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Locking-free Kriging-based Timoshenko Beam Elements using an
Improved Implementation of the Discrete Shear Gap Technique

Wong, F.T."*, Santoso, SW.2, and Sutrisno, M.!

Abstract: Kriging-based finite element method (K-FEM) is an enhancement of the conventional
finite element method using a Kriging interpolation as the trial solution in place of a polynomial
function. In the application of the K-FEM to the Timoshenko beam model, the discrete shear gap
(DSG) technique has been employed to overcome the shear locking difficulty. However, the applied
DSG was only effective for the Kriging-based beam element with a cubie basis and three element-
layer domain of influencing nodes. Therefore, this research examines a modified implementation
of the DSG by changing the substitute DSG field from the Kriging-based interpolation to linear
interpolation of the shear gaps at the element nodes. The results show that the improved elements
of any polynomial degree are free from shear locking. Furthermore, the results of beam deflection,
cross-section rotation, and bending moment are very accurate, while the shear force field is

piecewise constant.

Keywords: Kriging-based finite element method; Timoshenko beam; shear locking; discrete

shear gap.

Introduction

2

Kriging-based finite element method (K-FEM) is an
enhancement of the standard finite element method
(FEM) using a Kriging interpolation (KI) as the trial
solution in plffe of a polynomial interpolation [1-3]. In
this method, KI is constructed for each element using
a set of nodes including the element nodes and nodes
of several layers of surrounding elements (called
satellite nodes). This element and its surrounding
elements constitute a domain of influencing nodes
(DOT). Accordingly, the global trial solution is in the
form of “clement-HffBelement” piecewise Kriging inter-
polation. The key advantages of the K-FEM are first,
remarkable accurate solutions of the field variables
and their gradients can be achieved efgh though
using the simplest elements, that is, three-node
triangular elements in 2D problems and four-node
tetrahedral elements in 3D problems. Secondly,
solution refinement can be achieved without any
change to tHfmesh. Lastly, K-FEM computational
procedure is similar to the standard FEM so that an
existing finite element computer program can be
modified with ease to include the K-FEM.
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gdrawbax:k of the K-FEM is that in 2D and 3D
problems, the global trial solution is discontinuous
across element boundaries. IE) other words, the
Kriging-based elements are nonconforming. The
issue of non-conformity and its effects on the conver-
gence characteristics hasbeen addres@} in Reference
[4]. It was found that despite the non-conformity,
solutions of the K-FEM with a quartic spline correla-
tion function and appropriate Kriging parameters
always converge to the exact solutions. The adverse
effect is that the convergence rate and accuracy of the
K-EFM with a higher degree polynomial basis may
not be better tifln with a lower degree polynomial
basis. Another drawback of the K-FEM is that its
computational cost 1s higher than the standard FEM.
This is primarily because the Kriging interpolation
does not have an explicit expression; it is constructed
for each element during the computer running
process [1].

5

In the development of K-FEM for analyses of shear
deformable beams, plates, and shells, as inthe
conventional FEM, the numerical difficulty of shear
locking and membrane locking occurred [5-8]. In the
K-FEM for the Timoshenko beam model [7], the
longstanding selective-§duced integration technique
(SRI) has been utilized to eliminate the shear locking.
The results showed that the SRI is effective at elimi-
nating the locking. However, the use of the SRI made
the results for the case of thick beams less accurate
and produced erroneous shear force distribution
(except at the element center).

Subsequently, a more recent approach for eliminating
shear locking, namely the discrete shear gap (DSG)
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technique [9-10], was applied in i K-FEM for
analysis of Timoshenko beams [8]. ‘Shear gap' at a
beam point x is defined as the increment of the
deflection due to shear deformation from a ref@hce
point xo. ‘Discrete’ shear gaps are shear gaps at the
nodal points. In the standard FEM for the Timo-
shenko beam model [11], the DSGs were evaluated at
the element nodal points. In the K-FEM [8], however,
the DSGs were evaluated at all nodes in a DOI and
interpolated using Kriging shape functions to create a
substitute shear gap field. A substitute shear strain
field, y-bar, was then cbtained by diffeBntiating the
substitute shear gap. The original displacement-
based shear strain, y, was replaced with the sub-
stitute shear strain to circumvent the shear locking.
The numerical tests showed that Kriging-based
Timoshenko elements with the DSG were free from
shear locking only for a cubic polynomial basis with
three element layers and a linear basis with one
element layer, which is identical as the standard two-
node Timoshenko beam element. The elements with
other polynomial bases or other numbers of element
layers suffered from shear locking.

