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Abstract. This paper focuses on optimizing truss structures while propose best PSO variants. 

Truss optimization is one way to make the design efficient. There are three types of optimization, 

size optimization, shape optimization, and topology optimization. By combining size, shape and 

topology optimization, we can obtain the most efficient structure. Metaheuristics have the ability 

to solve this problem. Particle swarm optimization (PSO) is metaheuristic algorithm which is 

frequently used to solve many optimization problems. PSO mimics the behavior of flocking birds 

looking for food. But PSO has three parameters that can interfere with its performance, so this 

algorithm is not adaptive to diverse problems. Many PSO variants have been introduced to solve 

this problem, including linearly decreasing inertia weight particles swarm optimization 

(LDWPSO) and bare bones particles swarm optimization (BBPSO). The metaheuristic method 

is used to find the solution, while DSM s used to analyze the structure. A 10-bar truss structure 

and a 39-bar truss structure are considered as case studies. The result indicates that BBPSO beat 

other two algorithms in terms of best result, consistency, and convergence behavior in both cases. 

LDWPSO took second place for the three categories, leaving PSO as the worst algorithm that 

tested. 

 

1. Introduction 

Truss structures are often seen in buildings. This structure is only subjected to axial force due to releasing 

the moment of fixity. In civil engineering it is important to have efficient design, especially for truss 

structures. For civil engineers, construction cost efficiency is considered as priority. There are many 

ways to minimize construction costs. One way that can be used is structure optimization. There are three 

types of optimization: size, shape, and topology [1]. Size optimization is used to find the optimal 

sectional area for each member, topology finds the optimal number of elements in the structure while 

still paying attention to structural stability, and shape is used to find the optimal  node coordinates. 

Usually researchers only consider one or two optimizations, but by optimizing all of them, we can obtain 

the most efficient structure [2]. 

 “Trial and error” is commonly used by engineers to gain this efficient design. But this method is not 

efficient and requires a lot of time due to its many constraints and variables. Fortunately, metaheuristics 

have the capability to solve this problem [3]. Particle swarm optimization (PSO) [4], proposed by 

Kennedy and Eberhart, is popular in solving the problem of optimization. It is well known for its simple 

concept. This algorithm applies the behavior of flocking birds. Each bird tries to find best place in the 

flock to find food. Like flocks of bird, they use information from the previous direction, the best location 

that the group ever experienced, and the best location that each bird ever experienced. Although it is 



 
 
 
 
 
 

easy to understand the concept, this algorithm has some weaknesses. Three parameters that must be set 

in the beginning is one of them [5]. To resolve this matter, many researchers have proposed some PSO 

variants like linearly decreasing inertia weight particles swarm optimization (LDW-PSO) [6] and bare 

bones particle swarm optimization (BBPSO) [7]. 

2. Literature review 

2.1. Particle swarm optimization (PSO) 

While bird searching for food, they tend to use information from initial velocity (vi(t)), best location 

that this particle discovers Xpbest(t), best location from population Xgbest(t), and its current location 

Xi(t). This concept is used by PSO to search for the optimum solution. This algorithm is well known 

for this simple concept. But the one weakness of this algorithm is the need to pre-set the parameters to 

adapt to each separate problem [7]. First, the algorithm generates a random location for each particle 

[6]. Then the particle enters the main looping, where each particle updates its location every iteration 

using Equation (1). Particles use velocity to update the location, which is calculated with Equation (2).  

 Xi(t+1) = Xi(t)+vi(t+1) (1) 

 vi(t+1) = wvi(t)+r1C1 (Xpbest(t)-Xi(t)) +r2C2 (Xgbest(t)-Xi(t)) (2) 

 where vi(t+1)  is the next velocity; w is inertia weight; vi(t) is the initial velocity; r1 and r2 are 

random numbers between 0 and 1; C1 and C2 are constants that have been set (usually 2); Xpbest(t) is 

personal best; Xi(t) is the initial location; Xgbest(t) is global best; and Xi(t+1) is the particles new 

location.  

2.2. Linearly Decreasing Inertia Weight Particles Swarm Optimization (LDWPSO) 

LDWPSO perfects one parameter in PSO: Inertia weight, which is used to adjust local and global 

searches. For a more global search a large value of inertia weight is needed, while for  more local search 

a small value of inertia weight is needed. By reducing the inertia weight each iteration, PSO searches 

more in a global scope at the beginning of iteration, and in a local scope at the end of iteration [6]. The 

inertia weight updates with Equation (3): 

 w= w-(ws-we)(t)/(tmax)  (3) 

 where w is current inertia weight; ws is initial inertia weight; we is final inertia weight; t is current 

iteration; and tmax is total iteration. 

