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Abstract. Molecular dynamics simulations of nanoindentation have been performed using a spherical inden-
ter that penetrates a surface of an FCC copper model. The effects of the indenter radius and temperature on
the mechanical properties and deformation mechanisms are investigated. Several deformation mechanisms,
including atomic structural changes, dislocations, and pile-up of atoms around the indenter, are observed
depending on the indenter radius and temperature. Increasing the simulation temperature decreases the
hardness and reduced modulus. The reduced modulus decreases with the decreasing of the indenter radius
while the hardness does not change significantly.

1 Introduction

Recently, copper has been used widely in micro-
electronic applications. Some examples of its appli-
cations are lead frames, interconnection wires, and
heat sinks. Considering their important role in the
applications, besides the electrical and thermal prop-
erties, their mechanical properties are also important
to be investigated. Their mechanical properties, such
as hardness and stiffness, will influence their overall
performance. Nanoindentation becomes a more popular
method to study the mechanical properties of the mate-
rial, especially for micro and nano-scale application.

Molecular dynamic (MD) simulation has been used
intensively along with the experiment, to investigate
further the deformation mechanism in microscale dur-
ing nanoindentation. Saraev and Miller [1] investigated
the deformation mechanism of multi-layered copper
thin film during the nanoindentation test. They found
that the gliding of nucleated dislocation loops and the
slip in the grain boundaries are the main deformation
mechanisms in such multi-layered polycrystals. Liang
et al. [2] studied the deformation behaviour in the
three different crystallographic orientations of copper
under nanoindentation. They found a yielding plat-
form attributed to the effective resistance to dislocation
locks in the load-displacement curve of copper oriented
(001). While in copper oriented (111) and (110) more
mobile dislocation structures are found as typical char-
acteristic causes of load drops in the load–displacement
curves. Fang et al. [3] investigated the effect of veloc-

a e-mail: iwanh@petra.ac.id (corresponding author)

ity and loading on the nanoindentation of the copper
thin film. They found that both Young’s modulus and
hardness increase up to a critical value of indentation
velocity and decrease after that value. Young’s modu-
lus decreases, but hardness increases as the indentation
load increases.

In the micro- and nano-scale application of copper
material, surrounding temperature and contact area
to other components are also important factors that
can influence the mechanical properties. Zhao et al.
[4] presented temperature-dependent mechanical prop-
erties of single-layer molybdenum disulphide obtained
using MD nanoindentation simulations. The Young’s
moduli, maximum load stress, and maximum loading
strain decrease with increasing temperature from 4.2
to 500 K. Guo et al. [5] reported the effect of tem-
perature on the nanoscale deformation behaviour and
mechanical properties of c-plane monocrystalline gal-
lium nitride under nanoindentation. It was found that
both the hardness and Young’s modulus decreased as
the temperature increased. Similar results were also
found by Fang et al. [6], however, their estimated elas-
tic moduli and hardness are much higher than the prior
experiments. In this paper, the effects of the indenter
radius as a representative of the contact area and sim-
ulation temperature on the mechanical properties and
deformation mechanisms of copper during nanoinden-
tation are evaluated and reported.

2 Methods

The copper sample used in the simulation contains 6806
atoms and the dimension is 148.215 × 148.215 × 3.615

0123456789().: V,-vol 123
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Table 1 Elastic constants for Cu

Method C11 (GPa) C12 (GPa) C44 (GPa)

EAM-Adams [7] 168.1 123.7 78.8
Experiment [10] 168.4 121.4 75.4

Fig. 1 Displacement versus time set up to control the
indenter movement

Å3. The Boundary conditions in x - and z -directions
are set to be periodic for simulating an infinite length
in these directions. In y-direction, a shrink-wrapped
boundary condition is set up to simulate a free sur-
face where the indentation tip is located. Some atoms
at the bottom in the y-direction are held fixed during
indentation.

The EAM potential for Cu from Adams et al. [7] is
used in this simulation. The embedding functions are
determined empirically by fitting to several measured
parameters, namely the equilibrium lattice constant,
sublimation energy, and bulk modulus, elastic con-
stants, and vacancy formation energy [8]. The advan-
tage of the EAM potential model is it combines the
computational simplicity needed for a large model with
a physical picture that includes many-atom effects and
metallic bonding [9]. The elastic constants of Cu calcu-
lated using this potential are in good agreement com-
pared to experimental values [10] as shown in Table 1.