This paper presents a modified implementation of the
DSG technique to eliminate the shear locking in the
application of Kriging-based Timoshenko beam
elements with any degree of polynomial basis func-
tion. The DSGs are evaluated only at the element end
nodes in this work, not at all nodes in the DOI as in
the previous work [8]. The substitute shear gap field
is then constructed using standard linear shape
functions, not Kriging shape functions. Accordingly,
the resulting substfflite shear strain field is constant
over an element. A series of numerical tests are
carried out to study the effectiveness of eliminating
shear locking, accflacy, and convergence. The results
show that the Kriging-based Timoshenko beam
elements using the present implementation of the
D.SG technique are indeed free from shear locking.

29

Kriging-based Finite Element Method for
Timoshenko Beams

Weak Form of the Governing Equations

Consider #fllimoshenko beam model with the global
Cartesian coordinate system and positive sign con-
ventionsnr the deflection, w, cross-section rotation, 6,
internal bending moment, g3, and shear force, @, as
shown in Figure 1. The geometrical and material
parameters of the beam are the beam length, L, the
cross-s@fdbnal area, A, the cross-sectional moment of
inertia about the v axis, I, the modulus of elasticity E,
and e shear modulus G. For example (see Fig 1(b)),
the beam is subjected to a distribuffF)load g, a
concentrated load Po, and a moment My at the left end
(at x= 0). At the right end, the beam is subjected to a

prescribed deflection wr. and a preseribed rotation 6r,
(see ng 1(b) )}, wr.= 6= 0 if the right end is clamped.
The weak form of the §lerning equations for the
beam static deformation is given as [12]

L L
f 50, E16,, dx + f (6w,— 60)GA(W,,— 0)dx
1] 1]

= [y 6wq dx + Sw(0)P, + 56(0)M, V 6w,80 € V
= (vlv € H1(0, 1), u(L) = 0} W

In words, this integral equation states that if w = w(x)
and 6 = B(x) are the exact solutions, then the equation
should be true for any admissible weighting functions
dw = dw(x) and 66 = 66(x). T}m’eak form equation
implicitly contains the beam equilibrium equations
and force boundary conditions (see the derivation in
Reference [12]). The weak form is id@Btical to the
principle of virtual displacement where &w and 660 are
the virtual deflection and virtual rotation, respec-
tively. The comma denotes the derivative to the
EfFiable following it. Symhbol A is the effective shedf)
area of the cross-section, that 18, As = kA, where kisa
shear correction factor depending upon the cross-
section geometry. The second line of the equation
means that the integral equation is applicable for all
ow and 60 in the space of admissible weighting
functions, V. Space H(0,L) is the Sobolev function
space of first degree [13-14], that is,

H(0,L) = (v| [, (v* + L?v,2 )dx < oo} @
The model problem is to find we S, ={w|weE
HY(0,L), w(L) = w,} and 6 ES,=1{A0 €

H(0,L),8(L) = 8,} such that eqgn. (1) is satisfied for
all dw, 66 € V.
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Figure 1. Coordinate System and the Positive Sign Con-
vention for the Beam Deflection, tw, Cross-section Rotation,
f(a); External Loads g, Po, Mo, Support Conditions wr, #1(b);
Internal Shear Forcele), ) and Bending Moment, M{d)

@hce the solution for 1w and @ has been obtained, the
bending moment and shear stress distributions along
the beam can be obtained using

M =ELw,y, (3)
Q= GAS(W;x_ 6) @
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Kriging-based Finite Element Formulation

