

Genetic Programming Approach for Classification

Problem using GPU

Leo Willyanto Santoso

Informatics Department

Petra Christian University

Surabaya, Indonesia

leow@petra.ac.id

Abstract—Genetic programming (GP) is a machine

learning technique that is based on the evolution of computer

programs using a genetic algorithm. Genetic programming

have proven to be a good technique for solving data set

classification problems but at high computational cost. The

objectives of this research is to accelerate the execution of the

classification algorithms by proposing a general model of

execution in GPU of the adjustment function of the individuals

of the population. The computation times of each of the phases

of the evolutionary process and the operation of the model of

parallel programming in GPU were studied. Genetic

programming is interesting to parallelize from the perspective

of evolving a population of individuals in parallel.

Keywords— classification, evolutionary algorithms, genetic

programming, parallel

I. INTRODUCTION

Evolutionary computing is encompassed within a broad
set of problem-solving techniques based on emulation of
natural processes of evolution. The main contribution of
evolutionary computation to the problem-solving
methodology consists in the use of mechanisms for the
selection of potential solutions and the construction of new
candidates by recombination of character. Statistics of others
already present, in a similar way to what happens with the
evolution of organisms already present. It is not so much a
question of reproducing certain phenomena that occur in
nature, but rather of taking advantage of the generic ideas
behind them. When there are several candidates for a
solution to a problem, the need arises to establish quality and
selection criteria and also the idea of combining
characteristics of good solutions to obtain better ones. Given
that it was in the natural world that problems of this type
were first raised, it is not surprising that when applying such
ideas in solving scientific and technical problems, procedures
quite similar to those obtained were obtained. that are
already found in nature after a long period of adaptation.

Within evolutionary computing is genetic programming,
in which the individuals who evolve in the system are
computer programs that represent, in whole or in part, the
solution to the problem posed. It is therefore a machine
learning method used to do optimization of a population
based-on an adjustment function that evaluates the capacity
of each part to carry out a task in question. A series of
modifications can be made on each individual using the
genetic operators in a similar way to what occurs in natural
organisms. The best known formulation of genetic
programming is due to John Koza, who represents
individuals as instruction trees [10].

Genetic programming algorithms have been implemented
to the resolution of numerous data mining problems. Data

mining [2, 3, 4] is defined as the nontrivial extraction of
implicit, formerly unidentified, and potentially valuable
information from data. In today's information society, where
the amount of data stored is multiplied almost exponentially
every day, data mining is a fundamental tool to analyse and
exploit it effectively. Data mining techniques provide insight
from data relationships and provide researchers and users
with rules for classification, association [5, 6, 7], and
prediction. The usage of genetic programming in solving
classification problems is relatively frequent [8, 9, 10, 11]. In
this case, these are supervised learning algorithms where
individuals in the population represent a classifier in whole
or in part, and their evaluation measures the ability to
correctly classify a dataset that has been externally evaluated
[12]. The objective is that the generated classifier can be used
successfully in classification of unknown patterns. In data
mining and unsupervised machine learning, association rules
[13] are used to determine events that occur in mutual within
a given data set. Numerous approaches for discovering
association rules have been extensively investigated and have
been very interesting for determining relationships between
features in large data sets.

In solving this type of problem, a series of drawbacks
should be minimized, such as the high computational cost it
has, the large number of data necessary to evaluate
individuals, etc. It is because their convergence to the
solution can be very slow in complex or large problems. To
speed up its performance, its parallelization has been the
object of study from multiple perspectives, taking advantage
of the development of new parallel hardware and the
different characteristics of the domains of the particular
problem. Most of the parallel algorithms developed in the
last two decades focus on implementation in clusters or
massively parallel architectures. More lately, work on
parallelization has focused on the use of graphics processing
units (GPUs) that provide very fast and natively parallel
hardware at a fraction of the cost of a traditional parallel
system [14]. This paradigm is known as GPGPU (General
Purpose Graphic Processing Unit) computing [15].
Specifically, the use of GPUs for solving genetic
programming problems is called GPGPGPU [16, 17, 18].