2.3. Bare Bones Particles Swarm Optimization (BBPSO) 

Unlike LDWPSO that modifies one parameter, all parameters are erased by BBPSO. Instead of using 

velocity to update the location, BBPSO uses a Gaussian distribution. The particle’s next position is only 

calculated by its personal best position and swarm global best position. Parameter-free means the 

algorithm can easily adapt to separate problems [7]: 

μ =
 pi+gbest 
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 σ =|pi-gbest|   (4) 

 x(i+1)= {
 N(μ,σ)   if(ω > 0.5) 

pi       else
 

 



 
 
 
 
 
 

 where pi = (p1, p2, ..., pn) is the personal best position of each particle, gbest is the best position 

of the whole swarm, and ω is a random number from 0 to 1. 

3. Problem formulation 

The objective of this study is to minimize the weight of the truss structure without violating any 

constraints. Static constraints such as validity, kinematic stability of structure, size, shape, nodal 

displacement, and element stress are used as constraints in this study. The mathematical formulation of 

this optimization problem can be performed as follows: 

 

Find,  

𝑋 =  {A1, A2, …, Am,ξ1, ξ2, …, ξn} 

To minimize,   

 𝑓(x)= ∑ Bi
m
i=1 Aiρi

Li (5) 

 

where,  

Bi={
0, if Ai < Critical Area

1, if Ai ≥ Critical Area
 

Subjected to: 

g1: Check on validity of structure 

g2 : Check on stability of structure 

g3(X): Stress constraints, |Biσi|-|σi 
 max| ≤ 0 

g4(X): Displacement constraints, |δi|-|δj
max| ≤ 0 

g5(X): Size constraints,  Ai
Critical≤Ai≤Ai

Upper
 

g6(X): Shape constraints, ξj
Lower

≤ξj≤ξj
Upper

 

where, i= 1,2,..,m and j= 1,2,…,n, and where Ai,  ρi,  Li and σi are cross-sectional area, density, 

modules of elasticity, length, and stress of element i, respectively. σi and ξj are real values of nodal 

displacement and coordinates of node j, respectively. Bi is a topological bit, which is 0 for absence and 

1 for presence of element i, respectively. The truss structure is called invalid (g1) if during the 

optimization process loaded or support nodes are being deleted. 

4. Material and method 

A combination of the direct stiffness method (DSM) and metaheuristics is used for this optimization. 

Metaheuristics is used to find the optimal size, topology, and shape of the truss structure while DSM is 

used to run the structural calculation. Before conducting the research, researchers prepared a DSM 

program for a planar truss, and prepared three metaheuristic algorithms: PSO, LDW-PSO, and BBPSO. 

The DSM and metaheuristic algorithms were written using MATLAB 2017a and the results of the three 

algorithms were compared to determine the best performing algorithm. In general, this program 

randomizes the cross-section area, and iterates using trial and error until it reaches its maximum 

iteration. A flow chart of the truss optimization process is diagrammed in Figure 1. 

 



 
 
 
 
 
 

iter = iter + 1
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Optimum truss design

constraint?

 

Figure 1. Flow chart for truss optimization 

 Upper bound and lower bound are used as size and shape constraints. Displacement of each node 

as well as the axial force and stress of each element from DSM are also used as constraints for this 

optimization. Whenever a solution violates the constraints, a penalty is given to the solution. This study 

used two types of penalty. When there are stability and validity constraint violations, the fitness value 

will be given a dead penalty. Unlike stability and validity constraints, when displacement and stress 

constraints are violated, a penalty value will be given accordingly. Fpenalty multiplied to the total mass 

of the structure using Equation (6)–(8) [2]: 

 

 Fpenalty=(1+ε1×C)
ε2 , (6) 

  C= ∑ Ci
q

i=1 , (7) 

 Ci= |1-
pi

pi
*
|. (8) 

 

p
i
  is a level of violation that is violated against the p

i
*  limit, q is the number of constraints used, and ε1 

and ε2 are parameters set by the researcher. This study refers to [2] on the values of ε1 and ε2 being 3. 



