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ARTICLE INFO ABSTRACT

Keywords:

A: biocomposite

B: adhesion

D: acoustic emission
E: injection moulding

PLA/sugarcane bagasse fiber composites were prepared by injection molding from two fractions of fibers with
different fiber characteristics, which were determined before and after processing. Interfacial adhesion was
modified by a maleated PLA coupling agent. The mechanical properties of the composites were characterized by
tensile and impact testing, while local deformation processes by acoustic emission testing and microscopy. The
results showed that considerable attrition takes place during melt processing in both the length and diameter of

the fibers. The originally different batches of short and long fibers have similar dimensions after processing.
Interfacial adhesion between PLA and bagasse is inherently good, thus coupling does not improve properties.
Shear yielding and fiber fracture consume sufficiently energy to increase the impact resistance. Sugarcane
bagasse fibers considerably increase the stiffness of PLA, result in almost constant tensile strength and increase
impact resistance yielding a material with reasonable combination of properties for structural applications.

1. Introduction

Depleting fossil fuel resources and increasing environmental
awareness of both the public and the industry increased the interest in
raw materials derived from renewable resources. Polymers are versatile
materials, which are used in a large number of applications in all areas of
life. Their property profile can be extended even further by modifica-
tion, stiffness, and strength can be increased by fiber reinforcement
[1-3], fracture resistance by impact modification [4,5], flexibility and
deformability by plasticization [6,7], etc. Fiber-reinforced composites
are usually applied in structural applications mainly in the construction
and automotive industry [8,9], but also in many other areas [1].
Completely biobased composites can be prepared from biopolymers and
wood flour or other natural fibers [10-12]. Such composites compete
successfully with traditional glass or carbon fiber reinforced commodity
polymers and they are used more and more extensively for the pro-
duction of automotive interior parts as door panels, trimming, sidings,

hat racks, etc. [13,14].

However, wood and natural fiber reinforced biocomposites have
several drawbacks as well [15]. The most frequently used matrix for
such composites is poly(lactic acid) (PLA) produced in relatively large
quantities and at a reasonable price. The properties of PLA are quite
advantageous, certain types have relatively large stiffness (3 GPa) and
strength (55 MPa), which compete with the similar properties of engi-
neering thermoplastics. However, PLA is sensitive to water during pro-
cessing [16], its physical ageing is fast leading to brittleness [17,18], and
its deformability, as well as impact resistance, is small [19]. Similarly,
natural fibers also have their disadvantages. Their properties depend on
the source of the fiber, but also on climate changes and the period of the
harvest. They absorb water leading to dimensional changes, they are
sensitive to heat during processing, and the adhesion of the fibers to
polymers is often quite poor [20,21].

In order to compensate for these disadvantages, numerous attempts
are made to find the right combination of fiber and matrix polymer, and/
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or to modify the components in various ways, or improve interfacial
adhesion by coupling. Wood and other natural fibers were added to PLA
as reinforcement earlier and the form of the reinforcement (particle
[11,22-24], fiber [25-27] or mat [28]), as well as particle characteris-
tics, changed in a wide range in published studies. Similarly, the char-
acteristics of the fibers were modified by alkali treatment [26,29-31]
and numerous surface modification techniques were used to improve
interfacial adhesion between the fiber and the PLA from surfactants
[32,33] to various small [11,26,29,30] and large molecular weight
coupling agents [34,35]. The property combinations achieved cover a
wide range, but the ever-increasing drive of the industry towards ma-
terials with better properties always allows room for further
improvement.

One possible reinforcement for plastics is sugarcane bagasse fiber. It
is a cheap, natural raw material obtained from local sources. Bagasse
fibers are burned in the technology to produce sugar, but their value-
added application would be beneficial for the countries producing it.
The fiber can be homogenized directly with polymer matrices using an
efficient processing technique like extrusion or injection molding.
Several papers were published on polypropylene/sugarcane bagasse
composites [36-39] and more recently on materials prepared with PLA
matrix [40-44] as well. Some of the publications investigate interfacial
interactions between the components. Khoo and Chow [42] observed
voids between the matrix and the bagasse at the interface indicating
weak adhesion. Hong et al. [40] studied the effect of different treatments
(alkaline, silane and the combination of the two) on the structure and
properties of PLA/bagasse fiber composites. They found that untreated
and alkali-treated fibers were pulled-out from the matrix but the silane
and the combined treatment improved interfacial adhesion, thus the
number of fiber breakage increased considerably. Suryanegara et al.
[44] observed that the tensile strength of PLA based composites de-
creases with increasing bagasse content and explained the phenomenon
with poor adhesion as well as the formation of voids which result in
inefficient stress transfer. In the papers cited above most of the con-
clusions about interfacial adhesion were drawn from the observation of
SEM micrographs and they contradict our previous results indicating
strong adhesion between PLA and natural fibers [12].