The objective of this research is to analyse the operation and
computational cost of genetic programming methods applied
for classification problems with the purpose of accelerating
their execution processes. For this, a study of the phases of
the evolutionary algorithm will be carried out with the aim of
understanding its high computational cost and an analysis of
the GPU programming model that allows us to acquire
sufficient knowledge to carry out an efficient design of the
algorithm. The experimentation will look for that
configuration of the algorithm parameters that maximize the

excellence of the produced solutions minimizing the
execution time. The results of comparison of performing a
tests with multiple data sets with the running time of the
implemented algorithms with respect to our proposal in
multithreading and in GPU. Finally, the conclusions of the
project are drawn and the ways of future work are stated.

II. LITERATURE REVIEW

A. Genetic Programming

Genetic programming is a method derived from genetic
algorithms [19]. Mainly, genetic programming eliminates the
limitation that genetic algorithms have to represent solutions
with a priori unknown size. The latter represent each solution
with a fixed-length character string, which limits the
information that a solution can contain. Genetic
programming solves this obstacle by representing each
solution as a hierarchically organized structure of nodes,
commonly known as a tree. New nodes can be added to this
structure in each generation, or existing nodes can be
removed or replaced by others.

However, in practice, the space limitation of a solution
cannot be eliminated. Any machine where the algorithm is
executed has a limited amount of memory to be able to save
the solutions of each generation, with which there is always a
limit on the length of the solutions. In addition, due to the
organization of memory in computers, the more the size of a
solution grows, the longer it takes to access it to combine it
with others or calculate its quality, which usually limits
considerably the maximum space that can be used. occupy a
solution (at most a few Kilobytes).

In genetic programming, individuals or solutions are
represented as a hierarchical structure of nodes, that is, a tree
[20]. Each node represents a function, which returns a result
to the node from which it descends and has parameters given
by its children. The terminal nodes (leaves) represent
constants or specific data of the problem scenario. The
structures are evaluated recursively from the root to the
leaves, and their result is the one obtained from the root.

To build any solution, a predefined set of nodes is
available, that is, functions, problem data and constants.
These nodes are chosen according to specific criteria for each
problem, as they must be relevant for a combination of them
to produce a good quality solution. It should also be noted
that any combination of these nodes must produce a valid
solution, that is, the result of the evaluation of each type of
node must serve as a parameter for any other. For example, if
a node of type sum returns an integer and descends from a
node of type AND, the latter must know how to interpret the
integer returned by its descendant as true or false.

The operators used in genetic programming are the same
as in genetic algorithms. There are two fundamental
operators: reproduction and crossing. The breeding operator
is responsible for passing an individual to the following
generation unchanged, while the crossing operator is
responsible for obtaining one or more individuals from two.
The reproduction operator normally depends on how often
the other operators are applied, since the number of
individuals is usually kept constant throughout the
generations, with which, the individuals that have not been
altered by other operators pass without changes to the next
generation. Another widely used operator, although not
essential, is the mutation operator, which randomly changes

a part of an individual. As the operators used and
configurable in the program carried out for this project, the
crossover and mutation operators will be detailed in the
following sections. Other operators include: permutation, to
exchange the position of two nodes of the same individual;
editing, to simplify individuals by substituting subtrees that
always give the same result by nodes with the constant result
of the evaluation; encapsulation, to create a node that
contains the functionality of a subtree of an individual;
destruction, to eliminate, usually in the first generations of
the algorithm, individuals with a very low quality.

