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Abstract
Molecular dynamics simulation were employed to investigate the effect of changing the potential energies describing primary 
and secondary bonds on the Young’s modulus of a polymer. The energies were changed by arbitrarily modifying the param-
eters of the potential energy model function. The parameters influence the structure of the polymer and its global energy, 
eventually causing changes to the Young’s modulus. The van der Waals energy describing secondary bonds gives the most 
significant contribution to the changes. Increasing the energy increases the density and Young’s modulus. The trends are in 
agreement with experimental data.

Keywords Van der Waals energy · Young’s modulus · Polymer · Molecular dynamics simulation

Introduction

Stiffness is one of the interesting mechanical properties 
of polymers in many applications. In most engineering 
applications, materials should not deform beyond the 
required tolerances. It is generally accepted that a material 
exposed to a certain load, has a stiffness related to the second 
derivative of the material´s potential energy and the potential 
energy of a material is related to the interactions between 
atoms.

Some research showed that the stiffness of polymers is 
related to the intermolecular forces of the polymer chains. 
For instance, Rackley et al. [1] presented that the Young´s 
modulus of a densified polystyrene was higher than for the 
original material due to effects of intermolecular forces. 
The original polystyrene had a density of 1.049 g.ml−1 
and a Young’s modulus of 3.55 GN.m−2 (average of 3 
experiments) while the densified polystyrene had a density 

of 1.055 g.ml−1 and a Young’s modulus of 3.82 GN.m−2 
(average of 4 experiments). The densification was done 
by heating the polystyrene under high pressure to above 
the glass transition temperature (high-temperature high-
pressure, HT/HP polymerization), and cooling down slowly 
to room temperature before the pressure was released. 
The densification process did not lead to forming a new 
network of the polymer chains. Thus, the authors concluded 
that this is an indication that the intermolecular forces 
largely determine the elastic properties. Moreover, HT/
HP polymerization has been reported to produce urethane 
dimethacrylate (UDMA) [2] and polymer-based composites 
[3] with improved flexural strength and density.

Holliday and White [4] reported a relationship between 
the elastic modulus perpendicular to the chain axis direction 
and the cohesive energy density for various polymers. The 
elastic moduli were measured using an X-ray approach 
that can measure the modulus of the crystalline region on 
a molecular scale. As shown in Fig. 1, the elastic modulus 
increases with cohesive energy density. In addition, Seitz 
[5] developed a semi-empirical relationship between bulk 
modulus and cohesive energy of a polymer showing that the 
modulus increases with the cohesive energy.

Cohesive energy density is the energy required to break 
all intermolecular physical links in a unit volume of the 
material. Practically, cohesive energy density is defined as 
the ratio of the energy of vaporization to the molar volume 
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both at the same temperature. However, the experimental 
determination of cohesive energy for polymers is not 
straightforward, since polymers do not evaporate. The 
cohesive energy data of polymers are usually calculated 
indirectly from dissolution or swelling measurements of 
polymers in a variety of solvents [6]. Unfortunately, the 
experimental data of cohesive energy for some polymers 
show large variations.

Molecular dynamics (MD) simulations can predict material 
properties based on the atomistic forces between atoms. 
Mechanical properties of polymers, such as Young’s modulus 
and Poisson’s ratio, obtained from the MD simulations, have 
been found to be similar to experimental measurements 
[7–15]. This means that MD simulations are a potential tool 
to simulate and study properties of new imaginary polymeric 
materials by modifying the interactions between atoms. 
Such simulations can give a better understanding on how the 
physics of polymers and work and they can potentially guide 
the development of new polymers.

Generally, interactions between atoms in the polymer 
system are represented in MD simulations by their potential 
energies, as follows:

The interactions include bonded interactions between 
atoms connected by chemical bonds and non-bonded 
interactions between atoms belonging to different chains 
or the same chain but not chemically bonded. The potential 
energies of bonded interactions are associated with the 
deviation of bond lengths, angles and rotations away from 
their equilibrium values  (Ebond,  Eangle and  Edihedral). They 
are much stronger than the non-bonded interaction.