In accordance with the general tendency of going green and using
local resources, the goal of our study was to prepare fully biodegradable
biobased composites from PLA and sugarcane bagasse fibers and explore
the property profile of the materials produced. The fibers were obtained
from a local sugar mill in Indonesia and they were separated into two
fractions with different sizes in order to study the effect of fiber char-
acteristics on composite properties. The injection molded specimens
prepared from the composites contained the fibers in various amounts
and a functionalized, maleic anhydride modified PLA was used as
coupling agent to improve interfacial adhesion. The material was
characterized by standard tensile and impact measurements and local
deformation processes were followed by acoustic emission testing in
order to facilitate the interpretation of the effect of the studied variables
(composition, fiber characteristics, adhesion) on composite properties.
The practical relevance of the results is also discussed briefly at the end
of the paper.

2. Experimental
2.1. Materials

The bagasse fibers were obtained directly from the sugar mill (Candi
Baru Sugar Factory, Sidoarjo, Indonesia). They were washed with
ethanol, dried, cut and sieved. The fibers were separated into two, a long
and a short, fractions in order to study the effect of fiber characteristics
on composite properties. The long fraction was obtained by combining
fibers collected from the 0.8 mm (20 mesh) and 0.35 mm (45 mesh)
sieves, and the short fraction consisted of the fibers passing through all
sieves. The dimensions of the fibers were determined by digital optical
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microscopy before and after processing; the characteristics are compiled
in Table 1. The density of the fibers was determined by using a pyc-
nometer; the value obtained was 1.2 g/cm®.

The PLA used as matrix was obtained from NatureWorks (Minne-
tonka, MN, USA). The selected grade (Ingeo 4032D, M;, = 88500 g/mol
and My,/M,;, = 1.8) is recommended for extrusion. The polymer (<2% D
isomer) has a density of 1.24 g/ cm3, while its melt flow rate (MFR) is 3,9
g/10 min at 190 °C and 2.16 kg load. The functionalized PLA coupling
agent (MAPLA) was produced in our laboratory according to the method
developed earlier [34]. The PLA used in the grafting reaction was the
Ingeo 3251D grade obtained from NatureWorks (Minnetonka, MN,
USA). Its MFR was 35 g/10 min at 190 °C and 2.16 kg load. PLA was
dried for 4 h at 100 °C and 150 mbar pressure. 4 g maleic anhydride
(Merck KGaA, Darmstadt, Germany) was dissolved in 20 ml acetone
(Molar Chemicals Kft, Halasztelek, Hungary) and then 4 g Luperox 101
(Arkema, Colombes, France) peroxide was added to the solution. The
latter was poured onto 200 g PLA and homogenized in a plastic bag. The
granules were placed into an air circulating oven (Memmert UF450,
Memmert GmbH, Schwabach, Germany) for 5 min at 80 °C to evaporate
the solvent. Reactive processing was carried out using a Brabender Lab-
Station (Brabender GmbH, Duisburg, Germany) single screw extruder
with the temperature profile of 175-180-185-190 °C at 12 rpm. The
grafted polymer was characterized by NMR spectroscopy (Varian NMR
System, Agilent Technologies, Inc., Santa Clara, CA, USA), but was not
purified; it was used as obtained in the reaction.