For convenience in the subsequent finite element
formulation, the displacement boundary condiffins at
the beam right end are temporarily removed. Let the
beam be subdivided into N; elements and N, nodes
and consider an element with its surrounding
elements, which constitutes a two-layer element DOL
covering n nodes as illustrated in Fig 2. The unknown
field variables over the element are approximated as
follows:

w=wh=N,d (52)
6 ~ " = Ngd (62)
where

Ny =[Ni(x) 0 Np(x) 0 Na(x) 0]  (5b)
Ng=[0 Ni(x) O Nz(x)“ 0 Na()] (6h)

are the matrix of Kriging shape functions for the
deflection and rotation, respectively, and

6, b, 6,17 (5¢)

1s the vector of nodal displacements. The indices here
use a local numbering sysilh in the DOL The num-
ber of nodes in the DOI, n, depends on the number of
elements used in the DOI and is different for the
interior and exterior elements. For example, for the
element with two-layer DOL, n = 4 for the interior
elements and n = 3 for the exterior elements.

d=[w Wy Wy

The Kriging shape functions N,(x), a = 1, 2. ..., n are
obtained by solving the Kriging system of equations
[2,4.8], that s,

RA + Pp = r(x) (7a)
PTA=p) (7b)
where
C(hyy) C(hy,) p1(xy) Pm(x)
=[ ]; p- L ] )
C(hy) Clhy) 1(X0) e P
A= - AGe= - 4]y D
r(x) = [C(hx) Clha) Chn)]" (7e)
p(x) = [p1(x) py(x) Pm ()17 (7

In this equation, R is a nxn matrix of covarance
between two random va.riahlea; nodes x1, ..., &n, In
which hap =25 —xa,a, b=1,... n; P is a nXm matrix of
monomial values atthe nodeflVhere m is the number
of monomial terms. Vector X is an unknown nx1
vector of Kriging weights, wilich is identical to
Kriging shape functions. Vector p is an unknown mx1
vector of Lagrange multipliers. On the Ekht-hand
side of egns. (7a) and (7h), vector r(x) is a nX1 vector
of covariance between random variables at the nodes
and the point of interest, x, in which Aaw=x —x0.a =
1,..., n; p(x) is a mx1 vector of monomial values atx. A
necessary condition to make the Kriging equation
system solvable (non-singular) is that 1 = nt .

13

The element under
S/ consideration
Ap-

Subdomain (DO, o=1,...n= 4

f
Problem domain 0= [0, L], A=1,..,N,
Figure 2. Beam Problem Domain, a Beam Element under
Consideration and its Domain of Influencing Nodes

To construct Kriging shape functions using eqns. (7a)
and (7b), one has to choose a correlation model and a
set of polynomial bases. The correlation model is used
to generate the covariance matrices R and r, whereas
the polynomial bases are used to generate matrices P
and p. Following previous works [7-8], the polynomial
bases used in the present study are linear, quadratic,
or cubic polynomial bases. Moreover, the Gaussian or
quartic spline correlation models is utilized, that is,

p(w) = exp(— (6,%)) (52)
p(h) = , s .
h h h h
1-6(6,2) +8(6,2) —3(8,2) foro<g, i< 1(8b)
0 for 9,% >1

Here, 6 is a correlation parameter, {gJthe distance
between two points in the DOI, and d is the largest
distance between two nodes in the DOL

Substituting the approximate functidfl, eqns. (5) and
(6), into the global weak form, egn. (1), and carrying
out the standard of finite element formulation gives
the discretized matrix equation, that is,

KD =F, +F, ©)

In this equation, K is the structural stiffness matrix,
that is,

K= X/°ki + 27 ke

Lf eT be — L peT
k;:fn Bf EIBg dx,kg—fn BY " GABS dx

(10a)
(10b, ¢
D is the structural nodal displacement vector, that is,
D 6, 0, v SNP]T (11)

F. is the vector of nodal applied forces, which for
example shown in Fig. 1is

F, ={P, 00 0 0T (12)