Fitness function is the function that calculates the quality
of an individual is essential for the correct functioning of the
algorithm, since it guides the evolution of the population.
The other components involved in the algorithm select
individuals for the next generation depending on the value
returned by said fitness function. This function emulates in
reality the probabilities that an individual has of reproducing,
or in other words, their expected survival time and number of
offspring. However, this is not a faithful simulation of
reality, since in genetic algorithms and genetic programming,
a high quality individual can survive an indefinite number of
generations because it could not be replaced by another. This
can be avoided by adding to the fitness function a penalty
according to the age or number of generations since the
individual exists.

B. Related Research

Numerous works and publications have been found about
the use of GPUs and massively parallel architectures in the
framework of genetic programming.

A general-purpose computing technique using graphic
cards and how to implement this approach to genetic
programming were proposed [21]. It demonstrates the
improvement in runtime performance in solving genetic
programming problems on single-processor architectures.
Moreover, how to specifically accelerate the evaluation of
individuals in genetic programming was implemented [22].

Previous studies of GPU work demonstrate the feasibility
of accelerating evaluation for large data sets. Furthermore, a
parallelization scheme to take advantage of the
computational potential of the GPU on smaller data sets was
proposed [23]. To achieve optimization with smaller
databases, instead of sequentially evaluating the individuals,
parallelizing the evaluation of the training patterns, the
parallelization of the GPU is also shared among the
individuals. Therefore, the different programs are assessed in
parallel and each is assigned to an execution unit in which to
execute the training patterns in parallel.

A comparable practice but using an application based on
a Single Program Multiple Data (SPMD) model was
proposed [24, 25]. The practice of an SPMD model instead
of a Single Instruction Multiple Data (SIMD) offers the
chance to reach higher performances, for example, an
execution unit can perform the if division of a conditional
while another unit can execute independently the else branch.
Carrying out the execution of both branches within the same
implementation unit is also thinkable, but the two branches
would be treated consecutively according to the SIMD
model, this is named divergence and therefore it is less
effective.

III. METHODOLOGY

In this research, several software resources were used for
the development of the application: Windows 10 64bit, C/C
++ GNU Compiler 4.5, JAVA SE 15, NVIDIA CUDA SDK
3.1 and Eclipse 4.15. The research was performed in an
AMD Ryzen 7 with 8 cores and 16 processing threads.

The process of evolution of proposed genetic
programming algorithms is involves of the following
phases:

1. An original population of individuals is created
according to an initialization procedure.

2. It is assessed to obtain the quality of its individuals, that
is, the quality of the rules is checked in terms of their
ability to classify a set of data correctly.

3. In each group, the procedure selects a part of the
population as parents to procreate. The selection
procedure usually takes the best individuals as parents to
confirm the survival of the finest genetics.

4. This subdivision of individuals is traversed applying the
different genetic crossing operators, obtaining an
offspring.

5. These offspring can be mutated using the dissimilar
genetic mutation operators.

6. These new individuals should be evaluated using the
adjustment function to get their quality index.

7. Different approaches of replacement of population
individuals and parents by offspring can be applied to
confirm that the population size in the next generation
remains constant and maintains the best individuals.

8. The procedure performs a controller phase in which it
determines whether it should end its execution because it
has found solutions of acceptable quality or because it
has touched a limit quantity of generations, if it does not
go back to step 3 and performs a new iteration. The
chained processes of parental selection, crossing,
mutation, evaluation, replacement and control constitute
one generation of the algorithm.

IV. DISCUSSION AND ANALYSIS

Experiments have been carried out on 5 public domain
data sets from the UCI repository for machine learning [26].
These data sets show a good diversity with respect to
different characteristics, such as quantity of examples,
classes, attributes, and data types. The objective is to analyse
the performance of the algorithm's execution. The features of
the data sets used are detailed below and summarized in
Table 1.

TABLE I. SUMMARY OF THE DATASETS USED TO EVALUATE THE GP

ALGORITHM

Datasets Name #Instances #Attributes

Abalone 4177 8

Chess 28056 6

Credit Approval 690 15

Iris 150 4

Mushroom 8124 22

• Abalone: Forecasting the oldness of abalone from
physical measurements.

