKvteT 5,(A—B) =1 then B isregarded as permanent relative conclusion given premise

A according to some knowledge in P.

P *
e IfPCKVteW,WcT,5(A— B) =1 then B isregarded as temporary relative conclusion given
premise A during W according to some knowledge in P.

K *
e IfVteT, §,(A—B) <1 then B isregarded as permanent partial conclusion with the validation’s

*

K
degree equals to 65(A — B) given premise A.
3

Validation’'s degree as define in Definition 6 may also be reformulated and generalized dealing with fuzzy

granularity of knowledge as follows.

Tkex min (S¢,(.6),SE,(tk))
stksfi (t;k)

5%;13 B)= (25)
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where interﬁ‘tion is defined as minimum and cardinality is given by sum of membership degree.
k
Similarly, the set of knowledge, K, provides a family of values {6'(4 — B) |k € K}. Three aggregate

formulas to summarize all validation’s degrees will be defined as follows.
m

a) Minimum: 5'(4 5 B) = min{8'(4 5 B) |k € K}
) K M k
b) Maximum:§°(A— B) =max{6°(4 = B) |k € K}

Kk ! k
c) Average:5'(A— B) = avg{6'(A— B) |k € K}
2
In the real-world apacation, it is well known that A and B have a causal relationship. However, it is still
unclear to determine which one is the premise, and which one is the conclusion. For example, let K =

{ki,ky.ks} be set of knowledge. Interpretation or perception of fuzzy labels A and B according to K at
the time ¢ is arbitrarily given in several fuzzy sets as shown in Fig. 1.

Bi,(t) By, () By (8) A, (1) A, (0 A, (0

/A\VASVA

Fig. 1. Fuzzy sets A and B given by let K = {ky, k,, k3}.

It is clearly shown in Fig. 1 that all elements of K have very similar interpretation of B, but they have

enough different interpretation of A.If B is considered as premise and A as conclusion, problem in Point
2 will happen. The very similar interpretations of B as premise should also have similar interpretations of
A as conclusion. However, the interpatations of A are very different. The problem is which interpretation
of A should be used as conclusion. On the other hand, if A is considered as premise, and B is used as
conclusion, no matter in the beginning A as premise has different interpretations, finally it will have the
same conclusion (in @ level set) of B. Therefore, related to the example in Figure 1, A should be used as
premise and, B should be used as conclusion. Related to the concept ouuzzy granularity that have been
discussed before, in the causal relationship bew@n A and B, we can determine which one should be a
premise, and which one should be the conclusion. Here, similarity classes of knowledge dealing with premise
should be finer than similarity classes of knowledge dealing with conclusion. Several categories of fuzzy
production rules, if A then B, representing A as premise and B as conclusion in element of knowledge
k Eé at the time ¢ may be defined by

a) A ———> B < 8L(B —> A) < 8L (A —> B)=1, (strongimplication)
k(t) k k R
b) A~—B < §,(B— A) <8L(A— B)< 1, (weak implication)
c) A <—> B < 8L(B —> A)=6L(A —> B)=1, (strong bi-implication)
t) ke ke R
d) A~— B e §L(B— A)=486L(A— B)< 1, (weak bi-implication)

k k k k
Here, SL(B— A)andSL(A - B) can be generalized and changed to &%(B — A) and §%(A— B),
respectively. it is also necessary to consider some subsets of K that is related to the categories of fuzzy
production ryjes as follows.

t k(L
a) X (A = B) = (k e k14 X8 B}, (subset of K which provide strong implication)
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&

b) K A — B ={k€eEK|A ~—> B}, (subset of K which provide weak implication)
k(t) k(t)
c) K (A — B) = {k € K|A «— B}, (subset of K which provide strong bi-implication)

k(t) k(t)
d) ¥ (A ~—> B) = {k € K|A ~«— B}, (subset of K which provide weak bi-implication)
where they are satisfied the following equation:
kit) kit) k(t) kit) k(t) k(t)
?C(g—n?) U?C(A ~—>B)U?C(A<—>B) U.’K(A~<—>B) U&‘C(B —>A)U3C(B~ —>A) =

kit) k(L) k(t k(t kit) k()
where ?((A—»B),?C(A ~—>B), :?{(A<(—QB) 3{(A~<(—33) ?C(B—»A),?((BN —>A) are disjoint

t
subsets in K. In order to measure validation's degree of a fuzzy production rules, A implies B (4 — B), we
propose the following equations.

. (A _:) B) _ |K(Aktt}3)|+075><|J€(A~t(28)|+0|.z|><|3’((;4~t-28)|+0.25x|J{(B~E-(—EEA)| 26)
Similarly,
c (B _;}A) _ |?C(B—2A)|+0.'?Sx|_'K(.B~E2A)|+0|.:|x|5((8~\k—(2;4)|+0.25x|_'K(A~EE;}B)| 2n

where ¢(4>B) €[0,1] and (B~ A4)€[01] are defined as validation's degree of A~ B and B 4,

k
respectively. The cardinality of % (A4 ﬁa B) is not included in Equation (26) and (27) in order to treat the

t
strong bi-implication, A + B, as a special condition. Coefficients of cardinality of sets are simply given with
intervals 0f0.25 because there are foursets of fuzzy production rules that involve in the calculation. In general,
the fuzzy production rules might be defined at the time ¢ if they satisfy the following rules of conditions.

(Rule1)A>B = c(45B) =1,

[RuleZ)éB@C(AiB)ZC(B—t»A)z 0,

[Ru1e3)A~£)3<:»c(B 4) < (A—»B)<1,
{Rule4)A~<iB<:»e(A >B)= e(B—>A)>0.

5..esConclusion

(6] Knowledge-based Dynamic Fuzzy Sets (KDFS) is a hybrid concept of the Knowledge-based Fuzzy Sets and the
Dynamic Fuzzy Sets. The KDFS shows that amembership function of a given fuzzy set subjectively determined
by a certain knowledge may be dynamically changeable over time. This paper discussed how the concept of
KDFS applied in Approximate Reasoning, In this case, this paper proposed several concept and method how
to generate fuzzy production rules dealing with the KDFS. The proposed concept played important role in
constructing fuzzy rule base in Fuzzy Expert System, since the fuzzy production rule store in the fuzzy rule
base of fuzzy expert system is generally provided by the knowledge of experts. Four categories of the fuzzy
production rules, namely, Strong Implication, Weak Implication, Strong Bi-implication and Weak Bi-implication,
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were introduced and discussed together with their properties. Several equations were proposed to measure
validation’s degree of the fuzzy production rules. Finally, four rules of conditions were given to justify the
construction of Strong Implication, Weak Implication, Strong Bi-implication and Weak Bi-implication. Our

future work is to apply the proposed concept in the real-world application.
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