F,; is the equivalent nodal force vector due to a
distributed load g, that 1s,

£
F, =368 f2= [ N, qdx

Wy wj Wy

(13a. b)

The order of matrix K is 2N, x 2N}, and the order of
vectors D, Fadan F, are 2N, #1l. Matrices kj and k¢
are 2n X 2n element stiffness matrices corresponding
to bending and shear deformations, respectively, of
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element rnher e,e=1,2, .., N Vector fjisa2Znx 1
element equivalent nodal force vector due to g of
element number e. Matrices Bs and By in egns. (10b)
and (10c) are given as
d

BE = = Ng (14a)
Bf =-N, — N, (14b)

The summation symbols in egns. (10a) and (13a)
denote the finite element assembly process, not the
usual summation. The assembly process here invol-
ves all nodes in the DOL, not just elements nodes as in
%e standard FEM.

5

Discrete Shear Gap Technique

The use of the Kriging-based Timoshenko beam (K-
beam) element model, eqn. (9), with exact integration
of all integrals, gives much smaller displacement
results than the true solutions for a very thin beam [7-
8]. This phenomenon is well-known in the FEM and
it is referred to as shear locking [15]. An approach to
overcome the shearfficking is the DSG technique [10,
16]. The basic idea of this technique is to replace the
assumed displacement-based transverse shear strain
over an element, y® = w,?, - 8%, wiff] a substitute
shear strain, y€. This substitute strain field is
obtained from the derivative of a substitute shear gap
field [8,11]. In the previous work of Wong et al. [8], ti
DSG technique was applied in the K-beam models to
eliminat@the shear locking. However, the K-beam
with the DSG was only effective for the K-beam-DSG
elements with a dfic basis function and three-
element-layer DOL This section presents a modified
implementation of the DSG technique to improve the
performance of the previous K-beam-DSG element

[8].
1

A shear gap field is defined as the increment of the
deflection from a reference point w, due to shear
strain, that is,

X X
w)(x) = fxo_—y dx = wl¥, - fxD Odx (15)

A discrete shear gap is the shear gap at a nodal point
xi, that is,

Awy = Awy(x) = [ ydx =wi3 - [['0dx  (16)

To eliminate shear locking, a substitute shear gap
field is constructed by interpolating DSGs at several
nodal points, viz.

AW, () = T2 1i(x) Awyg an
where I(x), i =1, 2, ..., npss are nodal interpolation or
shape functions for the substitute far gap and npsc
is the number of nodal shear gaps. A substitute shear
strain field is then obtained by taking the derivative
of the substitute shear gap field, that is,

F() = T2 Iy (1) Awy (18)

In the previous work [8], the DSGs were evaluated at
all nodal points in the DOL, thus npsq = n, and the
interpolation functions used to construct the sub-
stitute shear gap were the Kriging shape functions
used to interpolate the displacement fields, that is,
Ii(x) = N(x). In this study, the DSGs are only evalu-
ated at the element nodal points and the interpolation
functions used are the standard linear interpolants.
Accordingly, the substitute shear gap field is given as

¥(x) = T Ly (X) Awy, (19a)

where L1, and Lz, are the derivatives of the standard
linear shape functions, that is,

1 1
—E Loy = I3 (19b, ¢)
where I¢ is the element length.

Ly =

In order to implement the present concept in a
computer code, the shear gaps at the element nodes
are firstly evaluated by taking the first node in the
DOT under consideration (see Fig. 2) as the reference
point and substituting the approximated rotation,
eqn. (6a), into eqn. (16), that is,

Aw, = (w; = wy) = ([ Np(x) dx) d 20)

Hence, the DSGs at the element nodes can be expres-
sed as

wy, = Byad (21a)
where
wy, = {Awyq awyan}‘r (21b)

a,a+1: element node numbers
Er‘l

xa xa ™ xa
-1 - 0 —[ Nydx o 1 —[ Nydx o0 0 —I Nyedx
_ e ' 1

-1 - I.Y“‘!h',dx 0 - j“’“un\‘zcbc -1 - j’hun\'a T | J’xuun'\'"d.r
' ' ' 210
d=[w; 6, w, 6, — w, 6,]" (21d)

Writing eqn. (19a) in matrix forms,

7(x) = Baw, (222)
B, =[-1 1] (22b)

Substituting eqn. (21a) into eqn. (22a) gives
7(x) = By, By,d = B,d 23

The implementation of the DSG concept is thus
accomplished by replacing the matrix Bf in the shear
stiffness matrix, eqn. (10c), with the substitute shear
strain-displacement matrix, B,,.