(1)E = Ebond + Eangle + Edihedral + Evan der Waals

The van der Waals (vdW) interactions are used to represent 
non-bonded interactions between atoms. The interactions 
include attractive and repulsive forces, due to dispersive forces 
during the fluctuations in the electronic clouds and due to 
electrons with the same spin respectively. The vdW energy 
calculated in MD simulations, thus, corresponds to cohesive 
energy measured experimentally. The Lennard–Jones 12–6 
function is typically used to describe the vdW interactions, 
which takes the following form:

where σ is the collision diameter, ε is the well depth 
constant, and r is the distance between two atoms. By 
increasing the ε parameter of a polymer, a new imaginary 
simulated type of the polymer with higher vdW energy will be 
created. Theoretically, one can keep increasing or decreasing 
the ε parameter and study its effect on the mechanical 
properties. Previous MD simulations have been performed 
to investigate the effect of ε parameter on thermodynamics 
properties of polymers melts [16] and changes in the collective 
molecular motion that accompany the observed changes in the 
properties [17].

A short time simulation of a united atom model of 
Polyethylene under cyclic loading using a standard ε 
parameter and an arbitrary higher ε parameter was performed 
by the authors of this study [14]. The simulations were done 
for cycling in load control with a constant maximum load 
for each cycle. The simulated cyclic mean strain was lower 
for the polymer with a higher ε parameter compared to 
the polymer with standard ε parameter. Further, the mean 
strain did not seem to increase with the number of cycles, 
indicating that creep was reduced. This study extends 
the work to the Young’s modulus of Polycarbonate (PC) 
using the previously developed model for PC [18]. PC 
is an amorphous polymer, which is widely used in many 
engineering applications. Various values of the ε parameter 
were chosen to investigate their effect on the vdW energy 
and the Young’s modulus was calculated at low strain 
deformation using MD simulations. In order to see how 
changing the primary bond characteristics would influence 
the results, the case of stronger bonded potentials (Ebond, 
Eangle and Edihedral) was also investigated.

Methods

System preparation

The initial structure of polycarbonate PC  (C16H14O3) was 
built in the MD model using the Polymer and Amorphous 

(2)Vij = 4�

[

(

�

rij

)12

−
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�

rij

)6
]

Fig. 1  Young’s modulus vs. cohesive energy density. Data from refer-
ence [4]
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Builder function of MAPS software [19], containing 9902 
atoms. The Dreiding potential energy parameters [20] 
were used as standard values of bonded and nonbonded 
interactions. The accuracy of the Dreiding force field has 
been tested by comparing measured and determined crystal 
structures of organic compounds, rotational barriers of a 
number of molecules and relative conformational energies 
and barriers of a number of molecules [20]. In the force 
field, charges are ignored except for peptides and nucleic 
acids systems.

MAPS creates the initial structure based on the Monte 
Carlo method combined with the recoil growth technique. 
Table 1 shows how equilibrium was approached in this 
work. An MD program designed for parallel computers, 
LAMMPS [21], was employed to perform MD simulations. 
All simulations were performed on the supercomputer at 
NTNU.

Stage 1 was done to speed up the relaxation of high 
potential energy created during the generation of the initial 
structure. Stage 2 and 3 used a temperature of 500  K, 
close to the melting temperature of PC [22]. In stage 4, the 
temperature was cooled down to room temperature (300 K). 
In stage 2–6, the time-reversible measure-preserving Verlet 
and rESPA integrators were used to integrate the equation 
of motion. Periodic boundary conditions were applied to all 
directions of the simulation box, simulating a bulk system. 
The quality of the equilibrium was checked by monitoring 
the fluctuations of energy, pressure and dimension of the 
simulation box.

Tensile testing simulations

Deformation was simulated by changing the simulation box 
in one longitudinal direction during a dynamic run. The 
other two transverse directions of the box were set to zero 
pressures, allowing the box to contract sideways. The change 

in longitudinal dimension was set at a constant engineering 
strain rate  (108 s−1). The tensile strain is unitless and is defined 
as the length change divided by the original simulation box 
length.