2.2. Sample preparation

Before processing, the fibers were dried for 4 h at 105 °C (Memmert
UF450, Memmert GmbH, Schwabach, Germany), in order to eliminate
the moisture absorbed during standing in the laboratory. The PLA and
the coupling agent were also dried in a vacuum oven (Memmert VO101,
Memmert GmbH, Schwabach, Germany) at 100 °C and 150 mbar pres-
sure for 4 h. The fibers and the polymer were thoroughly mixed in a
plastic bag and then homogenized in a twin-screw compounder (Bra-
bender DSK 42/7, Brabender GmbH, Duisburg, Germany) at the set
temperatures of 170-180-185-190 °C and 40 rpm. The fiber content of
the composites changed from 0 to 30 wt% in 5 wt% steps. The amount of
the coupling agent was always 10% calculated for the reinforcement and
it was added at the expense of the matrix polymer. Weight percentages
were used for sample preparation, but mechanical properties depend on
the volume fraction of the reinforcement. This latter was calculated by
using the density of the components (see above). The granulated com-
posites were injection molded into standard (ISO 527 1A) tensile bars of
4 mm thickness using a Demag IntElect 50/330-100 (Demag Ergotech
GmbH, Schwaig, Germany) machine. Processing parameters were 40-
170-180-185-190 °C set temperature, 800-1200 bar injection pressure
depending on fiber content, 50 mm/s injection speed, 650-800 holding
pressure, 15 s holding time, and 45 s cooling time. The temperature of
the mold was set to 20 °C. The specimens were stored at ambient tem-
perature (23 °C, 50% RH) for a week before further testing.

Table 1
Dimensions of the bagasse fibers used before and after processing.

Fiber Coupling Processing Length Diameter Aspect ratio
(pm) (pm)

Short - before 815 + 626 221 £ 120 3.96
- after 468 + 253 201 + 100 2.73
after 592 + 330 234 + 109 2.65
Long - before 2845 + 1260 716 + 385 5.09
- after 729 + 320 271 + 128 2.98
after 746 + 410 278 + 155 2.96
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2.3. Characterization

Fiber characteristics were determined by digital optical microscopy
(Keyence VHX 500, Keyence Co., Osaka, Japan). The fibers were evenly
distributed on a glass plate for the determination. The dimensions of
6-700 fibers were measured both before and after processing. In order to
determine fiber dimensions after processing, composite samples were
put into boiling tetrahydrofuran (Molar Chemicals Kft., Halasztelek,
Hungary) for 4 h to dissolve the polymer, and then the fibers were sieved
and dried. Fiber dimensions were determined using the ImagePro 10
(Media Cybernetics, Inc., Rockville, MD, USA) software. The mechanical
properties of the composites were characterized by tensile and impact
testing. Tensile tests were carried out using an Instron 5566 (Instron,
Norwood, MA, USA) universal testing machine according to the ISO 527
1A standard with a gauge length of 115 mm and 5 mm/min crosshead
speed using a 10 kN load cell. Elongation was measured by a strain
gauge and the results were used for the calculation of modulus. Five
parallel measurements were done at each composition. Modulus, tensile
strength and elongation-at-break were derived from recorded stress vs.
strain traces. Local deformation processes were followed by acoustic
emission testing (AE) using a Sensophone AED 404 (Geréb és Tarsa Ltd.,
Budapest, Hungary) apparatus. A single al1 resonance detector with the
resonance frequency of 150 kHz was attached to the center of the
specimen. The threshold level of detection was set to 25 dB. Impact
resistance was characterized by the notched Charpy impact strength
(Zwick Pendulum Impact Tester HIT5.5P, Zwick Roell Group, Ulm,
Germany), which was determined according to the ISO 179 standard
with 2 mm notch depth at 23 °C, using a 0.5 J hammer. Seven parallel
measurements were carried out on each material. Instrumented impact
testing was done by using the same equipment with a 4 J hammer.
Dynamic effects were suppressed with mechanical damping achieved
with the application of a silicon rubber strip of 1 mm thickness. The
appearance of broken surfaces was studied by scanning electron mi-
croscopy (Jeol JSM 6380 LA, Jeol Ltd., Tokyo, Japan). Micrographs
were recorded on fracture surfaces created during tensile and fracture
testing, respectively, at the accelerating voltage of 15 kV. Before
recording the micrographs, the surfaces were sputtered with gold for 35
s using a Jeol Fine Coater (Jeol Ltd., Tokyo, Japan) apparatus.

3. Results and discussion

The results are discussed in several sections. First, the dimensions of
the two batches of fibers used as reinforcement are shown together with
the effect of processing on them. Subsequently, mechanical properties
are presented followed by the analysis of local deformation processes
and their possible impact on properties. The results are discussed in the
last section of the paper together with comments on relevance for
practice.

3.1. Fiber characteristics, the effect of processing

The dimensions of the reinforcing fibers are very important for
composite properties since the orientation of the fibers, as well as their
aspect ratio, determine the extent of reinforcement. As mentioned in the
experimental part, two fractions of the bagasse fibers were separated,
which had different dimensions. However, stiff fibers often break up
during the melt processing of composite materials and the extent of
attrition determines fiber length and aspect ratio in them. Accordingly,
the length, diameter and aspect ratio of the fibers were determined
before and after processing and the results are listed in Table 1. Both the
length and the diameter of the fibers differed significantly before pro-
cessing; both dimensions of the long fibers were about three-four times
larger than those of their shorter counterparts.

