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Abstract. Structural design optimization has become an extremely challenging and more 

complex task for most real-world practical applications. A huge number of design variables 

and complex constraints have contributed to the complexity and nonlinearity of the problems. 

Mathematical programming and gradient-based search algorithms cannot be used to solve 

nonlinear problems. Thus, researchers have extensively conducted many experimental studies 

to address the growing complexity of these problems. Metaheuristic algorithms, which 

typically use nature as a source inspiration, have been developed over past decades. As one of 

the widely used algorithms, particle swarm optimization (PSO) has been studied and expanded 

to deal with many complex problems. Particle swarm optimization and its variants have great 

accuracy in finding the best solution while maintaining its fast convergence behavior. This 

study aims to investigate PSO and its variants to solve a set of complex structural optimization 

problems. Several complex benchmark studies of design problem were provided to study the 

performance of PSO, linearly decreasing inertia weight PSO and bare bones PSO. The results 

support the potential use of PSO and its variants as an alternative approach to solving structural 

design optimization problems. 
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1.  Introduction 

Optimization has been used for minimizing building structure costs in the world of structural 

engineering. Engineers are challenged to solve many calculations during the process of designing, 

which is time-consuming. Each calculation problem has its own constraints, variables, and parameters 

that are usually complicated to be solved manually [1]. Designing aims to obtain the best result to get 

the minimum weight design while meeting certain code requirements, which can be achieved with 

optimization [8].  

Particle swarm optimization (PSO) is a metaheuristic calculation method that aims to find the most 

optimum answer or objective from a case that has different parameters and constraints. This algorithm 

imitates living organisms; it mimics groups such as a flock of birds or a fish of school searching for 

food. When a bird finds its own best location, the pack eventually agrees with a global best location 

[2].  

Although PSO has been proven to solve many types of problems, the optimum answer depends on 

the parameter that is set in the beginning [2]. This paper, therefore, discusses two modified PSO 

algorithms: Linearly Decreasing Inertia Weight PSO (LDW-PSO) [3] and Bare Bones PSO (BB-PSO) 

[5]. Also, this paper compares three types of PSO in order to find the most reliable and the fastest type 
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to obtain the most convergent answer. This study includes three examples of engineering design 

problems with different constraints and parameters. 

2.  Particle Swarm Optimization 

Particle swarm optimization imitates the movement of a living organism as a particle that can find its 

own best solution following its own best location. Each time an organism finds its own best location, 

the whole population immediately finds a global best location. This global best location has the most 

optimum answer from all personal best solutions to get a global solution. 

Our calculations start by defining parameters such as inertia weight parameter ( ), the cognitive 

factor parameter (  ), and the social factor parameter (  ). Then, the location for each particle is 

generated randomly with defined upper bound and lower bound. Each particle later starts to search for 

the answer with a velocity (equation 1). For each iteration, the best location is updated using equation 

1, 2. 

 

             (   )     (     (  )    )      (   )     (     (  )    )   ( )
     

              ( ) 

Table 1. Particle Swarm Optimization Algorithm.  
Algorithm 1  

1. Initialize PSO parameters  

2. Initialize a population of random particles 

(solutions) 

3. 
Evaluate the objective value of each particle  

4. 
Determine initial pbeat X and gbest X  

5. 
while termination criteria are not satisfied do  

6. 
for each particle do  

7. 
Update the velocity for the particle  

8. 
Update the new location for the particle 

9. Determine the objective value for the particle in its 

new location 

10. 
Update pbest X and pbest F if required  

11. 
end for  

12. 
Update gbest X and pbest F if required 

13. 
end while  

3.  Linearly Decreasing Inertia Weight Particles Swarm Optimization  

Linearly decreasing inertia weight-PSO differs from the standard PSO. This modified PSO can 

linearly decrease its inertia weight ( ) when each iteration finishes [3]. When the value of   is high, 

the ability to find global search increases. On the other hand, when the value of   decreases the ability 

to find local search increases [6]. The functions of velocity and location update are the same as in the 

original PSO, but the inertia weight is updated using Equation 3. 

 

 i =  1  ( 1   2)(iter)/(maxiter)                     (3) 

where  1 and  2 are the initial and end value of inertia weight, respectively, iter is the number of 

iterations, and max iter is the maximum number of iterations. 
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Table 2. Linearly Decreasing Inertia Weight Particles Swarm Optimization Algorithm. 