Various values of the vdW potential´s energy parameter 
ε (see Eq. 2) were applied to investigate their effect on the 
Young’s modulus, as shown in Table  2—simulation A. 
The Dreiding ε parameters of the vdW potential for C, O, 
and H atoms were 0.0951, 0.0957, and 0.0152 kcal.mol−1 
respectively. Therefore, for instance, in the case of the 
normalized ε parameters of 2, the Dreiding ε parameters for 
C, O, and H atoms will be 0.1902, 0.1914, and 0.0304 kcal.
mol−1 respectively. Each value was set up at the beginning of 
the system preparation, i.e. stage 1.

The Young’s modulus was obtained from the slope of 
the stress–strain curve at low strain (2%). Three simulations 
were performed to calculate the Young’s modulus. In each 
simulation, the simulation box was elongated in the X, Y or Z 
direction respectively and the obtained Young’s moduli were 
averaged. Similar to real polymers, this approach investigates 
slightly different molecular structures in each case, giving 
statistically representative values of the polymer properties. 
According to the ASTM D638 (Standard Test Method for 

Table 1  Methods employed 
to reach equilibrium of the 
polymer configuration

Stage Method/technique

1 Energy minimization, using Polak–Ribiere Conjugate Gradient algorithm
Energy stopping tolerance:  10–8

2 NVT ensemble, using Langevin thermostat
Temperature: 500 K

3 NPT ensemble, using Noose-Hoover thermostat and barostat
Temperature: 500 K
Pressure: 0 atm

4 NPT ensemble, using Noose-Hoover thermostat and barostat
Temperature: 500 K to 300 K
Pressure: 0 atm

5 NVT ensemble, using Langevin thermostat
Temperature: 300 K

6 NPT ensembles, using Noose-Hoover thermostat and barostat
Temperature: 300 K
Pressure: 0 atm

Table 2  Factors applied to the parameters of standard bonds

Parameter Simulation

A B C

Bond 1 10 10
Angle 1 10 10
Dihedral 1 1 10
Van der Waals (ε) 0.5, 0.75, 1, 

1.25,
1.5, 1.75, 2, 

5, 10

0.5, 1, 2, 5, 10 0.5, 1, 2, 5, 10
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Tensile Properties of Plastics), several test specimens are 
needed for obtaining properties of isotropic polymers. The 
properties should not vary significantly from one orientation 
to the other. For anisotropic polymers, several series of 
specimens are needed to be tested normal to and parallel 
to the principle axis of anisotropy. For each series of tests, 
the arithmetic mean of all measured values is calculated and 
reported as the “average value” for the particular property in 
question.

The effect of the ε parameter of the vdW potential on the 
Young’s modulus was initially investigated for standard PC. 
The other bonding energies describing the primary bonds 
along the chain´s backbone  (Ebond,  Eangle and  Edihedral) had 
the typical values for PC. In order to see how changing the 
primary bond characteristics would influence the results, 
the cases of stronger bonding potentials  (Ebond,  Eangle 
and  Edihedral) were also investigated, as shown in Table 2 
– simulations B and C.

In addition to room temperature (300 K), the effect of the 
ε parameters of the vdW potential on the Young’s modulus 
was also investigated at very low temperature. The previous 
system at 300 K was used and cooled down to 0.1 K. The 
next stage was done within the NVT ensemble at 0.1 K. The 
final stage was carried out within the NPT ensemble.

Results and discussion

Young´s modulus vs. local van der Waals potential 
energy

This study set out investigating the effect of the potential 
depth parameter (ε) of the van der Waals (vdW) potential on 
the Young´s modulus of an amorphous polymer resembling 
poly carbonate PC. The ε parameter controls the depth of the 
local vdW potential energy acting between polymer chains.

Figure 2 presents the effect of the ε parameter on the 
predicted Young’s modulus from simulations at 300 K and 
at 0.1 K. The error bars refer to the standard error of the 
Young’s modulus calculated by the following equation:

where σ is standard deviation and n is number of 
measurement.