Processing led to considerable attrition in both cases, but the change
was larger for the long fibers than for the short ones that is not very
surprising. It is interesting to note, though, that not only the length, but
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also the diameter of the fibers decreased considerably for the long fibers;
the diameter of the short fibers remained practically the same as before
processing. The decrease of diameter indicates that the transverse
strength of the fibers is not very large and they split easily along their
axis. Although fiber dimensions still differ somewhat for the long and
short fibers, but the differences are much smaller than before processing.
The relatively small differences in fiber dimensions forecast similar
reinforcing effect for the two fractions of the fibers.

3.2. Mechanical properties

Although PLA is used in large quantities in the packaging industry, it
is often applied also as structural material. The stiffness, strength and
often the impact resistance are the most important properties for such
materials. The stiffness of the PLA/bagasse fiber composites is plotted in
Fig. 1 against composition. Increasing fiber content results in significant
reinforcement, the stiffness of the material almost doubles in the
composition range used in this study. Long fibers have slightly larger
reinforcing effect than the shorter ones, but the difference is not very
large in accordance with the small deviation in size and especially in
aspect ratio, as shown by Table 1 and discussed above. Coupling, i.e. the
use of maleated PLA does not have practically any effect, but this is in
accordance with our previous experience showing that interfacial
adhesion has only a slight effect on stiffness [34].

The strength of the composites is plotted against composition in
Fig. 2. Strength does not change much with composition that is bene-
ficial for the application of these composites as structural material. Short
fibers reinforce the polymer somewhat less than the longer ones, but in
view of the fiber characteristics of the two fractions this difference
agrees well with the expectations. It is somewhat more surprising that
coupling does not have any effect on strength either. The strength of PP
composites, for example, decreases drastically with increasing fiber
content in the absence of coupling [45,46]. The very small influence of
coupling on strength can be explained with our earlier results obtained
on PLA/wood composites showing that, contrary to numerous literature
references [22,23,25,27,40,42,44], interfacial adhesion between PLA
and lignocellulosic reinforcements is quite strong [12]. Accordingly,
improved interfacial adhesion due to the presence of MAPLA may pre-
vent the debonding of a few fibers with large size and especially with
large diameter, but otherwise it has a small effect, and other processes
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Fig. 1. Effect of composition, fiber characteristics and interfacial adhesion on
the stiffness of PLA/bagasse fiber composites. Symbols: (o) short, no MAPLA,
(@) short with MAPLA, () long, no MAPLA, (M) long, MAPLA. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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than debonding may also play a role in the determination of composite
properties.

As expected, the deformability of the composites is small, elongation-
at-break changes from 6% of the neat polymer to about 1.5% for the
composite containing 30 wt% bagasse fibers (not shown). None of the
variables studied, i.e. fiber dimensions or interfacial adhesion, in-
fluences deformability practically at all, at the same fiber content the
composites have very similar elongations. Small deformability forecasts
brittle fracture and poor impact resistance.

The fracture resistance of the PLA/bagasse fiber composites studied
is presented in Fig. 3 as a function of composition. Contrary to the
prediction mentioned above, impact strength increases with fiber con-
tent. The impact resistance of composites containing the short fibers is
somewhat smaller and goes through a maximum, while it approaches a
plateau for the composites prepared with the long fibers. Since the
stiffness of the composites increased considerably with increasing fiber
content, and usually an inverse correlation exists between stiffness and
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Fig. 3. Increase of the notched impact resistance of PLA/bagasse fiber com-
posites with increasing fiber content. Symbols are the same as in Fig. 1. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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impact resistance for most structural materials, the observed phenom-
enon is rather surprising and needs further consideration and explana-
tion. One reason for the increase might be the fact that bagasse fibers
initiate local deformation processes, which consume energy and
improve impact resistance.