Nanoindentation is performed using a spherical
indenter into a [010] surface of the FCC copper sam-
ple. The velocity of the indenter is set up to be 0.15
Å/ps, and the displacement is controlled following the
displacement versus time pattern given in Fig. 1. After
reaching the maximum deformation, the indenter is
held still for a moment before unloading started. This
is usually done in the nanoindentation test to let the
instrument and specimen stabilise and also to measure
creep within the specimen [11].

Fang et al. [3] have shown in the MD simulations
of nanoindentation, both Young’s modulus and hard-
ness increase up to a critical value of indentation veloc-

Fig. 2 Load versus indentation depth of Cu with indenter
radius 10 lattice length at 5 K

ity (80 m/s) and decrease after that value. Imran et al.
[12] presented the increase of hardness with indentation
velocity from 10 to 200 m/s. In the other MD simula-
tions of nanoindentation, Goel et al. [13] indicated that
Young’s modulus does change significantly in the range
of indentation velocity between 5 and 100 m/s. In this
work, the indentation velocity is set to be a constant
parameter, to investigate the effect of temperature and
indenter radius.

The first part of the simulation is done using five dif-
ferent radiuses that are 5, 10, 15, 20, and 25 in lattice
units at temperature 25 K. Lattice unit means that the
unit is given in the unit cell size, which in this sim-
ulation is 3.615 Å. Before indentation, the sample is
relaxed at the desired temperature. The second part of
the simulation is done using indenter radius ten lattice
units with five different temperatures that are 5 K, 25
K, 45 K, 65 K, and 85 K.

Common neighbour analysis (CNA) [14] is performed
during the simulation to study the change in the crystal
structure. Using this analysis technique, various local
crystal structures, especially FCC, HCP, BCC, and
icosahedral, can be distinguished. Simulation is done
using a classical molecular dynamics program called
LAMMPS [15] and an atomistic visualisation program
OVITO [16] is used to visualise the simulation result.

The calculation and analysis procedures are done fol-
lowing the technique proposed by Oliver and Pharr
[17]. After performing the nanoindentation simulation,
the initial unloading stiffness (S ) is calculated. The
relationship between load and depth from unloading
data for stiffness calculation is described using a simple
power law:

P = A(h − hf)m, (1)

where A and m are constants and hf is the residual
depth after the unloading process. The curve fitting
method used is nonlinear least squares with the trust-
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(a)

(c)

(b)

Fig. 3 CNA Visualization and von Mises stress contour at some interesting points during indentation with an indenter
radius 10 lattice units at the temperature of 5 K

region algorithm which is in the curve fitting tool of
the MATLAB program ver. 7.10.0. The initial slope, or
stiffness (S ), is calculated first by differentiating that
equation analytically and then calculating the deriva-
tive at the peak load and displacement:

S =
dP

dh
= mA(h − hf)

m−1
. (2)

The displacement of the surface at the contact
perimeter, hs, is calculated by:

hs = ε
Pmax

S
. (3)

The value of ε used in this analysis is 0.75, S is cal-
culated from Eq. (3), and Pmax is from data.
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Fig. 4 Load versus indentation depth with various temperatures in K (a) and indenter radius in lattice units (b). Note.
For R = 10 lattice units and T = 85 K: (*) at time = 78 ps and depth = 11.7 Å, (**) at time = 80 ps and depth = 12Å,
(***) at time = 82 ps and depth 12 Å

The contact depth, hc, is determined by:

hc = hmax − hs. (4)

The projected contact area of spherical indenter tip
at peak load is computed using the following equation:

A = 2πrihc, (5)

where ri is the radius of the indenter.
The reduced modulus, Er, is calculated by:

Er =
√

π

2
S√
A

. (6)

And the hardness of the specimen is calculated by:

H =
Pmax

A
, (7)

where Pmax is the peak indentation load and A is the
projected area of the hardness impression.

The reduced modulus (Er) is also calculated using
Hertz elastic contact model [18] as:

P =
4
3
Erh

3/2r1/2, (8)

where P is the load, r is the indenter radius, and h is
the indentation depth. The reduced modulus value is
obtained from the values for indentation depth (h) of 1
Å and 2 Å.

