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1.  Introduction

Molecular dynamics (MD) simulations have been increas­
ingly utilised to study the behaviour of polymers and, in par­
ticular, to calculate their physical, chemical and mechanical 
properties. However, to study structural deformation under 
the influence of applied strain or stress (e.g. to calculate the 
Young’s modulus) there are challenges in tracking the detailed 
evolution of the system over an experimental time-scale. 
The polymer chains are trapped in local energy minima and, 
hence, relatively long times are required to achieve the global 
minimum. This cannot be addressed by MD since the time-
steps are of the order of femtoseconds. In MD, the integration 
of the equation of motion is performed sequentially and thus 
parallelization of processors does not reduce the computa­
tional time required.

Several methods have been proposed to accelerate MD 
simulations for such applications, e.g. by using higher temper­
atures, strain rates or stresses. However, greater values of these 
parameters affect the physical properties of organic polymers 

particularly during deformation, for example, higher strain 
rates increase the Young’s modulus while higher temperatures 
lead to a reduction [1–3]. Moreover, the lowest strain rates 
that can be applied even with high performance computing 
is of the order of 107–109 s−1 so that even by increasing the 
temperature it is only possible to access mechanical proper­
ties in the glassy or near-glassy state. Thus, thermally induced 
transitions to the rubbery or melt states cannot be studied nor 
those induced by plasticisation. The current lowest strain rates 
that are accessible by MD are still much higher than exper­
imental quasi-static loading rates, which are typically less 
than 10−1 s−1.

Other approaches have been proposed to address the time­
scale limitation of MD, for example, temperature-accelerated 
dynamics [4], parallel-replica dynamics [5], metadynamics 
[6] and hyperdynamics [7]. These methods have been devel­
oped primarily to investigate the behaviour of systems in the 
absence of externally applied stresses or strains, such as dif­
fusion and chemical reactions. However, the computation of 
the Young’s moduli depends normally on applying a small 
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external strain and, consequently, these methods are unsuit­
able for this application.

An alternative strategy is the application of small incre­
mental strains at a constant strain rate and subsequent relaxa­
tion of the system after each increment [8, 9]. However, in 
practice even the lower limit of the accessible strain rates is 
extremely high; therefore the system has only a very limited 
time to explore its potential energy surface (PES). As a result, 
there is a limit to the magnitude of the energy barriers that can 
be crossed and thus the system will adopt a meta-stable state 
corresponding to a local but not a global energy minimum. 
Other methods have been developed to mitigate this effect. 
The ABC (autonomous basin climbing) method [10, 11] is 
probably the most widely applied in which penalty functions 
are incorporated to the PES in order to drive the system out 
of the current energy level. The ABC approach is mainly used 
for metals [12–14], and has a number of disadvantages [15], 
e.g. (i) it is computationally expensive because of the penalty 
functions, (ii) there is not a rigorous approach for selecting 
the appropriate penalty functions and (iii) the method is more 
suitable at low temperatures when the entropic effects are not 
dominant, i.e. when the energy barriers are high such that the 
entropy can be neglected.

In the current work, a combination of molecular mechanics 
(MM), energy minimization and MD simulation is proposed 
to study the effect of temperature on the Young’s modulus 
of polymers. MM is based on a model of atomic interac­
tions within a system by considering related processes such 
stretching, deviations and rotations about single bonds. The 
arrangement of the atoms in the stable state corresponds to 
the minimum energy, which commonly is computed by the 
application of a minimization algorithm. The macroscopic 
properties then can be calculated from the stable configura­
tion. However, the contribution of the kinetic energy to the 
dynamics of the system is ignored in MM, and consequently 
the effects of temperature are not considered. MD accounts 
for the dynamics in terms of both the potential and kinetic 
energies. Therefore, combining MM, energy minimization 
and MD will drive the system to the stable state at the speci­
fied temperature and then the macroscopic properties may be 
calculated much more accurately. Thus, this hybrid approach 
does not require penalty functions as is the case for the ABC 
method and is applicable to any temperature.

2.  Methods

The procedure employed for combining MM and MD, as 
illustrated in figure 1, is listed below.