Numerical Results

A series of numerical tests were carried out to inves-
tigate the performance of the Kriging-based beam
element with the improved implementation of the
DSG, which is referred to as K-beam-DSG1. The tests
included shear locking, accuracy, and convergence
tests. The test problems used were the same as in the

14
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previous work [8]. The K-beam-DSG1 options used
included linear, quadratic, and cubic polynomial
bases with one to thrdEflement-layer DOIs and the
Gaussian (G) and the quartic spline (QS) correlation
functions. The correlation parameters were taken to
be the middle values between the lower and upper
bounds presented in the previous work [8]. However,
since in all cases the results using the G and QS
functions were nearly the same, only the results using
the QS function were presented in this paper.
Abbreviations of the form P*-*.QS were used to
denote different K-beam-DSG1 options. The first
asterisk represents the degree of a polynomial basis,
whereas the second one indicates the number of DOI
element layers. For example, P2-3-QS means K-beam
element using a complete quadratic basis with three-
element layer DOI and the quartic spline correlation
function.

In all tests, the shear correction factor used is given as
17

Kk = Lo+ @4)

12411v

The integrals in the element stiffness matrices, eqns.
(10b, c), the equivalent nodal force vectors, eqn. (13b),
and the DSGs, egn. (21c), were numerically evaluated
using three Gaussian sampling points. The results
were compared to those obtained using the K-beam of
the previous work [8], which is referred to as K-beam-
DSGO.

Shear Locking Tests

The test was carried out using a fixed-fixed supported
beam subjected to a uniformly distributed load of g =
1 kN/m (Fig. 3). The material and geometrical
parameters are £ =2000 kN/m?, L=10m, b=2m, v
0.3. To investigate the shear locking, the beam
length-to-thickness ratio {fhs varied from L/h = 5 (a
relatively thick beam) to Lih = 10000 (an extremely
thin beam). The beam was discretized using eight K-

Shear force (kN)

Coordinate -X (m)

@

beam-DSG1 elements. The analysis results for the

beam deflection at the midspan were recorded and

normalized with the exact solution, that is,
_ gLt gL?

Wexact = 3505 ™ 8ca,

(25)

Table 1 presents the normalized beam deflection at
the midspan for different length-to-thickness ratios,
Lih, and different Kriging interpolation options. The
table demonstrates that the present K-beam ele-
ments of all types are free from shear locking. In
contrast, the K-beam-DSGO elements are locking free
only for the types of P1-1-QS and P3-3-QS. When the
beam is relatively thick (L/h =5 and 10), however, the
present K-beam elements give a bit less accurate
results compared to the previous elements.

AN

Figure 3. Fixedfixed Supported Beam Modeled using
Eight Beam Elements

Table 1. Normalized Midspan Deflections of the Fixed-fixed
Beam with Different Length-to-thickness Ratios Modeled
using Eight K-beam Flements

PL1QS PL2QS

DSGL_DSGO[S] DSGL _DSGO[g]
5 0958 0.958 1.005 0.999
10 0944 0.944 1.002 1.000
100 0938 0.938 1001 0.959
1000 0938 0.938 1001 0.206
10000 0f 0.938 1.001 0.003

P22.QS P23 QS Paaqs
DSGL_DSGO[S] DSGL DSGO [8] DSGL DSGO [§]

5  1.005 1.001  1.005 1.003 1.004 1.001
10 1.003 1.001  1.004 1.003 1.002 1.001
100 1.002 0.993 1.003 0.994 1.001 1.001
1000 1.002 0.540  1.003 0.505 1.001 1.001
10000 1.002 0.011  1.003 0.010 1.001 1.001