3 Result and discussion

3.1 Deformation analysis

The load (P) versus indentation depth (h) of nanoin-
dentation on copper using an indenter radius of 10 lat-
tice units (i.e., 36.15 Å) at a temperature of 5 K is pre-
sented in Fig. 2. The first BCC structure formed during
the indentation is observed at the depth of 6.6 Å as
shown in Fig. 3a-left. At around this depth, the load
curve is steady as indicated at point ‘A’ in Fig. 2.

The von Mises stress in the region where the struc-
tural changes happen and its nearby is higher than in
another region, as can be seen in Fig. 3a-right. Sev-
eral atoms right beneath the indenter have lower von
Mises stress. The high-stress region develops symmet-
rically about the y-axis at 45◦ angle from the inden-
tation point. The region area containing atoms having
BCC structure continues to grow until the maximum
displacement (12 Å) of the indenter.

After the indenter reaches the maximum depth at
80 ps and is kept at that position for 5 ps, the load
decreases and indicates relaxation behaviour. During
this period, atoms having HCP structure are observed
at 84 ps, as presented in Fig. 3b-left, which is corre-
sponding to the point ‘B’ in Fig. 2. Dislocation is started
to be nucleated at the boundary of the region having
HCP structure and unknown structure and then trans-
mitted along the [110] direction. The von Mises stress
contour is still symmetric about the y-axis as presented
in Fig. 3b-right.

At the depth around 8 Å corresponding to the point
‘C’ in Fig. 2, the load is steady, then followed by a sud-
den drop of the load. This is related to Fig. 3c-left,
the region previously having HCP structure changes
to having BCC structure. The atoms having unknown
structure and dislocations move along [110] direction. In
addition to that, it can be seen the atoms with unknown
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Fig. 5 Temperature and indentation radius effects on the deformation mechanisms. Green dots = atoms having BCC
structure, blue dots = atoms having HCP structure, red dots = atoms having unknown structure. Only atoms having
non-FCC structure are shown for clarity

structure have higher von Mises stress as presented in
Fig. 3c-right.

After the sudden drop, the load then decreases
smoothly with a similar shape to the loading process.
When the indenter is completely removed from the sam-
ple, as presented in Fig. 2, small plastic deformation is
observed. From Fig. 5 (R =10 lattice units, T = 5 K,
Time = 165 ps), which will be discussed further in the
next section, it can be seen at the end of the simu-
lation some atoms having unknown structure are still
observed.

3.2 Effect of temperature and indenter radius

Temperature does not make much change on the shape
of the load-depth curve as presented in Fig. 4a. Lower
temperature slightly shifts the curve up since lower tem-
perature reduces the mobility of the atoms and makes

them more difficult to be deformed. A comparison of
the deformation mechanisms for the simulations with
temperatures of 5 K and 85 K is shown in Fig. 5 with
an indenter radius of 10 lattice units. In this figure, only
atoms having non-FCC structure are shown for clarity.
Atoms located at the top and bottom layers of the sim-
ulation box have unknown structure because of a non-
periodic boundary condition applied to this direction.

At the simulation with a temperature of 85 K, atoms
having HCP structure are observed at an earlier time
(at 80 ps) than at the simulation with a temperature of
5 K (at 84 ps). The region having unknown structure
are recovered back to have FCC structure more quickly
in the simulation with a temperature of 85 K than in
the simulation with a temperature of 5 K. This shows
the effect of temperature on the deformation behaviour,
structural change happens easier at a higher tempera-
ture
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Fig. 6 Temperature effect on the hardness (a) and reduced modulus (b)

Fig. 7 Indenter radius effect on the hardness (a) and reduced modulus (b)

Figure 4b shows the effect of the indenter radius vari-
ation on the load-depth curve. The loading and unload-
ing curves of the simulations using an indenter radius
larger than 10 lattice units are almost on top of each
other. At the simulations using an indenter radius larger
than 10 lattice units, the load drop when the indenter
stops after reaching the maximum depth, is less than
in the simulation using a smaller indenter radius.

