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Abstract—Genetic programming (GP) is a machine 

learning technique that is based on the evolution of computer 

programs using a genetic algorithm. Genetic programming 

have proven to be a good technique for solving data set 

classification problems but at high computational cost. The 

objectives of this research is to accelerate the execution of the 

classification algorithms by proposing a general model of 

execution in GPU of the adjustment function of the individuals 

of the population. The computation times of each of the phases 

of the evolutionary process and the operation of the model of 

parallel programming in GPU were studied. Genetic 

programming is interesting to parallelize from the perspective 

of evolving a population of individuals in parallel. 

Keywords— classification, evolutionary algorithms, genetic 

programming, parallel 

I. INTRODUCTION 

Evolutionary computing is encompassed within a broad 
set of problem-solving techniques based on emulation of 
natural processes of evolution. The main contribution of 
evolutionary computation to the problem-solving 
methodology consists in the use of mechanisms for the 
selection of potential solutions and the construction of new 
candidates by recombination of character. Statistics of others 
already present, in a similar way to what happens with the 
evolution of organisms already present. It is not so much a 
question of reproducing certain phenomena that occur in 
nature, but rather of taking advantage of the generic ideas 
behind them. When there are several candidates for a 
solution to a problem, the need arises to establish quality and 
selection criteria and also the idea of combining 
characteristics of good solutions to obtain better ones. Given 
that it was in the natural world that problems of this type 
were first raised, it is not surprising that when applying such 
ideas in solving scientific and technical problems, procedures 
quite similar to those obtained were obtained. that are 
already found in nature after a long period of adaptation. 

Within evolutionary computing is genetic programming, 
in which the individuals who evolve in the system are 
computer programs that represent, in whole or in part, the 
solution to the problem posed. It is therefore a machine 
learning method used to do optimization of a population 
based-on an adjustment function that evaluates the capacity 
of each part to carry out a task in question. A series of 
modifications can be made on each individual using the 
genetic operators in a similar way to what occurs in natural 
organisms. The best known formulation of genetic 
programming is due to John Koza, who represents 
individuals as instruction trees [10]. 

Genetic programming algorithms have been implemented 
to the resolution of numerous data mining problems. Data 

mining [2, 3, 4] is defined as the nontrivial extraction of 
implicit, formerly unidentified, and potentially valuable 
information from data. In today's information society, where 
the amount of data stored is multiplied almost exponentially 
every day, data mining is a fundamental tool to analyse and 
exploit it effectively. Data mining techniques provide insight 
from data relationships and provide researchers and users 
with rules for classification, association [5, 6, 7], and 
prediction. The usage of genetic programming in solving 
classification problems is relatively frequent [8, 9, 10, 11]. In 
this case, these are supervised learning algorithms where 
individuals in the population represent a classifier in whole 
or in part, and their evaluation measures the ability to 
correctly classify a dataset that has been externally evaluated 
[12]. The objective is that the generated classifier can be used 
successfully in classification of unknown patterns. In data 
mining and unsupervised machine learning, association rules 
[13] are used to determine events that occur in mutual within 
a given data set. Numerous approaches for discovering 
association rules have been extensively investigated and have 
been very interesting for determining relationships between 
features in large data sets. 

In solving this type of problem, a series of drawbacks 
should be minimized, such as the high computational cost it 
has, the large number of data necessary to evaluate 
individuals, etc. It is because their convergence to the 
solution can be very slow in complex or large problems. To 
speed up its performance, its parallelization has been the 
object of study from multiple perspectives, taking advantage 
of the development of new parallel hardware and the 
different characteristics of the domains of the particular 
problem. Most of the parallel algorithms developed in the 
last two decades focus on implementation in clusters or 
massively parallel architectures. More lately, work on 
parallelization has focused on the use of graphics processing 
units (GPUs) that provide very fast and natively parallel 
hardware at a fraction of the cost of a traditional parallel 
system [14]. This paradigm is known as GPGPU (General 
Purpose Graphic Processing Unit) computing [15]. 
Specifically, the use of GPUs for solving genetic 
programming problems is called GPGPGPU [16, 17, 18]. 