• Chess: it is a created database in a single iterative process
with 6 attributes.

• Credit approval: This file contains credit card
applications. All feature: names and values have been
changed to worthless symbols to keep privacy of the data.

• Iris: It is the most well-known database for pattern
recognition. It consists of 3 classes (Iris Setosa, Iris
Versicolour and Iris Virginica) of 50 instances each
representing a type of iris plant. The classifier must
predict the type of the plant based on four attributes:
length and width of the sepal and petal.

• Mushroom: This data set contains descriptions of
hypothetical samples corresponding to 23 species of
gilled mushrooms.

The size of the population is a key factor in generating
quality solutions. A greater number of individuals will allow
the search space to be expanded, favouring diversity and
obtaining a greater number of good solutions.

Fig. 1. Function of population size

As can be seen in Figure 1, the execution time is a linear
function with respect to the population size and to obtain
quality solutions a large population size is required.
Typically, a population size of 400 may be sufficient, but for
classifying large data sets we can scale up to 750 individuals
to explore larger areas of the search space if necessary. An
acceptable compromise value is around 500 individuals, this
is the size of the population for the execution of the tests.

Evolutionary algorithms improve their individuals in
each generation by applying crossover, mutation, and
selection operators so that the best individuals move on to
the next generation. A greater number of generations should
offer individuals of higher quality.

Figure 2 represents that the execution time is a linear
function with respect to the number of generations. However,
an excessively high number of generations does not
guarantee convergence to an excellent solution. Usually, with
a number of generations greater than 300, good solutions are
reached, so this will be the value of the parameter in the
execution of the tests.

Fig. 2. Hit rate based on the number of generations

For practical criteria, the definition of convergence is
very useful. If the genetic algorithm has been appropriately
implemented, the population will grow over succeeding
generations in such a way that the mean adaptation extended
to all individuals in the population, as well as the adaptation
of the best individual will increase towards the global
optimum. The idea of convergence is related to the evolution
towards uniformity: a gene has converged when at least 90%
of the individuals in the population share the same value for
that gene. The population is said to converge when all genes
have converged. This definition can be generalized to the
case in which at least a few of the individuals in the
population have converged. One of the greatest enemies of
genetic algorithms is premature convergence, since if the
solution is not converged, the algorithm closes itself to
exploring other areas of the search space where it can find
better solutions.

It can be concluded with the experimentation of the last
two parameters that determine the quality of the solutions,
that to obtain a high success rate in large data sets, a large
population will be required. It evolves in a high number of
generations and therefore the execution time will be decisive.
This is the opportunity for GPUs to show their potential and
speed up the process of complex dimensional problems.

GP's algorithm has been verified with all the data sets and
the following times of the evaluation phase have been
obtained, expressed in milliseconds per columns in Table II
and in Figure 3, for an execution with a population size equal
to 500 that guarantees good solutions. Each database is tested
with different configurations: the first column represents the
original iterative version in Java, the second externalizes the
evaluation phase in an iterative but native method written in
C, in the third column the evaluation It is divided into two
native threads in which each one evaluates half of the
population, the fourth corresponds to the native evaluation
using 4 threads for its execution in the 4 microprocessor
cores, the next two reflect the execution times by
externalizing the evaluation on one and two graphic cards
respectively.

TABLE II. SUMMARY OF THE EXECUTION TIME TO EVALUATE THE

GP ALGORITHM

Datasets Java C 2T 4T 1GPU 2GPUs

Abalone 8793 10452 7691 4205 2057 1032

Chess 31246 34129 27419 19250 10035 6459

Credit
Approval

957 1140 751 579 273 163

Iris 415 740 340 290 127 71

Mushroom 14753 17529 12155 8305 4571 2132

Fig. 3. Execution time of several datasets

V. CONCLUSIONS

The classification of large data sets is an operation that
demands a lot of time and computational resources as the
size of the problem increases.