Lih

——Exact
---- P1-1-05
10 P1-2-05

=}

1.25 25 3

hear force (kN)

g|

=--=P2-3-Q5

Coordinate -X (m)

(b)

Figure 4. Shear Force Diagram for the Fixed-fixed Supported Beam with L/A = 10000 Obtained using the K-beam-DSG1
Elements of Different Types: (a) P1-1-QS, P2-2.QS, P3-3-QS; (b) P1-1-QS, P1.2.QS, P2-3-QS

15
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The shear force diagrams for the beam of L/h =10000
resulting from the use of the Kbeam-DGS1 of
different types were plotted in Fig. 4 and compared to
the exact shear force diagram. The figure shows that
all of the K-beam-DSG1 elements give constant shear
force distributions for each element (that is, piecewise
constant). The shear force walues resulting from
different types of the K-beam-DSG1 are nearly the
same for each element. The most accurate shear force
prediction is approximately located at the middle
point of each element. In contrast, the shear force
distributions obtained using the K-beam-DSGO
elements [8] were fluctuating around the exact shear
force line and were in great error for those obtained
using the options of P1-2-QS and P2-3-QS. Thus, the
present K-beam elements improved the shear force
distribution results significantly.

Pure Beﬁng Tests

Consider a cantilevel@ifam subjected to an external
bending moment, M, aifhe free end as shown in Fig.
5. The beam is under a pure bending condition with a
constant moment M and zero shear force along the
beam. The material and geometrical parameters were
taken to befljjual to those of the beam in the shear
locking test and M= 1 kN-m. Two different length-to-
thickness ratios were considered in this test, namely,
L/h = 5 and L/h = 10000. The beam was discretized
using four K-beam elements of different lengths as
shown in the figure.
The analysis results of the deflection and rotation at
the free end were cbserved and normalized to the
analytical solutions, that is,
ML? ML
Wexact = 577 Yexact = 57

(26)

Tn addition, the bending moments and shear forces at
the fixed end were observed. The bending moments
were then normalized to the analytical solution, M =
1. The shear forces, however, were not normalized
since the exact shear force is zero.

M
ole—1 9 [— |
3 4 5
? o—?—|
1, 6 1, 2

Figure 5. Cantilever Beam Modeled using Four Elements
of Unequal Length
1

Table 2. Analysis Results for the Cantilever Beam of Llh =
10000 under Pure Bending, Modeled using Four K-beam-
DSG1 Elements of Unequal Length with Different Element
Types

For the case of the beam of L/h = 5, all of the resulting
deflections, rotations, and shear forces obtained using
different K-beam-DGS1 are exact within computer
double precision accuracy. The bending moments are
very @llse to the exact value, that is,14 digits accurate.
The results for the beam of L/h = 10000 were
presented in Table 2. It is seen that the deflections,
rotations, and bending moments have at least seven-
digit accuracy. The errors for the shear forces are on
the order of 10-%or 102, In comparison to the previous
K-beam-DSG elements [8], the performance of the
improved K-beam-DSG in this problem is similar.

It is worth fhentioning here that this constant
bending test may be regarded as a type of patch test
for beam finite elements [11]. A beam element passes
the test if it can reproduce exact results (within
computer accuracy). Therefore, the K-beam-DGS1
elements pass the pure bending patch test since they
produced the exact or nearly exact results.

Assessment of Accuracy and Convergence

A cantilever beam subjected to a triangular-distri-
buted load (Figure 6) was utilized to asseff the per-
formance of the present K-beam elements in terms of
accuracy and Envergence. The geometric, material,
and load data were taken as follows: L=4m, L/h =8,
b=2m, E= 1000 kN/m? v = 0.3, and qo = q(0) = 1
kN/m. The beam was modeled using different
numbers of K-beam elements, that is, 4, 8, 16, and 32
elements. The resflits of the tip deflections, the
bending moments at the fixed end, and the shear
forces at the fixed end were observed and normalized
to their corresponding analytical solutions [18], that
13,

?