3.3. Deformation and failure processes

PLA/bagasse fiber composites are heterogeneous materials with
components having considerably different elastic properties. Different
mechanical characteristics lead to the development of stress concen-
trations, which during deformation initiate local deformation processes
around the heterogeneities, i.e. around the fibers, in this case. In com-
posites containing fibers with large diameter several local deformation
processes may take place including the debonding of the fibers from the
matrix polymer, fiber pullout or fracture and occasionally also the shear
yielding of the matrix. Some of these processes (debonding, fracture) can
be followed by acoustic emission testing. The piezoelectric sensor placed
on the specimens can detect local processes during tensile testing. The
result of such a test is presented in Fig. 4. The small circles in the figure
indicate individual acoustic events the height of which is proportional to
the amplitude of the signal. Since the evaluation of individual signals is
difficult, we plotted their cumulative number, i.e. the sum of signals
detected up to a certain elongation (right axis) as well. The stress vs.
elongation correlation (left axis) is also presented in the figure for
reference. The result shown for the composite containing 5 wt% of the
long fibers with MAPLA is typical, acoustic emission measurements
yielded very similar results for all composites.

We can see that signals start to appear above a certain elongation, i.e.
there is an initiation deformation or stress of the process, and signals are
detected up to the end of the test. A closer scrutiny of the cumulative
number of signal vs. elongation correlation indicates that it can be
divided into two sections, i.e. two processes take place during defor-
mation. Characteristic deformations and stresses can be assigned to
these processes in the way indicated in Fig. 4. The composition depen-
dence of the characteristic stresses determined from the acoustic emis-
sion test is presented in Fig. 5. We can see that the two processes have
very different initiation stresses, that of the first step is below 20 MPa,
while the second is at around 40 MPa. Based on the acoustic emission
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Fig. 4. The results of the acoustic emission testing of a PLA/bagasse fiber
composite. Composition: 5 wt% of long bagasse fiber with MAPLA coupling
agent. Symbols: (o) individual acoustic signals, full lines are the stress vs.
elongation (left axis) and the cumulative number of signal vs. elongation (right
axis) correlations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)



A. Bartos et al.
50
—_
<
& d st
second ste
540—\L!gii§§p
- u
©
v 30 A
wn
5]
b=t
5]
£ 20 M
E 0 0 &)
l first step
o
S 104
<
<=
o
0 T T T
0.0 0.1 0.2 0.3 0.4

Volume fraction of bagasse

Fig. 5. Composition dependence of the characteristic stress of the local defor-
mation processes detected by acoustic emission testing. The symbols are the
same as in Fig. 1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

measurements we can only speculate about these two processes, but
earlier experience showed that debonding is initiated at smaller stresses,
while the second process characterized by larger initiation stress is
usually fiber pullout or fiber fracture. Since the analysis of fiber char-
acteristics before and after processing showed the relatively facile
fracture of the fibers also in the transverse direction, we may safely
assume that fiber fracture occurs also during mechanical deformation.

SEM micrographs recorded on the fracture surfaces of the specimens
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may offer further information about the local processes taking place
during deformation. A few representative micrographs are presented in
Fig. 6. The fracture of a large fiber can be observed in Fig. 6a recorded on
a composite containing the short fibers without coupling. Besides the
fracture of the long fiber, a closer inspection reveals the presence of fi-
bers with smaller aspect ratio, and shows that they tend to debond from
the matrix during deformation. Coupling, i.e. the presence of the MAPLA
coupling agent, does not modify the processes taking place during
deformation; Fig. 6b shows basically the same picture as the previous
one, i.e. debonding and fiber fracture are the dominating local defor-
mation processes. This observation confirms our previous conclusion
about the small effect of coupling on composite properties. The study of
a large number of micrographs indicated that besides these two pro-
cesses, some shear yielding of the matrix also occurs at certain places. As
Fig. 6¢ shows, yielding takes place mainly around fibers with small
aspect ratio. All the above micrographs were recorded on composites
prepared with the short fibers. For demonstration, we present a micro-
graph in Fig. 6d taken from the fracture surface of a composite con-
taining the longer fiber. The micrograph delivers practically the same
message as the previous ones (Fig. 6a and b), the small difference in fiber
length does not change the local processes taking place during
deformation.