Algorithm 2  

1. Initialize PSO parameters 

2. Initialize a population of random particles 

(solutions) 

3. Evaluate the objective value of each particle  

4. Determine initial pbeat X and gbest X  

5. while termination criteria are not satisfied do  

6. Update inertia weight 

7. for each particle do  

8. Update the velocity for the particle  

9. Update the new location for the particle 

10. Determine the objective value for the particle 

in its new location 

11. Update pbest X and pbest F if required  

12. end for  

13. Update gbest X and pbest F if required 

14. end while  

4.  Bare Bones Particles Swarm Optimization  

Different from the abovementioned types of PSO, Bare Bones PSO ignores all parameters and does 

not need to use velocity to find a new location. Bare Bones PSO mainly uses Gaussian distribution. 

The new location is updated based on the location, which is the mean between the personal best 

solution and the global best solution. The formula is shown in Equations 4, 5, and 6. 

 

        
             

 
 (4) 

 

                     (5) 

 

      (   )  {
  (   )     (       ) 
                

 (6) 

Table 3. Bare Bones Particles Swarm Optimization Algorithm 

Algoritm 

1 Initialize PSO parameters 

2 Initialize a population of random particles (solutions) 

3 Evaluate the objective value of each particle 

4 Determine initial pbeat X and gbest X 

5 while termination criteria are not satisfied do 

6 for each particle do 

7 Determine the objective value for the particle in its new location 

8 Update pbest X and pbest F if required 

9 end for 

10 Update gbest X and pbest F if required 

11 end while 
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5. Test Problem and Results of Particles Swarm Optimization  

This section presents three cases that were solved using three types of PSO. Each case addresses an 

engineering design problem, which has different constraints and parameters. 

5.1. Case 1-A three-bar truss design 

This case involves a 3-bar planar truss structure, as shown in Figure 1 [7]. The weight of the structure 

minimizes subject to stress constraint on each bar element. The objective function of this case is to 

find the optimal value of cross-sectional areas (     ). The function of this case is given in Equations 

7-10. 

 

 
Figure 1. Three-bar truss. 

 

Minimize:  (     )  ( √       )    (7) 

Subject to 

   
√      

√   
       

      (8) 

 

   
  

√   
       

      (9) 

 

   
 

   √   
      (10) 

Where 

                   
 

          
        ⁄  

        ⁄    
Table 4 shows the statistical result for the best objective value by the three methods. Table 5 compares 

the results obtained by the three methods and the algorithm used in a previous study. The previous 

study used another algorithm called Cuckoo Search (CS) [4]. As it is seen, not only the BB-PSO 

obtained the best result, the results obtained by the other types of PSO were better than those of the 

previous study that used a different algorithm. Figure 2 shows the convergence behavior of each 

method. 

Table 4.  Statistical result for Case 1. 

 Best Avg Worst SD Time (sec) 

PSO 263.8959 263.9829 264.7531 0.187233 0.166044 

LDW-

PSO 
263.8959 266.4239 282.8427 6.550067 0.159809 
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 Best Avg Worst SD Time (sec) 

BB-

PSO 
263.8959 263.8985 263.9198 0.004515 0.085384 

 

Table 5. Comparison of optimization result for Case 1. 

 PSO LDW-PSO BB-PSO 
Gandomi et al. 

[4] 

A1 
0.79494 0.78789 0.78902 0.78867 

A2 0.39080 0.41046 0.40727 0.40902 

g1 -0.22099 -0.20478 -0.09537 -0.00029 

g2 -1.26311 -1.25670 -1.16958 -0.26853 

g3 -0.95788 -0.94808 -0.92579 -0.73176 

f 263.92410 263.89640 263.89593 263.9716 

 

 
Figure 2. Convergence behavior for Case 1 for each algorithm. 

