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Abstract. Field studies of structural optimization have gained increased attention due to the

id development of metaheuristic algorithms. One widely known metaheuristic algorithm,
Particle Swarm Optimization (PSO), has been extensively used to solve many problems and is
reported to have fast convergence behavior and good accuracy. As many problems become
d::re complex, studies have been focused on improving PSO searching capability. This study
presents the application of PSOd its variants in optimizing truss structures. The
performances of PSO and several PSO variants, namely, linearly decreasing inertia weight
PSO (LDW-PSO) and bare bones PSO (BB-PSO). are compared and investigated. All
optimization algorithms were tested@¥l 72-bar and 25-bar spatial truss problems. The results
indicate that BBPSO was the best algorithm in terms of optimum solution, consistency, and
convergence behavior.

1. Introduction

The truss structure is the most common structural component used in buildings. Steel truss structures
are usually used as bracing or the main building structure. With rapid constrfgfllon growth, efficient
structural designs through optimization are needed to minimize cost. The goal of structure
optimization is to find the m@Fgd efficiently sized structure without violating any engineering
constraints. Structural efficiency is usually regarded as the weight of the structure [1].

Truss structure optimization has attracted recent and growing interest. Truss structures have many
constraints and variables, which makes optimizing these structures complex and challenging.
However, metaheuristic methods are efficient and effective in solving such large and complex
problems [2]. Metaheuristic algorithms apply natural phenomefffand randomization concepts to
search for an optimum solution globally using trial and error [3]. Particle swarm optimization (PSO)
[4] is metaheuristic algorithm that is frequently used to solve optimization problem. PSO has a simple
concept that mimies flocking birds. Despite its simplicity, PSO has some weaknesses, with one being
parameters tiff} can affect its performance. These parameters must be manually adjusted to the
problem [5]. Several variants of PSO have been developed to overcome these weaknesses such as
Linearly Decreasing Inertia Weight Particles Swarm Optimization (LDW-PSO) [6] and Bare Bones
g‘licles Swarm Optimization (BBPSO) [7].
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2. Particle swarm optimization (PSO)




2.1. Particle swarm optimization (PSO)

PSO mimics the behavior of flocking birds. In a manner similar to a flock of birds looking for food,
the PSO searches for the optimal solution. This simple and easy to understand concept makes this
algorithm popular with researchers. The weakness of this algorithm is the need to pre-set the
parameters to adapt to different problems [7].

First, particle location is generated randomly in a specified range [6]. Then, each iteration particle will
move to new location using the velocity in Equation (1) and then update its position using Equation
(2). This new velocity is influenced by four factors: its initial velocity (vi(f)); best locatio@al this
particle discovers (Xpues(1)): best location from population (Xgee(£)); and its current location (Xi(£)):
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where v;(#+1) is the next velocity; w is inertia weight; v;(¢) is the initial velocity; 7y and 7 are random
numbers between 0 and 1: C; and C, are constants that have been set (usually 2); X . (1) is personal
best; Xi(7) is the initial location; Xgpeq (1) is global best; and .X; (++1) is the particle’s new location.

2.2. Linearly decreasing inertia weight particles swarm optimization (LDW-PSO)

In PSO. inertia weight is used to balance the global and local searches. A large inertia weight
represents a global search whilefgfmall inertia weight represents a local search. By linearly decreasing
the inertia weight, PSO should have more global search ability at the beginning of the iteration while
having more local search ability near the end of iteration [6]. The inertia weight updates with Equation

G3):
W= W-(Ws-we)()/(tax) » 3)
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where w is inertia weight; gis initial inertia weight; we is final inertia weight; f is current iteration;
and fmax 15 total iteration.
2.3. Bare Bones Particle Swarm Optimization (BBPSO)

While LDW-PSO perfected the parameter in PSO, BBPSO eliminates all pafimeters. Instead of using
velocity to update the location, BBPSO uses a Gaussian distribution. The particle’s next position is
only calculated by its personal best position and swarm global best position. Parameter-free means the
algorithm can easily adapt to different problems [7]:
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where P = (pi. pa2. ..., pn) is the personal best position of each particle, gbest is the best position of the

whole swarm, and @ 1s a random number from 0 to 1.

3. Materials and methods




A combination of direct stiffness method (DSM) and metaheuristics are used for this truss
optimization. Metaheuristics is used to find the optimal cross-sectional area while DSM is used to
analyze the structure. DSM outputs are the displacement, axial force, and stress of each element.
These outputs are used as constraints for this optimization. When a solution violates the constraints, a
penalty is given to the solution.