4 v 2
we= D21+ Zg) ¢ =222 (]) (27a, b)
M, =tqL .0 =4glL 8a, b)

Table 3 presented all of the normalized analysis
results using different types of K-beam-DSG1 ele-
ments. The table shows that the elements give highly
accurate results of the deflections and bending
momentsand reasonably accurate results of the shear
forces. Moreover, the table demonstrates the excellent
convergence characteristics of the K-beam-DGS1
elements.

4o 9
K-beam-DSG .
Gesf;lmg ! WL WLewet  OL/OLexnet Mo/ My et Vo %
P11-Q8 10000000 10000000 10000000 G6&2E08 4 7
P1.2-Q8 1.0000001  1.0000001 10000001 1.67E-08 | L | .
P2.2.Q8 1.0000001  1.0000001 10000002 2.07E-08
P2-3-Q8 10000002 10000001  1.0000003 1.23E-08  Figure 6. Cantilever Beam Subjected to a Linearly Distri-
P3.3-9S 1.0000001 _ 1.0000000  1.0000001 9.55E09  huted Forceg
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Table 3. Analysis Results for the Cantilever Beam (I/h = 8)
Subjected to a Linearly Distributed Force, Modeled using
Different Numbers, Nelem, and Different Types of K-beam-
DSG1 Elements

(a) Normalized g deflection

Nelem P11-Q8  P12.QS P2.2QS8 P23.Q5 P33Q8
4 102489  1.00324 1.00359  1.00311 1.00000

8 100634 0998838 100026  1.00017 1.00000

16 100159 099946  1.00002  1.00001 1.00000

32 1.00040  0.99983 1.00000  1.00000  1.00000

(b) Normalized fixed-end bending moment

Nelem P1-1-Q8  P12.Q5  P2-2.08 P23QS P3agQs
4 071094  0.80281 0.93369 090683 1.00305

& 083496  0.89753 0.98121 097279 1.00272

16 091199 094800  0.99303 099270 1.00094

32 095457 097383 0.99872 099811 1.00027

(c) Normalized fixedemnd shear force

Nelem  P1-1-Q8  P1-2-.Q8 P2-2Q5 P23-Q5 P33-Q8
4 077083 081296 082066 0.81910 0.83628

8 088021 050459 0890829 090723 0.91496

16 0938380 095182 095363 095295 0.95684

32 0.96908 087579 097669 097631 0.97826

19
The higher ggree of the polynomial basis used, as
expected, the more accurate the results obtained for
the same number of elements. The use of the K-beam-
DSG1 with cubic basis, P3-3-QS, can reproduce the
exact tip deflection even though using four elements.

To compare the results to those obtained using the K-
beam-DSGO, consider the cadgEBtudied in Wong et al.
[8]. that is, the cantilever beam of the length-to-
thickness rations Lih =8 (moderately thick beam), L/h
1 (extremely thick beam), and L/h 10000
(extremely thin beam). The beam was analyzed using
the K-beam-DSG1 element of P3-3-QS only because
this element was the only type of the K-beam-DSGO
element that was used in Wong et al. [8]. Comparison
Effhe results of the tip deflections, bending moments
at the fixed end, and shear forces at the fixed end were
presented in Table 4. Itis seen that for the cases of the
thick beams, the accuracy of the deflections and
bending moments from the K-beam-DSG1 and DSGO
P3-3-QS is approximately equal. However, the shear
forces obtained using the present element are less
accurate, in particular, for the course mesh discre-
tization (Nelem = 4). For the case of the extremely thin
beam, the deflections obtained using [{h methods
remain very accurate, but the accuracy of the bending
moments and shear forces obtained using the K-
[Bhm-DSGO element declines. It is apparent that the
performance of the K-beam-DSG1 elements is not
affected by the change of the beam thickness. In con-
trast, the performance of the K-beam-DSGO elements
decreases as the beam becomes thinner.