 
 
 
 
 
 

Then, the results of the Fpenalty  will be multiplied by the total mass of the structure to obtain the fitness 

value. 

5. Test problems and results 

This paper compares the performance of three PSO variants using 2 planar truss structure problems. All 

problems are optimized using shape, topology and size considerations. Each algorithm was run 30 times 

and with 50 populations. The structures were analyzed using DSM. Cognitive (C1) and social (C2) 

parameters for PSO and LDWPSO were set to 2. Inertia weight (W) for PSO was set to 0.8 while the 

LDWPSOs inertia weight linearly decreased from 0.9 to 0.1 with respect to iterations. Algorithms and 

structural analyses were coded in MATLAB 2017a. 

5.1. Planar 10-bar truss structure  

 

Figure 2. Ground structure for 10-bar truss structure. 

 

This structure is very popular in truss optimization and was previously studied by Miguel [2] and Rahami 

[8]. The 10-bar structure has a total of six nodes with three fixed nodes and three moving nodes as shown 

in Fig. 2. It has 12 degrees of freedom due to X and Y directions. The material density is 0.1 lb/in3 and 

elastic modulus 107 psi. The stress limit for compression/tension is 25,000 psi and displacement should 

be no more than ±2 in. This problem has 13 variables: Ten cross-section area variables and three 

geometric variables. A shape constraint for this problem was that nodes 1, 3, and 5 could move in the Y 

direction only between 180 and 1000 inches. The cross-sectional areas available were:  

 D = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 

10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 

19.5, 20.0, 20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 

28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 31.5] (in2). 

Table 1 shows that BBPSO and LDWPSO have the most optimal weight (2705.1667 lb), while 

PSO cannot obtain such a minimum weight. There is a great gap between BBPSO and the other two 

algorithms in terms of consistency. The average and standard deviation for BBPSO are far lower than 

PSO or LDWPSO. BBPSO is also superior in terms of convergence behavior shown in Figure 3. Shape, 

topology, and size changes can be seen in Figure 4. From previous study, genetic algorithm (GA) [8] 

obtains larger best result than PSO variants used in this study. However, PSO has small constraints 

violation.  

 

 

 



 
 
 
 
 
 

Table 1. Final design of sizing, shape, and topology for 10-bar truss. 

Variables [8] PSO LDWPSO BBPSO 

A1 11.5 11.5 11.5 11.5 

A2 0 0 0 0 

A3 11.5 11.5 11.5 11.5 

A4 5.74 7.22 7.22 7.22 

A5 0 0 0 0 

A6 0 0 0 0 

A7 5.74 5.74 5.74 5.74 

A8 3.83 3.13 2.88 2.88 

A9 13.5 13.5 13.5 13.5 

A10 0 0 0 0 

Y1 0 201.4377 180 180 

Y3 506.4203 486.7639 486.6606 486.68129 

Y5 789.7306 780.6457 790 789.99058 

Best (lb) 2723.05 2708.614 2705.167 2705.167 

Average (lb) - 2973.832 2923.337 2804.739 

Stdev (lb) - 222.036 201.069 92.222 

Max Stress (ksi) 19.1463 19.185 19.145 19.145 

Max Displacement 

(inch) 

1.999996 

2 2 2 

No. of analyses - 50000 50000 50000 

Constraint violation None 2.44E-11 None None 

 

 

 

Figure 3. Convergence behavior for 10-bar truss structure. 
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Figure 4. Iteration for 10-bar truss structure (a) first iteration, (b)10th iteration, (c) 100th iteration, (d) 

final design. 

 

 

5.2. Planar 39-bar truss structure 

 

Figure 5. Ground structure for 39-bar truss structure 

The ground structure illustrated in Figure 5 shows a vertical load of 20 kips applied on nodes 2,3 and 4. 

The allowable stress is 20 ksi and allowable displacement is ±2 in. This structure has been studied before 

by Miguel [2], Deb [9], and Tejani[10]. The material properties (modulus of elasticity and weight 

density) are the same as in the previous examples. Members of the structure are grouped into 21 groups 

for symmetrical reasons. For shape constraint, all loading and support nodes are fixed. All nodes can 
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move from 120 to -120 in an x and y direction from its original position, except for node 11 which can 

only move in a y direction. Nodes move symmetrically, which means there are only seven shape 

constraints: x6 = -x9, y6 = y9, x7 = -x8, y7 = y8, x10 = -x12, y10 = y12, and y11. This is a continuous problem 

with a max sectional area of 2.25 inch2 and a minimum of 0.05 inch2.  