Before conducting the research, researchers prepared a DSM program for a planar and spatial truss,
and prepared three metaheuristic algorithms: PSO, LDW-PSO, and BBPSO. The DSM and
metaheuristic algorithms were written using MATLAB 2017a and the results of the three algorithms
were compared to determine the best performing algorithm. In general, this program rand es the
cross-section area, and iterates using trial and error until it reaches its maximum iteration. A flow chart
of the truss optimization process is diagrammed in Figure 1.
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Figure 1. Truss optimization process flow chart

4. Test problem and results
This paper compares the performance of three PSOs using a spatial 2-bar structure fjblem. Each
structure has a load case and discrete variable, which will be described next. The goal 1s to minimize
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the weight of the structure while not violating the constraints. E.ach algorithm was run 30 times and
with 50 populations. The structures were analyzed using DSM. Algorithms and structural analyses
were co@gfyin MATLAB 2017a. Cognitive (C)) and social (Cz) par@ers for PSO and LPSO were
set to 2. Inertia weight () for PSO was set to 0.8 while the LPSO’s mertia weight linearly decreased
from 0.9 to 0.1 with respect to iterations.

4.1. Spatial 25-bar truss structure
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Figure 2. Spatial 25-bar truss structure model
1
The structure model presented in Figure 2 has been previously studied [3]. The material density is gl
Ib/in’® and elastic modulus 10 Msi. The boundary conditions are stress and displacdfjent. Stress limits
in tension/compression is 40.000 psi and maximum nodal displacement for all free fg§des in X. Y, and
7 directions 1s £0.35 in. Members of the structure are grouped into eight groups: (1) Al: (2) A2-AS;
(3) AG-A9: (4) A10-All: (5) A12-A13; (6) A14-A17; (7) A18-A21; and (8) A22-25.

There are two cases for this structure:

Case 1. The cross-sectional areas availableare D=[0.10.20.30.40.5060.7080.9 1f§1.112 1.3
14151617181.9202.122232425262728293.03.13.23.33.43.53.6] (in?). (Loads
are shown in Table 1.)

Case 2. The cross-sectional areas available are D=[0.01040812162024283236404448
52 5.6 6.0] (in®. (Loads are shown in Table 2.) In this case, there are two cases to be run and the
cross-section used has to satisfy all boundary conditions in both cases.
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Table 1. Loading Conditions for 25-bar Truss Problem (Case 1)

Loads
Py Pz
Load Cases Nodes Px (kips) (kips) (kips)
Case 1 1 1 1 -10 -10
2 0 -10 -]e
3 0.5 0 0
6 0.6 0 0
Table 2. Loading Conditions for 25-bar Truss Problem (Case 2)
Loads m
Load Cases Nodes Px (kips) P}f P;
(kips) _ (kips)
Case 2 2 1 0 20 -5
2 0 -20 -5
3 1 1 10 -5
2 0 10 -5
3 0.5 0 0
6 0.5 0 0
Table 3. Comparison Optimization Result for 25-bar Problem (Case 1)
Variables PSO LDW-PSO BBPSO
Al Om 0.1 0.1
A2-AS5 0.3 0.3 0.3
A6-A9 34 34 34
Al10-All 0.1 0.1 0.1
Al2-Al3 2.1 2.1 2.1
Al4-Al17 1 1 1
Al8-A21 0.5 0.5 0.5
A22-A25 3.4 34 3.4
Best (Ib) 484.85418  484.8542  484.8542
Average (1b) 488.45596  487.0637 4857423
Stdev (1b) 8.5055357 3.052439  1.013263
No. of analyses 5000 5000 5000

Constraint violations None None None




Table 4. Comparison Optimization Result for 25-bar Problem (Case 2)

Variables PSO LDW-PSO BBPSO
Al 0.01 0.01 0.01
A2-A3 2 2 2
A9 3.6 3.6 3.6
Al0-All 0.01 0.01 0.01
Al12-Al13 0.01 0.01 0.01
Al4-A17 0.8 0.8 0.8
Al18-A21 1.6 1.6 1.6
A22-A25 24 24 24
Best (Ib) 560.5916 560.5916 560.5916
Average (Ib) 567.7245 577.5186 561.1604
Stdev (1b) 11.67591 21.0032 1.475004
No. of analyses 5000 5000 5000
Constraint violations None None None

A comparison among the three algorithms is shown in Table 4 for Case 1 and in Table 5 for Case 2.
As seen, there are no conggZint violations for any of the algorithms. All algorithms obtained the same
minimum weight (484.85 Ib for Case | and 560.59 b for Case 2). The BBPSO algorithm was the best
PSO algorithm in terms of consistency. Figures 3 and 4 show that BBPSO demonstrated better
convergence behavior.