5.2. Case 2-Tubular column design 

Figure 3 shows a tubular column that receives an axial load ( ) of 2500 kg [8]. The column 

material has a yield stress (ry) of 500 kg/cm
2
, a modulus of elasticity (E) of 0.85E-06 kg/cm

2
, and a 

density (q) of 0.0025 kg/cm3. The length (L) of the column is 250 cm. This case is aimed to find the 

minimum cost of the column ( ) that includes material and construction cost which taken as Equation 

11. The constraint and the optimization function are given in Equations 11-17. 

260

265

270

275

280

285

0 100 200 300 400 500 600

Fi
tn

es
s 

(c
m

3
) 

Number of Iteration 

PSO

LDW-PSO

BB-PSO



JIC-CEGE 2019

IOP Conf. Series: Earth and Environmental Science 506 (2020) 012048

IOP Publishing

doi:10.1088/1755-1315/506/1/012048

6

 
 
 
 
 
 

 
Figure 3. The tubular column 

 

Minimize:  (   )           (11) 

Boundary conditions: 142  d , 8.02.0  t  

Subject to: 

   
 

     
     (12) 

 

   
    

     (     )
     (13) 

 

   
   

 
     (14) 

 

   
 

  
     (15) 

 

   
   

 
     (16) 

 

   
 

   
     (17) 

Table 6 represents the statistical result for the best objective value by the three methods and the 

algorithm used in the previous study. Table 7 compares the results obtained by the three methods and 

the algorithm used in the previous study. The results obtained by PSO and its variants were also better 

than those of the previous study [4] like in Case 1. Figure 4 shows the convergence behavior of each 

algorithm. 

Table 6.  Statistical result for Case 2. 

 Best Avg Worst SD Time (sec) 

PSO 26.4995 26.4995 26.4995 4.28E-11 0.168175 

LDW-

PSO 
26.4995 26.8337 31.5127 1.271885 0.164555 

BB-

PSO 
26.4995 26.4995 26.4995 3.79E-08 0.082097 
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Table 7. Comparison of optimization result for Case 2. 

 PSO LDW-PSO BB-PSO 
Gandomi et al. 

[4] 

d 5.45116 5.45116 5.45116 5.45139 

t 0.29196 0.29196 0.29196 0.29196 

g1 

-

3.33066e-

16 

-

2.22045e-

16 

-

1.80071e-

09 

-0.0241 

g2 0 

-

2.22045e-

16 

-

2.15574e-

10 

-0.1095 

g3 -0.63310 -0.63310 -0.63310 -0.6331 

g4 -0.61063 -0.61063 -0.61063 -0.6106 

g5 -0.31499 -0.31499 -0.31499 -0.3150 

g6 -0.63504 -0.63504 -0.63504 -0.6351 

f 26.49950 26.49950 26.49950 26.53217 

 

 
Figure 4. Convergence behavior for Case 2 for each algorithm. 

5.3. Case 3-Tension/Compression Spring 

Figure 5 shows a spring design with three variables, which are wire diameter (x1), mean coil diameter 

(x2), and the number of active coils (x3). The objective of this case is to find the minimum 

tension/compression spring weight. The function and constraint are defined in Equations 18-22. 
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With boundary conditions: 205.0 1  x , 3.125.0 2  x , 152 3  x . 

 

 
Figure 5. Tension/compression spring design problem. 

Table 8 represents the statistical result for the best objective value by the three methods. Table 9 

compares the results obtained by the three methods. Figure 6 shows the convergence behavior of each 

algorithm. 

Table 8.  Statistical result for Case 3. 

 Best Avg Worst SD Time (sec) 

PSO 0.004895 0.00467 0.00574 0.000418 0.1689 

LDW-

PSO 
0.004869 0.00510 0.00574 0.000391 0.1773 

BB-

PSO 
0.004869 0.00487 0.00488 2.57E-06 0.0881 

Table 9. Comparison of optimization result for Case 3. 

 PSO LDW-PSO BB-PSO 

x1 
0.05000 0.05000 0.05000 

x2 0.37389 0.37443 0.37401 

x3 3.20934 3.20012 3.20744 

g1 0.99972 0.99972 0.99972 

g2 -0.82619 -0.82619 -0.82619 

g3 -56179 -56179 -56179 

g4 -0.93333 -0.93333 -0.93333 

f 0.004895 0.004869 0.004869 
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Figure 6. Convergence behavior for Case 3 for each algorithm. 

6. Conclusion 

This paper compared the results of three problem cases that were optimized with three different types 

of PSO. The results showed that, with the same number of iterations for each case and each PSO, BB-

PSO had the fastest calculation time and always gave the best result. Meanwhile, the standard PSO did 

not give the best results. The BB-PSO algorithm also had the smallest standard deviation, which 

means that each iteration had a more stable result and faster to obtain convergence in the results. Since 

the normal PSO had the smallest standard deviation, the performance of the algorithm would still 

depend on the cases and the parameter of each case.  
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