Increasing the ε parameter increases the calculated 
Young’s modulus. It can be seen that there is a linear 
relationship between the ε parameter value and the calculated 
Young’s modulus. A higher ε parameter causes stronger 
vdW interactions and more energy is needed to move the 
atoms from their initial positions, therefore, polymer chains 
are getting more difficult to slide against each other. This 
indicates that the ease of sliding chains against each other 
dominates the stiffness characteristics of the polymer.

For a very low ε parameter, the polymer chains move 
like a liquid under tensile deformation. With a normalized 
ε parameter of 0.5 (normalized against the standard values 
for PC), the calculated Young’s modulus is almost zero. The 
Young’s modulus calculated with a normalized ε parameter 
of 10 is about ten times higher than calculated with a 
normalized ε parameter of 1. For a very high ε parameter, 
the chains may become tightly attached to each other and 
form a kind of crystal structure. The primary forces of bonds 
along the polymer chain may eventually become negligible. 
This extreme case would be very unrealistic, though.

The temperature significantly affects the predicted 
Young’s modulus. Lower temperature produces a higher 
Young’s modulus since the sections of the polymer chain 
have less kinetic energy due to low temperature reducing 
their ability to slide past each other. This is in agreement with 
most experimental data and was also shown by molecular 

(3)Standard error =
�

√

n

Fig. 2  Effect of the ε parameter on the predicted Young’s modulus, comparison between simulations at 300 K (simulation A) and 0.1 K. The plot 
on the left is an enlarged plot for ε parameters between 0.5—2

Journal of Polymer Research (2021) 28: 4747 Page 4 of 7



1 3

dynamics simulations [13, 15, 23]. Moreover, the linear 
increase of modulus with the ε parameter is observed for 
both temperatures analyzed here, as presented in Fig. 2.

Figure 3 presents the comparison between simulations A, 
B, and C (see Table 2). The potentials of the primary bonds 
were increased in simulations B and C. The bond stretch 
and bond angle potential parameters were increased by a 
factor 10 in the simulation B, compared to the standard case 
in simulation A. In addition to that, in the simulation C, the 
dihedral angle potential parameter was increased by a factor 
of 10. Increasing of bond stretch, bond angle, and dihedral 
angle potential parameters does not give a significant 
increase of the Young’s modulus. The main increase is 
still caused by the ε parameter. The increase also remains 
linear with ε in all cases. The small effect of changing the 
primary bonds (bond length, angle, dihedral) parameters of 
the polymer chain on the modulus strengthens the statement 
that the vdW depth parameter ε is the most important one.

Young´s modulus vs. global van der Waals potential 
energy

A different vdW depth parameter (ε) causes different molecular 
arrangements when the polymer is brought to equilibrium. 
This means the global vdW energy of the entire polymer body 
is not only affected by the parameter, but also by how the 
molecules arrange themselves. Figure 4 presents that not only 
the ε parameter influences the global vdW potential energy of 
the system, but also the bonded potential parameters  (Ebond, 
 Eangle and  Edihedral). All parameters of the potentials influence 
the structure of polymer during the equilibration processes and 
eventually, the polymer´s global vdW energy. However, the ε 
parameter gives the most significant contribution to the global 
vdW energy of the polymer.

The arrangements of chains are also affected by the 
primary bonded potential parameters. Stronger primary 
potentials create a structure having lower vdW energy. 
This can be seen from simulation C having the lowest vdW 
energy, although its primary bonded potential parameters 
are 10 times higher than in simulation A. However, it was 
found that for each simulation, the global vdW energy, 
being the integrated value of the entire polymer´s local vdW 
potentials, is linearly correlated to the vdW depth parameter.

Figure 5 shows that in each simulation, increasing vdW 
energy increases the Young’s modulus. However, it should 
be noted that considering the overall simulation results, the 
relationship is not simply linear. This indicates that, in addi-
tion to the vdW energy, there are contributions from bonded 
potential energies to the stiffness property of the polymer. 