The objective of this research is to analyse the operation and 
computational cost of genetic programming methods applied 
for classification problems with the purpose of accelerating 
their execution processes. For this, a study of the phases of 
the evolutionary algorithm will be carried out with the aim of 
understanding its high computational cost and an analysis of 
the GPU programming model that allows us to acquire 
sufficient knowledge to carry out an efficient design of the 
algorithm. The experimentation will look for that 
configuration of the algorithm parameters that maximize the 



excellence of the produced solutions minimizing the 
execution time. The results of comparison of performing a 
tests with multiple data sets with the running time of the 
implemented algorithms with respect to our proposal in 
multithreading and in GPU. Finally, the conclusions of the 
project are drawn and the ways of future work are stated. 

II. LITERATURE REVIEW 

A. Genetic Programming 

Genetic programming is a method derived from genetic 
algorithms [19]. Mainly, genetic programming eliminates the 
limitation that genetic algorithms have to represent solutions 
with a priori unknown size. The latter represent each solution 
with a fixed-length character string, which limits the 
information that a solution can contain. Genetic 
programming solves this obstacle by representing each 
solution as a hierarchically organized structure of nodes, 
commonly known as a tree. New nodes can be added to this 
structure in each generation, or existing nodes can be 
removed or replaced by others. 

However, in practice, the space limitation of a solution 
cannot be eliminated. Any machine where the algorithm is 
executed has a limited amount of memory to be able to save 
the solutions of each generation, with which there is always a 
limit on the length of the solutions. In addition, due to the 
organization of memory in computers, the more the size of a 
solution grows, the longer it takes to access it to combine it 
with others or calculate its quality, which usually limits 
considerably the maximum space that can be used. occupy a 
solution (at most a few Kilobytes). 

In genetic programming, individuals or solutions are 
represented as a hierarchical structure of nodes, that is, a tree 
[20]. Each node represents a function, which returns a result 
to the node from which it descends and has parameters given 
by its children. The terminal nodes (leaves) represent 
constants or specific data of the problem scenario. The 
structures are evaluated recursively from the root to the 
leaves, and their result is the one obtained from the root. 

To build any solution, a predefined set of nodes is 
available, that is, functions, problem data and constants. 
These nodes are chosen according to specific criteria for each 
problem, as they must be relevant for a combination of them 
to produce a good quality solution. It should also be noted 
that any combination of these nodes must produce a valid 
solution, that is, the result of the evaluation of each type of 
node must serve as a parameter for any other. For example, if 
a node of type sum returns an integer and descends from a 
node of type AND, the latter must know how to interpret the 
integer returned by its descendant as true or false.  

The operators used in genetic programming are the same 
as in genetic algorithms. There are two fundamental 
operators: reproduction and crossing. The breeding operator 
is responsible for passing an individual to the following 
generation unchanged, while the crossing operator is 
responsible for obtaining one or more individuals from two. 
The reproduction operator normally depends on how often 
the other operators are applied, since the number of 
individuals is usually kept constant throughout the 
generations, with which, the individuals that have not been 
altered by other operators pass without changes to the next 
generation. Another widely used operator, although not 
essential, is the mutation operator, which randomly changes 

a part of an individual. As the operators used and 
configurable in the program carried out for this project, the 
crossover and mutation operators will be detailed in the 
following sections. Other operators include: permutation, to 
exchange the position of two nodes of the same individual; 
editing, to simplify individuals by substituting subtrees that 
always give the same result by nodes with the constant result 
of the evaluation; encapsulation, to create a node that 
contains the functionality of a subtree of an individual; 
destruction, to eliminate, usually in the first generations of 
the algorithm, individuals with a very low quality. 

Fitness function is the function that calculates the quality 
of an individual is essential for the correct functioning of the 
algorithm, since it guides the evolution of the population. 
The other components involved in the algorithm select 
individuals for the next generation depending on the value 
returned by said fitness function. This function emulates in 
reality the probabilities that an individual has of reproducing, 
or in other words, their expected survival time and number of 
offspring. However, this is not a faithful simulation of 
reality, since in genetic algorithms and genetic programming, 
a high quality individual can survive an indefinite number of 
generations because it could not be replaced by another. This 
can be avoided by adding to the fitness function a penalty 
according to the age or number of generations since the 
individual exists. 

B. Related Research 

Numerous works and publications have been found about 
the use of GPUs and massively parallel architectures in the 
framework of genetic programming.  