17

1
!ahle 4. Normalized Analysis Results for the Cantilever
Beam of Different Length-to-thickness Ratios Subjected to a
Linearly Distributed Force, Modeled using Different Num-
bers, Nelem, of the K-beam-DSG1 and K-beam-DSGO P3-3-
QS [8] Elements

(a) Moderately thick beam, L/h =8
Deflection
DSG1  DSGOD
1.00000 099989
1.00000 099999

1.00000 1.00000
1.00000 1.00000

Bending Moment Shear Force
DSG1  DSGO  DSGL  DSGO
1.00305 099972 083628 1.03397
1.00272  1.00190 091496 1.00210
1.00094 1.00074 095684 1.00022
1.00027 1.00022 097826 1.00003

Nelem

16
32

(b) Extremely thick beam, Lh=1
Deflection

Bending Moment Shear Force

Nelem

DSG1

DSGO  DSG1

DSGO  DSG1

DSGO

16
32

1.00000
1.00000
1.00000
1.00000

0.99995  1.00305
1.00000  1.00272
1.00000  1.00094
1.00000 1.00027

100055 0.83628
100192 0.91496
100074 0.95684
100022 0.97826

1.00097
1.00019
1.00004
1.00001

(c) Extremely thin beam, Lih = 10000

Deflection Bending Moment
DSG1  DSGD  DSG1  DSGO
100000 099989 100305 095561
100000 099999 100272  0.95087
1.00000 100000 100094 0.98499
100000 100000 100027 099917

Shear Force
DSG1  DSGO
0.83628 2.79078
091496 2.58935
095684 0.61493
097826 0.97775

1
Figure 7 shows the shear force diagram for the beam
of L/h =8, obtained using four present and previous
P3-3-QS K-beam elements, compared to the true
shear force diagram. It is seen that the previous beam
element gives a more accurate shear force distribution
compared to the present element. This confirms that
for the case of thick beams, the present beam element
is less accurate in predicting the shear force field.
However, if the beam becomes thinner, the accuracy
of the present element remains the same while the
accuracy of the previous element decreases.

Nelem

4
8
16
32

0

]
0.5
z
=,
o 1
b
2
5 -15 —Exact
Q
£ 000000
A o P3-3-Q5-DSG
2 x P3-3-05-DSGO
25
0 1 2 3 4
Coordinate-X (m)

Figure 7. Shear Force Diagram for the Cantilever Beam
with L/h = 8 Obtained using the K-beam-DSG1 and K-beam-
DSGO Elements of P3-3-QS




Wong, F'T. etal./ Locking-free Kriging-hased Timoshenko Beam Elements / CED, Vol. 24, No. 1, March 2022, pp. 11-18

Conclusions

In the §Bvious work [8], the DSG technique was
applied to eliminate shear locking in Kriging-based
Timoshenko beam elements (referred to [E-beam-
DSGO elements in this paper). However, it was only
effective for the K-beam using a cubic basis and three-
element layer DOL. In this work, the implementation
ofthe DSG technique has been modifiedin an attempt
to improve the K-beam-DSGO elements. The modi-
fication made was to change the formulation of the
substitute DSG interpolation from a Kriging inter-
poEltion of nodal shear gaps at all nodes in the DOI to
a linear interpolation of nodal shear gaps at the
element nodes only. The numerical tests showed that
the modified K-beam-DSG elements (referred to K-
beam-DSGL elements) of all types are truly free from
shear locking, pass the pure bending test, can give
highly accurate results of the deflection and bending
moment with a relatively small number of elements,
and have excellent convergence characteristics. The
accuracy of the K-beam-DSG1 elements is not affect-
ed by a change in beam thickness. The resulting shear
force distributions, however, do not match the true
shear force distribution and are piecewise constant.

The present K-beam-DSG1 formulation gives insight
regarding the implementation of the DSG technique
in the framework of Kriging-based FEM. Further
research may be directed to the extension of the
present elements for vibration analysis, buckling ana-
lysis, and geometrically nonlinear analysis. AfBther
research direction that may be taken is an imple-
mentation of the DSG technique in Kriging-based
curved beam elements, plate bending elements, and
shell elements.
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