Genetic programmings are exciting to parallelize from
the view of developing a population of individuals in
parallel. However, the classic view of the genetic algorithm
is not fully parallelizable due to the need to have global
control in certain stages such as selection and crossing that
require serialization of the execution.

The parallelization of the population evaluation phase
accelerates the operation of the algorithm. The use of threads
allows dividing the individuals to be evaluated into subsets
that can be executed in parallel in each of the
microprocessor's cores. Current CPUs have up to 4 cores, so
it cannot be accelerated beyond that. However, GPUs have
evolved to an architecture with a massive number of cores
that under a SIMD model, can execute millions of threads
concurrently.

REFERENCES

[1] J. Koza, Genetic programming: On the programming of computers by

means of natural evolution. Cambridge: MIT Press, 1992.

[2] L. W. Santoso, Early Warning System for Academic using Data
Mining, Proceedings of the 2018 Fourth International Conference on
Advances in Computing, Communication & Automation (ICACCA),
2019. https://doi.org/10.1109/ICACCAF.2018.8776788

[3] G. Ramu, M Soumya, A. Jayanthi, J. Somasekar, and K. K. Baseer,
“Protecting big data mining association rules using fuzzy system,”
TELKOMNIKA vol 17, no. 6, December 2019.
http://dx.doi.org/10.12928/telkomnika.v17i6.10064

[4] M. S. Das, A. Govardhan, and D. V. Lakshmi, “Classification of web
services using data mining algorithms and improved learning model,”
TELKOMNIKA vol 17, no. 6, December 2019.
http://dx.doi.org/10.12928/telkomnika.v17i6.11510

[5] L. W. Santoso and Yulia, “The Analysis of Student Performance
Using Data Mining,” Advances in Computer Communication and
Computational Sciences. Advances in Intelligent Systems and
Computing, vol 924. Springer, Singapore.
https://doi.org/10.1007/978-981-13-6861-5_48.

[6] E. Alothali, H. Alashwal, and S. Harous, “Protecting big data mining
association rules using fuzzy system,” TELKOMNIKA vol 17, no. 2,
April 2019. http://dx.doi.org/10.12928/telkomnika.v17i6.10064

[7] L. Zhang, L. Xu, and L. Rai, “High-precision Ultrasonic Flowmeter
for Mining Applications based on Velocity-area,” TELKOMNIKA
vol 16, no. 1, February 2018.
http://dx.doi.org/10.12928/telkomnika.v16i1.5185

https://doi.org/10.1109/ICACCAF.2018.8776788
http://dx.doi.org/10.12928/telkomnika.v17i6.10064
http://dx.doi.org/10.12928/telkomnika.v17i6.11510
https://doi.org/10.1007/978-981-13-6861-5_48
http://dx.doi.org/10.12928/telkomnika.v17i6.10064
http://dx.doi.org/10.12928/telkomnika.v16i1.5185

[8] S. Sendari, A. N. Afandi, I. A. E. Zaeni, Y. D. Mahandi, K. Hirasawa,
and H.-I. Lin, “Exploration of genetic network programming with
two-stage reinforcement learning for mobile robot,” TELKOMNIKA
vol 17, no. 3, June 2019.
http://dx.doi.org/10.12928/telkomnika.v17i3.12232

[9] M. M. Bhaskar and S. Maheswarapu, “A Hybrid Genetic Algorithm
Approach for Optimal Power Flow,” TELKOMNIKA vol 9, no. 2,
August 2011. http://dx.doi.org/10.12928/telkomnika.v9i2.689

[10] A. Tsakonas, “A comparison of classification accuracy of four
Genetic Programming-evolved intelligent structures,” Information
Sciences, 176 (6), 2006, pp. 691-72.