A general-purpose computing technique using graphic 
cards and how to implement this approach to genetic 
programming were proposed [21]. It demonstrates the 
improvement in runtime performance in solving genetic 
programming problems on single-processor architectures. 
Moreover, how to specifically accelerate the evaluation of 
individuals in genetic programming was implemented [22]. 

Previous studies of GPU work demonstrate the feasibility 
of accelerating evaluation for large data sets. Furthermore, a 
parallelization scheme to take advantage of the 
computational potential of the GPU on smaller data sets was 
proposed [23]. To achieve optimization with smaller 
databases, instead of sequentially evaluating the individuals, 
parallelizing the evaluation of the training patterns, the 
parallelization of the GPU is also shared among the 
individuals. Therefore, the different programs are assessed in 
parallel and each is assigned to an execution unit in which to 
execute the training patterns in parallel. 

A comparable practice but using an application based on 
a Single Program Multiple Data (SPMD) model was 
proposed [24, 25]. The practice of an SPMD model instead 
of a Single Instruction Multiple Data (SIMD) offers the 
chance to reach higher performances, for example, an 
execution unit can perform the if division of a conditional 
while another unit can execute independently the else branch. 
Carrying out the execution of both branches within the same 
implementation unit is also thinkable, but the two branches 
would be treated consecutively according to the SIMD 
model, this is named divergence and therefore it is less 
effective. 



III. METHODOLOGY 

In this research, several software resources were used for 
the development of the application: Windows 10 64bit, C/C 
++ GNU Compiler 4.5, JAVA SE 15, NVIDIA CUDA SDK 
3.1 and Eclipse 4.15. The research was performed in an 
AMD Ryzen 7 with 8 cores and 16 processing threads.  

The process of evolution of proposed genetic 
programming algorithms is involves of the following 
phases: 

1. An original population of individuals is created 
according to an initialization procedure. 

2. It is assessed to obtain the quality of its individuals, that 
is, the quality of the rules is checked in terms of their 
ability to classify a set of data correctly. 

3. In each group, the procedure selects a part of the 
population as parents to procreate. The selection 
procedure usually takes the best individuals as parents to 
confirm the survival of the finest genetics. 

4. This subdivision of individuals is traversed applying the 
different genetic crossing operators, obtaining an 
offspring. 

5. These offspring can be mutated using the dissimilar 
genetic mutation operators. 

6. These new individuals should be evaluated using the 
adjustment function to get their quality index. 

7. Different approaches of replacement of population 
individuals and parents by offspring can be applied to 
confirm that the population size in the next generation 
remains constant and maintains the best individuals. 

8. The procedure performs a controller phase in which it 
determines whether it should end its execution because it 
has found solutions of acceptable quality or because it 
has touched a limit quantity of generations, if it does not 
go back to step 3 and performs a new iteration. The 
chained processes of parental selection, crossing, 
mutation, evaluation, replacement and control constitute 
one generation of the algorithm. 

 

IV. DISCUSSION AND ANALYSIS 

Experiments have been carried out on 5 public domain 
data sets from the UCI repository for machine learning [26]. 
These data sets show a good diversity with respect to 
different characteristics, such as quantity of examples, 
classes, attributes, and data types. The objective is to analyse 
the performance of the algorithm's execution. The features of 
the data sets used are detailed below and summarized in 
Table 1. 

TABLE I.  SUMMARY OF THE DATASETS USED TO EVALUATE THE GP 

ALGORITHM 

Datasets Name #Instances #Attributes 

Abalone 4177 8 

Chess 28056 6 

Credit Approval 690 15 

Iris 150 4 

Mushroom 8124 22 

  

• Abalone: Forecasting the oldness of abalone from 
physical measurements.  

• Chess: it is a created database in a single iterative process 
with 6 attributes. 

• Credit approval: This file contains credit card 
applications. All feature: names and values have been 
changed to worthless symbols to keep privacy of the data. 

• Iris: It is the most well-known database for pattern 
recognition. It consists of 3 classes (Iris Setosa, Iris 
Versicolour and Iris Virginica) of 50 instances each 
representing a type of iris plant. The classifier must 
predict the type of the plant based on four attributes: 
length and width of the sepal and petal. 