The simulation using an indenter radius of 5 lat-
tice units shows the decreasing of the load when the
depth increases during the loading process after the
depth of about 9 Å, as presented in Fig. 4b. During
the load decreasing process, the dislocation movement
is observed along the [100], [110], and [110] directions.
This load decreasing behaviour is similar to the strain-
softening phenomenon observed by Champion et al.
[19], Haouaoui et al. [20], and Li et al. [21] in ten-
sile and compressive tests for copper nanocrystalline
or ultrafine-grained with grain sizes of 50–400 nm.

Nanoindentation using a smaller indenter radius
(especially with a radius of 5 lattice units) shows plas-
tic behaviour, while using a larger indenter radius tends
to show elastic behaviour. As shown in Figs. 4b and 5
(R = 5 lattice units, Time = 165 ps), using an indenter
with radius 5 lattice units, after the indentation is com-
pletely removed from the sample, small deformation is
still observed. A significant pile-up of atoms around the
indenter is observed during the indentation process even
after the indenter has been completely removed from
the sample (depth = 0 and time = 165 ps). Simulation
using the largest indenter radius i.e., 25 lattice units,
does not show a pile of atoms and the contour of the
surface is completely recovered at the end of the simu-
lation as shown in Fig. 5 (R = 25 lattice units, Time =
165 ps).

The effect of temperature on the hardness and
reduced modulus is shown in Fig. 6a, b. It can be
seen in Fig. 6a, decreasing the temperature causes the

123



Eur. Phys. J. B          (2021) 94:237 Page 7 of 7   237 

hardness to increase. Krashchenko and Oksametnaya
[22] using rigid rectangular pyramid sapphire indenter
showed that the decreasing of the hardness of pure cop-
per as the temperature testing increases from 290 to
1170 K. The similar trend also found by Huang et al.
[23], the hardness decreases from 4.4 to 0.8 GPa as the
temperature increases from 83 to 333 K. Our predicted
hardness at 85 K is close to these experimental values.

Reduced modulus calculated using the Hertz model
with 1 Å depth is closer to the value calculated using
Oliver and Pharr (OP) model compared to the value
calculated using the Hertz model with 2 Å depth as
shown in Fig. 6b. The reduced modulus shows the same
behaviour as the hardness, it decreases as the tempera-
ture increases. Lebedev et al. [24] experimentally found
Young’s modulus for copper of approximately 116–126
GPa at the range of temperature of 473 K and 293 K.
Our predicted modulus calculated using the OP model
is close to these experimental values.

Using the smallest radius of indenter (5 lattice units)
produces a lower hardness value than the larger one (10
lattice units) as shown in Fig. 7a. But then the hardness
values decrease along with the increase of the inden-
ter radius. However, the values, except for the indenter
radius of 10 lattice units, are not significantly different.
Qiu et al. [25] also showed that different indenter radius
almost has no effect on the hardness of the material in
the MD nanoindentation simulation amorphous alloy.
They used various radii of indenter of 3.0, 3.5, 4.0, and
4.5 nm.

Increasing indenter radius makes the reduced modu-
lus decreases as presented in Fig. 7b. This is related to
the change in the atomic structure during the indenta-
tion. In Fig. 5, the simulation using an indenter radius
of 5 lattice units shows fewer atoms undergo a struc-
tural change from FCC to BCC compared to the sim-
ulation using an indenter radius of 25 lattice units at
the same temperature. Furthermore, there is no change
from FCC structure to HCP structure is observed dur-
ing the nanoindentation using an indenter with 5 lat-
tice units radius. Fang et al. [3] using MD simulation
showed that Young’s modulus decrease as the penetra-
tion depth increases. A Larger indenter radius means
deeper penetration depth of the indenter; therefore, the
modulus is reduced.

4 Conclusion

Molecular dynamic simulations of nanoindentation on
copper have been performed using different inden-
ter radius and at different temperatures. Deforma-
tion mechanisms, including structural changes, dislo-
cations, and pile-up of atoms around the indenter, are
observed depending on the indenter radius and temper-
ature. Increasing the temperature decreases the hard-
ness and reduced modulus. Hardness does not change
significantly with the reduction of indenter radius.
The reduced modulus decreases with the decreasing of

indenter radius. The predicted Young’s modulus and
hardness are close to previous measurements.

Data Availability Statement This manuscript has no
associated data or the data will not be deposited. [Authors’
comment: The data that support the findings of this study
are available from the corresponding author, upon reason-
able request.]
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