Acoustic emission testing and the SEM study shows that three pro-
cesses take place during the deformation of the PLA/bagasse fiber
composites. Debonding does not consume much energy thus might not
explain the increase in impact resistance, but yielding and fiber fracture
might. The fact that considerable fiber fracture takes place is confirmed
by the SEM micrographs, but it is further supported by Fig. 7. The
characteristic stress of the second process detected by acoustic emission
is plotted against fiber content and it is extrapolated to the volume
fraction of 1. This approach which can be used only if adhesion is strong
and fiber fracture is the dominating local deformation process was used
earlier to determine the inherent strength of the fibers [47]. The similar

Fig. 6. SEM micrographs recorded on
the fracture surface of PLA/bagasse fiber
composites. The surfaces were created in
tensile testing. Fiber content is always
20 wt%. Local processes are indicated by
arrows in the micrographs. a) short fiber
without MAPLA (fracture, debonding),
b) short fiber with MAPLA (fracture,
debonding), c¢) short fiber without
MAPLA (debonding, shear yielding) d)
long fiber without MAPLA (fracture
debonding). (For interpretation of the
references to color in this figure legend,
the reader is referred to the web version
of this article.)
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Fig. 7. Composition dependence of the characteristic stress determined during
the acoustic emission testing of bagasse fiber composites. Determination of the
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this article.)

correlation obtained for PP/bagasse fiber composites in the same way is
also plotted as a reference. We can see that the correlations extrapolate
to very similar values irrespectively of the matrix polymer. Larger fibers
extrapolated to a smaller value, because the probability of flaws is larger
in them thus their inherent strength is smaller as it was shown earlier for
wood particles [47]. From these results we can draw the conclusion that
fibers fracture during deformation, mainly parallel to their axis, and the
process may contribute to energy absorption.

3.4. Discussion

The production of PLA composites suitable as structural material is
rather challenging for several reasons. The stiffness of PLA is reasonable
and it can be increased further by the addition of fibers. On the other
hand, the physical ageing of this polymer is fast resulting in further in-
crease in stiffness, but a drastic decrease of deformability [17]. The
original elongation-at-break value of around 200% for freshly prepared
samples decreases to a few percent in less than a week. Accordingly, the
material fails in brittle fracture and impact resistance is usually not very
large. The addition of stiff fibers to the already brittle polymer is ex-
pected to decrease fracture resistance even further.

In our case, however, impact resistance increased upon the addition
of bagasse fibers and with increasing fiber content. The effect must result
from local deformation processes, of which several takes place during
the deformation of the specimen. Earlier experience showed that
debonding does not consume much energy, but shear yielding initiated
by it or fiber fracture do. Local deformation processes usually determine
the macroscopic properties of composites. Close relationship has been
shown earlier between one of the local processes and the strength of the
composites [12,48]. Tensile strength is plotted against the characteristic
stresses of the processes detected by acoustic emission testing in Fig. 8.
Shear yielding does not give a signal, thus it cannot be detected in this
way. The straight line drawn in the right side of the figure indicates
identical characteristic stress and tensile strength, i.e. immediate failure
upon the occurrence of the local process. Quite surprisingly, neither
process leads to immediate failure. The initiation stress of the first,
probably debonding, is much smaller than tensile strength. Failure fol-
lows not much after the second process, but not immediately.
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Fig. 8. Correlation between the characteristic stresses of local processes
determined by acoustic emission testing and the tensile strength of PLA/bagasse
fiber composites. Symbols are the same as in Fig. 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

Accordingly, the second process may consume energy before failure thus
increasing impact resistance. Obviously, the combination of parameters
selected in this study leads to the preparation of composites with
acceptable properties. Stiffness increases as expected, but local pro-
cesses initiated by the fibers result in energy absorption and some in-
crease in impact resistance. Good adhesion between the fibers and PLA
leads to large strength even without coupling. The combination of these
properties makes these composites good candidates for structural
applications.

4. Conclusions

The determination of particle characteristics before and after pro-
cessing showed that considerable attrition takes place during melt pro-
cessing in both the length and diameter of the fibers. The reinforcement
is fiber-like with small aspect ratio and the originally different batches of
short and long fibers have similar particle characteristics after process-
ing. The results also confirmed that the interfacial adhesion between
PLA and lignocellulosic fibers is good, thus coupling is superfluous and
does not improve properties. The analysis of local deformation processes
by acoustic emission testing and microscopy showed that three local
processes take place in the material during deformation: debonding,
shear yielding and the fracture of the fibers. At least two of these pro-
cesses, shear yielding and fracture, consume sufficiently energy to in-
crease the impact resistance of the material. The modification of PLA
with sugarcane bagasse fibers results in considerably increased stiffness,
almost constant tensile strength and slightly increased impact resistance
yielding a material with reasonable combination of properties for
structural applications. Properties might be improved even further with
the optimization of the dimensions of the bagasse fibers.
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