Fig. 3  Effect of the ε parameter on the predicted Young’s modulus, comparison between simulations A, B, and C (Table 2) at 300 K. The plot on 
the left side is an enlarged plot for ε parameters between 0.5—2

Fig. 4  Effect of ε parameter on the absolute global vdW energy
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But, a fairly linear relationship between vdW energy and 
Young’s modulus can still be observed for each simulation.

The vdW energy in the MD simulation is represented 
by the Lennard–Jones 12–6 function, which includes the 
attractive and repulsive interactions between two atoms. 
The attractive contribution is due to dispersive forces 
because of the instantaneous dipoles, which arise during 
the fluctuations in the electronic clouds. The repulsive 
interaction is based on quantum mechanics principles, that 
two electrons cannot have the same quantum numbers; they 
cannot occupy the same region. The vdW energy calculated 
in MD simulations, thus, corresponds to cohesive energy 
measured experimentally.

The relationship between the Young’s modulus and the 
vdW energy predicted by MD simulations agrees with 
the experimental relationship between the elastic modulus 
perpendicular to the chain axis direction and cohesive 
energy density measured experimentally by Holliday and 
White [4]. Since they measured the experimental modulus 
using an X-ray method for the crystalline region, the 
intermolecular forces (represented by cohesive energy) 
should have a more significant role in governing the 
modulus perpendicular to the chain axis direction than the 
modulus parallel to the chain axis direction. In the later 
case, the contribution of intramolecular forces (primary 
bonds) would be more significant and the modulus should 
be higher.

Experimental data also show a relation between 
intermolecular forces, density and stiffness of a polymer 
[1]. Figure  6-left presents the relation between the 
density vs. global vdW energy (which represents the 
intermolecular forces) calculated from the simulations. 
The density increases as the global vdW energy increases. 
Increasing the global vdW energy makes closer molecular 
packing. The increase in the primary bonded potentials 
(stretch, angle and dihedral) also contributes to the change 
of density. However, the increased primary bonded 
potentials make the density increase less than when 
only the vdW energy increases. Figure 6-right presents 
the density vs. Young’s modulus. For each simulation, 
increasing the density increases the Young’s modulus, 
which is in agreement with the experimental data [1]. 
However, it should be noted that not only the change in 
density influences the Young’s modulus but the interplay 
between changes in bonded and non-bonded potentials.

Fig. 5  Effect of the global vdW energy on the predicted Young’s 
modulus

Fig. 6  Density vs vdW energy (left) and density vs. Young’s modulus (right) calculated from the MD simulations

Journal of Polymer Research (2021) 28: 4747 Page 6 of 7
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Conclusions

It was shown by using MD simulations that there is a linear 
relationship between the van der Waals (vdW) depth param-
eter and the Young’s modulus. Increasing the parameter 
increases global vdW energy, density and Young’s modulus 
of the simulated polymer. Primary bond and vdW potential 
energy parameters influence the structure of the polymer and 
its global vdW energy, which eventually changes the Young’s 
modulus. However, the vdW depth parameter gives the most 
significant contribution to the changes. The MD simula-
tions have shown relationships between global vdW energy 
vs Young’s modulus and global vdW energy vs density, in 
agreement with experimental data. Young’s modulus and den-
sity increase along with vdW energy. These findings provide 
enhanced insights into the structure–property relationship of 
a polymer.

Data availability Data available on request from the authors.

References

 1. Rackley FA, Turner HS, Wall WF, Haward RN (1974) Preparation 
of crosslinked polymers with increased modulus by high-pressure 
polymerization. J Polym Sci Polym Phys 12:1355–1370

 2. Phan AC, Tang M-L, Jean-François Nguyen N, Ruse D, Sadoun 
M (2014) High temperature high-pressure polymerized urethane 
dimethacrylate—Mechanical properties and monomer release. 
Dent Mater 30(3):350–356

 3. Nguyen J-F, Véronique Migonney N, Ruse D, Sadoun M (2012) 
Resin composite blocks via high-pressure high-temperature 
polymerization. Dent Mater 28(5):529–534