 

Table 2. Final design of sizing, shape, and topology for 39-bar truss 

Variables [10] PSO LDWPSO BBPSO 

A1,A22 0.1905 0.050001 0.8547715 0.182017 

A2,A23 0.9157 1.013031 0.9500338 1.0127308 

A3,A24 0 0 0 0 

A4,A25 1.4694 0 0.7066295 0 

A5,A26 0 0 0.0655538 0 

A6,A27 0 0.0503 0 0.0501156 

A7,A28 0 1.118042 0.050144 1.1588633 

A8,A29 0 2.25 1.0052822 1.2771902 

A9,A30 1.2353 0 0 0 

A10,A31 0.9966 0 0 0 

A11,A32 0 0 2.25 0 

A12,A33 0 0 0 0 

A13,A34 0.5099 0.501794 2.25 0.5163225 

A14,A35 0 0 0 0 

A15,A36 0 2.25 1.6655047 1.511016 

A16,A37 0 0 0.0917872 0 

A17,A38 0 0 0 0 

A18,A39 0 0 0 0 

A19 1.0159 0 1.0003739 0 

A20 15.6136 2.25 2.2489131 1.1418484 

A21 143.9449 0 0.402704 0 

x6 0 120 120 230.5454 

y6 0 0 185.35876 148.74514 

x7 192.6985 239.9501 239.99901 185.869 

y7 236.2853 240 0 330.34409 

x10 0 0 102.93241 134.56055 

y10 0.1905 120 181.53663 -120 

y11 0.9157 120 290.88376 -120 

Best (lb) 190.1088 242.678 230.390 187.896 

Average (lb) 211.3174 329.740 311.734 213.512 

Stdev (lb) 10.8810 55.580 50.879865 20.068 

Max Stress (ksi) 19.9998 19.999 19.999 19.999 

Max Displacement 

(inch) 

 

1.7658 1.4756 1.7418 1.377 

No. of analyses 50000 50000 50000 50000 

Constraint violation None None None None 

 



 
 
 
 
 
 

From Table 2, BBPSO is the best algorithm of the three that have been tested. BBPSO gains 

minimum weight of structure (187.89617 lb) with the lowest average and standard deviation from three 

PSO variants. With  PSO and LDWPSO also showing similar results from previous problem. LDWPSO 

has the second best result (230.38976 lb) and PSO has the worst result (242.6785 lb). BBPSO has a 

63.89% less standard deviation than PSO. Furthermore, BBPSO also shows exceptional convergence 

behavior in Figure 6. Iteration for the 39-bar truss structure can be seen in Figure 7. In the 100th iteration, 

BBPSO has found its optimum shape and topology while still optimizing the sectional area. PVS from 

Tejani[10] has better result than PSO and LDWPSO with 190.1088 lb. BBPSO still has better result and 

average than PVS. However, PVS has smaller standard deviation (10.8810 lb) than BBPSO. 

 

 

Figure 6. Convergence behavior for 39-bar truss structure. 

 

 

 

Figure 7. Iteration for 39-bar truss structure (a) first iteration, (b)10th iteration, (c) 100th iteration, (d) 

final design. 
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6. Conclusion 

In this paper, the three PSO variants (PSO, LDWPSO, and BBPSO) are tested using two planar truss 

structures. Every benchmark problem is optimized using shape, topology, and size considerations. Static 

constraints such as stresses, displacements, stability, and validity are used. Optimized shape, topology 

and size simultaneously deliver a high increase in the number of constraints and variables, thus making 

the problem more complex and difficult. The results show that the BBPSO algorithm ranks first in 

achieving lighter trusses, followed by the LDWPSO and PSO algorithms. The BBPSO also outperforms 

other algorithms in terms of consistency and convergence behavior, followed by LDWPSO and PSO. 

Even from the previous studies, BBPSO is superior from GA in 10-bar truss problem and GA in 39-bar 

truss problem. LDWPSO that modified the inertia weight parameter has better result than original PSO, 

while BBPSO that eliminate the parameters outperform PSO and LDWPSO. It can be concluded that 

BBPSO is the best PSO variants that has been tested and the performance of PSO can be improved by 

modifying the parameters.  
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