650

s00 | V5

0 50 100 150 200

Number of Analyses
— — =PSO LDW-PSO

BBPSO

Figure 3. Convergence curves for 25-bar problem (case 1)
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Figure 4. Convergence curves for 25-bar problem (case 2)

4.2. Spatial 72-bar truss structure
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Figure 5. Spatial 72-bar truss structure model

The 72-bar structure has 20 nodes and 60 degrees of freedom n X, l, and Z directions. It comprises
four identical floors as shown in Figure 5. The material density is 0.1 Ib/in® and elastic modulus 10
Msi. The stress limit for compression/tension is 25,000 psi and displacement should not be more than




#0.35 in. Each story has a differeffJcross-section for its vertical, horizontal, wall-bracing, and floor-
bracing trusses. In total, there are 16 groups: (1) Al-A4; (2) A5-A12: (3) A13-Al6: (4) A17-Al8:
(5) A19-A22; (6) A23-A30; (7) A31-A34; (8) A35-A36: (9) A37-A40; (10) A41-A48; (11) A49-
AS52; (12) F33-A54; (13) A55-A58; (14) A59-A66; (15) A67-AT0: and (16) A71-A72. As in load
Case 2 in the 254F] truss structure, the 72-bar truss structure is subjected to two load cases as
described in Table 5.

Table 5. Comparison Optimization Result for 72-bar Problem
Loads

2

E)ad Cases Nodes Px (kips) Py (kips) Pz (kips)
Case 1 1 17 5 5 -5
18 0 0 0
19 0 0 0
20 0 0 0
2 17 0 0 -5
18 0 0 -5
19 0 0 -5
20 0 0 -5

Table 6. Comparison Optimization Result for 72-bar Problem

riables PSO LDW-PSO BBPSO

Al-A4 2 1.9 1.9
AS-A12 0.5 0.5 0.5
Al3-Al6 0.1 0.1 0.1
Al7-Al8 0.1 0.1 0.1
Al19-A22 1.5 14 1.4
A23-A30 0.5 0.5 0.5
A31-A34 0.1 0.1 0.1
A35-A36 0.1 0.1 0.1
A37-A40 0.6 0.5 0.5
Ad1-A48 0.5 0.5 0.5
A49-A52 0.1 0.1 0.1
AS53-A54 0.1 0.1 0.1
AS55-A58 0.2 02 0.2
A39-A66 0.5 0.6 0.6
AGT-AT0 0.5 04 0.4
AT1-AT72 0.6 0.6 0.6
Best 412.0764 403.7538 385.5427
Average 456.6132 490.91 390.7881
Stdev 46.22298 64.38027 3.742455
No. of analyses 5000 5000 5000
Constraint violations None None None

Table 6 shows that BBPSO had the best performance and with the smallest standard deviation. Each
algorithm ran 50,000 structural analyses. The PSO, LDW-PSO, and BBPSO obtained minimum




weights of 386.81 1b, 385.54 Ib, and 385.54 lb, respectively. However, LDW-PSO has 2.1% less
weight than PSO while LPSO had a larger standard deviation, showing less consistency. In terms of
consistency, BBPSO had the best convergence behavior as shown in Figure 6.
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Figure 6. Convergence curves for 72-bar problem

5. Conclusion

This paper tested the variance in results of three PSO algorithms: BBPSO, LDW-PSO, and original
PSO. The algorithms were presented with spatial truss problems coded using direct stiffness method.
The results show BBPSO to be the best algorithm of the three tested algorithms. BBPSO had
exceptional performance in terms of result, consistency, and convergence behavior. This is due to
BBPSO having no pre-set parameters, which means that it is more adaptable to problems, whereas
PSO and LDW-PSO contain pre-set variables. LPSO returned better results than the original PSO;
however, LDW-PSO tends to have poorer convergence behavior. LDW-PSO performs more focused
searching at the end of iteration due to its decreasing inertia weight, whereas PSO has the same
coverage through each iteration. However, this could be a problem for convergdfgfg behavior because
decreasing through the iteration means that LDW-PSO needs all iterations to find the optimum
solution.
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