 4. Holliday L, White J (1971) The stiffness of polymers in relation 
to their structure. Pure Appl Chem 26:545

 5. Seitz JT (1993) The estimation of mechanical properties of polymers 
from molecular structure. J Appl Polym Sci 49:1331–1351

 6. Fedors R (1974) Method for Estimating Both the Solubility 
Parameters and Molar Volumes of liquids. Polym Eng Sci 14:472

 7. Brown D, Clarke JHR (1991) Molecular dynamics simulation of an 
amorphous polymer under tension: I. Phenomenology. Macromol-
ecules 24(8):2075–2082

 8. Yang L, Srolovitz DJ, Yee AF (1997) Extended ensemble molecular 
dynamics method for constant strain rate uniaxial deformation of 
polymer systems. J Chem Phys 107:4396

 9. Fortunelli A, Geloni C (2004) Simulation of the plastic behavior 
of amorphous glassy bis-phenol-A-polycarbonate. J Chem Phys 
121(10):4941–4950

 10. Lyulin AV, Li J (2006) Atomistic Simulation of Bulk Mechanics 
and Local Dynamics of Amorphous Polymers. Macromolecular 
Symposia 237(1):108–118

 11. Capaldi F, Boyce MC, Rutledge GC (2004) Molecular response of 
a glassy polymer to active deformation. Polymer 45:1391–1399

 12. Hossain D, Tschopp M, Ward D, Bouvard J, Wang P, Horstemeyer M 
(2010) Molecular dynamics simulations of deformation mechanisms 
of amorphous polyethylene. Polymer 51:6071–6083

 13. Sahputra IH, Echtermeyer A (2013) Effects of temperature and strain 
rate on the deformation of amorphous polyethylene: a comparison 
between molecular dynamics simulations and experimental results. 
Model Simul Mater Sci Eng 21:065016

 14. Sahputra IH and  Echtermeyer AT, (2014) "Creep-fatigue relationship 
in polymer: a molecular dynamics simulations approach," Macromo-
lecular Theory and Simulations

 15. Sahputra IH, Alexiadis A, Adams MJ (2018a) Temperature and 
configurational effects on the Young’s modulus of poly (methyl 
methacrylate): a molecular dynamics study comparing the DREI-
DING, AMBER and OPLS force fields. Mol Simul 44(9):774–780

 16. Wen-Sheng Xu, Douglas JF, Freed KF (2016) Influence of 
Cohesive Energy on the Thermodynamic Properties of a Model 
Glass-Forming Polymer Melt. Macromolecules 49(21):8341–8354

 17. Xu W-S, Douglas JF, Freed KF (2016) Influence of cohesive 
energy on relaxation in a model glass-forming polymer melt. 
Macromolecules 49(21):8355–8370

 18. Sahputra IH and Echtermeyer A, (2013) "Molecular Dynamics 
Simulation of Polycarbonate Deformation: Effect of Temperature 
and Strain Rate," in   International Conference on Computational 
Mechanics (CM13), Durham

 19. http://www.scien omics .com/,
 20. Mayo SL, Olafson BD (1990) DREIDING: a generic force field 

for molecular simulations. J Phys Chem 94(26):8897–8909
 21. Plimpton S (1995) Fast parallel algorithms for short-range molecular 

dynamics. J Comput Phys 117(1):1–19
 22. Bicerano J, (2002) Prediction of Polymer Properties, Marcel 

Dekker
 23. Sahputra IH, Alexiadis A, Adams MJ (2018b) Temperature 

dependence of the Young’s modulus of polymers calculated using 
a hybrid molecular mechanics-molecular dynamics method. J 
Phys: Condens Matter 30(35):355901

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Journal of Polymer Research (2021) 28: 47  Page 7 of 7 47

http://www.scienomics.com/

	The effects of the van der Waals potential energy on the Young’s modulus of a polymer: comparison between molecular dynamics simulation and experiment
	Abstract
	Introduction
	Methods
	System preparation
	Tensile testing simulations

	Results and discussion
	Young´s modulus vs. local van der Waals potential energy
	Young´s modulus vs. global van der Waals potential energy

	Conclusions
	References