• Mushroom: This data set contains descriptions of 
hypothetical samples corresponding to 23 species of 
gilled mushrooms. 

The size of the population is a key factor in generating 
quality solutions. A greater number of individuals will allow 
the search space to be expanded, favouring diversity and 
obtaining a greater number of good solutions. 

 

Fig. 1. Function of population size 

As can be seen in Figure 1, the execution time is a linear 
function with respect to the population size and to obtain 
quality solutions a large population size is required. 
Typically, a population size of 400 may be sufficient, but for 
classifying large data sets we can scale up to 750 individuals 
to explore larger areas of the search space if necessary. An 
acceptable compromise value is around 500 individuals, this 
is the size of the population for the execution of the tests. 

Evolutionary algorithms improve their individuals in 
each generation by applying crossover, mutation, and 
selection operators so that the best individuals move on to 
the next generation. A greater number of generations should 
offer individuals of higher quality. 

Figure 2 represents that the execution time is a linear 
function with respect to the number of generations. However, 
an excessively high number of generations does not 
guarantee convergence to an excellent solution. Usually, with 
a number of generations greater than 300, good solutions are 
reached, so this will be the value of the parameter in the 
execution of the tests. 



 

Fig. 2. Hit rate based on the number of generations 

For practical criteria, the definition of convergence is 
very useful. If the genetic algorithm has been appropriately 
implemented, the population will grow over succeeding 
generations in such a way that the mean adaptation extended 
to all individuals in the population, as well as the adaptation 
of the best individual will increase towards the global 
optimum. The idea of convergence is related to the evolution 
towards uniformity: a gene has converged when at least 90% 
of the individuals in the population share the same value for 
that gene. The population is said to converge when all genes 
have converged. This definition can be generalized to the 
case in which at least a few of the individuals in the 
population have converged. One of the greatest enemies of 
genetic algorithms is premature convergence, since if the 
solution is not converged, the algorithm closes itself to 
exploring other areas of the search space where it can find 
better solutions. 

It can be concluded with the experimentation of the last 
two parameters that determine the quality of the solutions, 
that to obtain a high success rate in large data sets, a large 
population will be required. It evolves in a high number of 
generations and therefore the execution time will be decisive. 
This is the opportunity for GPUs to show their potential and 
speed up the process of complex dimensional problems. 

GP's algorithm has been verified with all the data sets and 
the following times of the evaluation phase have been 
obtained, expressed in milliseconds per columns in Table II 
and in Figure 3, for an execution with a population size equal 
to 500 that guarantees good solutions. Each database is tested 
with different configurations: the first column represents the 
original iterative version in Java, the second externalizes the 
evaluation phase in an iterative but native method written in 
C, in the third column the evaluation It is divided into two 
native threads in which each one evaluates half of the 
population, the fourth corresponds to the native evaluation 
using 4 threads for its execution in the 4 microprocessor 
cores, the next two reflect the execution times by 
externalizing the evaluation on one and two graphic cards 
respectively. 

TABLE II.  SUMMARY OF THE EXECUTION TIME TO EVALUATE THE 

GP ALGORITHM  

Datasets Java C 2T 4T 1GPU 2GPUs 

Abalone 8793 10452 7691 4205 2057 1032 

Chess 31246 34129 27419 19250 10035 6459 

Credit 
Approval 

957 1140 751 579 273 163 

Iris 415 740 340 290 127 71 

Mushroom 14753 17529 12155 8305 4571 2132 

 

 

Fig. 3. Execution time of several datasets 

V. CONCLUSIONS 

The classification of large data sets is an operation that 
demands a lot of time and computational resources as the 
size of the problem increases.  

Genetic programmings are exciting to parallelize from 
the view of developing a population of individuals in 
parallel. However, the classic view of the genetic algorithm 
is not fully parallelizable due to the need to have global 
control in certain stages such as selection and crossing that 
require serialization of the execution.  

The parallelization of the population evaluation phase 
accelerates the operation of the algorithm. The use of threads 
allows dividing the individuals to be evaluated into subsets 
that can be executed in parallel in each of the 
microprocessor's cores. Current CPUs have up to 4 cores, so 
it cannot be accelerated beyond that. However, GPUs have 
evolved to an architecture with a massive number of cores 
that under a SIMD model, can execute millions of threads 
concurrently. 
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