[11] C. C. Bojarczuk, H. S. Lopes, A. A. Freitas, and E. L. Michalkiewicz,
“A constrained-syntax Genetic Programming system for discovering
classification rules: application to medical data sets,” Artificial
Intelligence in Medicine, 30 (1), 2004, pp. 27-48.

[12] I. De Falco, A. Della Cioppa, and E. Tarantino, “Discovering
interesting classification rules with Genetic Programming,” Applied
Soft Computing Journal, 1 (4), 2002, pp. 257-269

[13] C. Romero, J. R. Romero, J. M. Luna, and S. Ventura, “Mining Rare
Association Rules from e-Learning Data,” Educational Data Mining
2010, 2010.

[14] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk and W. Hwu,
Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA, PPoPP ’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel
programming, 2008, pp. 73-82.

[15] B. Oancea, T. Andrei, and R. M. Dragoescu. GPGPU Computing.
https://arxiv.org/ftp/arxiv/papers/1408/1408.6923.pdf

[16] J. Kim, J. Kim, and S. Yoo, “GPGPGPU: Evaluation of
Parallelisation of Genetic Programming Using GPGPU,” In: Menzies
T., Petke J. (eds) Search Based Software Engineering. SSBSE 2017.
Lecture Notes in Computer Science, vol 10452. Springer, Cham.
https://doi.org/10.1007/978-3-319-66299-2_11

[17] S. Yoo, M. Harman, and S. Ur, “GPGPU test suite minimisation:
search based software engineering performance improvement using
graphics cards,” Empirical Softw. Eng. 18(3), 550–593 (2013)

[18] G. Wilson and W. Banzhaf, Deployment of CPU and GPU-based
genetic programming on heterogeneous devices. In: Proceedings of
the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference (GECCO 2009), pp. 2531–2538. ACM
Press, New York, July 2009

[19] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic
Programming: An Introduction on the Automatic Evolution of
Computer Programs and its Applications, Morgan Kaufmann, San
Francisco, 1998

[20] W. Langdon and B. Buxton, Genetic programming for combining
classifiers, Proceedings of the Genetic and Evolutionary Computation
Conference, 2001, pp. 6673.

[21] D. Chitty, A data parallel approach to Genetic Programming using
programmable graphics hardware, GECCO’07: Proceedings of the
Conference on Genetic and Evolutionary Computing, 2007, pp. 1566-
1573.

[22] S. Harding and W. Banzhaf, Fast Genetic Programming and artificial
developmental systems on GPUs, HPCS’07: Proceedings of the
Conference on High Performance Computing and Simulation, 2007.

[23] D. Robilliard, V. Marion-Poty, and C. Fonlupt, “Genetic
programming on graphics processing units,” Genetic Programming
and Evolvable Machines, 10 (4), 2009, pp. 447-471.

[24] W. Langdon and A. Harrison, “GP on SPMD parallel graphics
hardware for mega bioinformatics data mining,” Soft Computing. A
Fusion of Foundations, Methodologies and Applications, 12 (12),
2008, pp. 1169-1183.

[25] W. Langdon, W. Banzhaf, A SIMD interpreter for genetic
programming on GPU graphics cards. In: O’Neill, M., Vanneschi, L.,
Gustafson, S., Esparcia Alcázar, A.I., Falco, I., Cioppa, A., Tarantino,
E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 73–85. Springer,
Heidelberg (2008). doi: 10.1007/978-3-540-78671-9_7

[26] D. Dua and E. Taniskidou, “UCI Machine Learning Repository.”
Internet: http://archive.ics.uci.edu/ml. Irvine, CA: University of
California, School of Information and Computer Science, 2017.

.

http://dx.doi.org/10.12928/telkomnika.v17i3.12232
http://dx.doi.org/10.12928/telkomnika.v9i2.689
https://arxiv.org/ftp/arxiv/papers/1408/1408.6923.pdf
https://doi.org/10.1007/978-3-319-66299-2_11