	 1.	�NVT step: initially the system is equilibrated at a 
specified temperature (NVT ensemble) by means of MD 
simulations.

	 2.	�MM step: a small strain increment is applied instanta­
neously in one orthogonal direction of the simulation 
box by changing the length of the box in that direction 
and re-mapping the atomic coordinates to the new box 
dimension. This will cause a deviation from the previous 
stable configuration to a new configuration with a greater 

potential energy level. In this MM step, only the potential 
energy is perturbed due to changes in the position of the 
atoms.

	 3.	�Minimization step: energy is minimized using a conju­
gate gradient algorithm while maintaining the value of 
the imposed strain. During minimization, the box size 
is changed in the transversal direction to maintain a 
constant external pressure of 1 atm. This is important for 
compressible materials, such as polymers, with Poisson’s 
ratio  <  0.5. To control the external pressure during 
energy minimization, a method proposed by Parrinello 
and Rahman [16] is employed, based on the objective 
function:

E = U + Pt (V − V0) + Estrain� (1)

		 where U is the potential energy of the system, Pt is the 
target pressure, V and V0 are the system and reference 
volumes, and Estrain is the strain energy expression pro­
posed by Parrinello and Rahman.

	 4.	�NPT step: the minimization step minimizes the potential 
energy, but it does not control the temperature of the 
system. This is achieved in the current step, when the 
system is further evolved by means of MD simulation at 

Figure 1.  Flowchart of the hybrid MM-MD method to calculate the 
Young’s modulus.
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the specified temperature and also 1 atm pressure in the 
transversal directions. This step will drive the system to 
the stable state such that it accounts for the contribution 
from both potential and kinetic energies.

	 5.	�Stress calculation step: finally, the stress, σ, is calculated 
taking account of the contribution from both the potential 
and kinetic energies by using the following expression:

σ =

∑N
i miv2

i

V
+

∑N
i ri · fi
V

� (2)

		 where N is the number of atoms in the system, mi the mass 
of atom i, vi the velocity of atom i, V the system volume, ri 
the position of atom i, and fi the force acting on atom i.

Steps 2–5 are repeated to calculate the stress for the range of 
imposed strain values.

	 6.	�Calculation of the Young’s modulus: The Young’s mod­
ulus is calculated from the linear gradient of the stress as 
a function of strain using the least squares best fit.

In step 3, the pressure defined by equation  (1) is a sen­
sitive function of the volume and, in order to achieve the 
objective pressure, the minimization algorithm changes the 
volume; thus it can be difficult for the algorithm to minimize 
the energy of the system at the specified pressure with high 
precision. Therefore, in some cases, it is required that step 3 in 
combination with additional minimization energy processes, 
is repeated several times in order to gradually change the pres­
sure to the specified value (figure 2).

In step 4, to increase the rate at which the stable state is 
achieved, an additional energy minimization process may be 
performed between MD simulations (figure 3). The fluctua­
tion of the properties of the system, such as energy, temper­
ature and pressure, are monitored until the values become 
stable. When equilibrium has been reached, the fluctuations 
are proportional to 1/

√
N  where N  is the size of the system.

3.  Application of the MM-MD method: a case study 
for poly-methyl-methacrylate

In this section, the method is applied to the specific case of 
poly-methyl-methacrylate (PMMA). It is well established that 
increasing the temperature of a polymer reduces the elastic 
moduli e.g. the tensile storage modulus of PMMA [17, 18] 
(the storage modulus is approximately equal to the elastic 
modulus for a single, rapid stress at a small strain in the linear 
viscoelastic region [19]). The current case study involves an 
isotactic-PMMA model containing 5 chains, each with 400 
monomers, and the DREIDING force field [20] was employed. 
The details on how to prepare and equilibrate the model are 
described in a previous publication [21], where the validity 
of the DREIDING force field was evaluated and compared to 
other force fields.

For each equilibrated model at a range of temperatures 
(200–400 K), the hybrid MM-MD method was applied to 
calculate the Young’s modulus using LAMMPS [22]. The 
maximum strain was set to 1% for which a linear relationship 
between stress and strain is typically observed experimentally. 
The strain was applied by ten successive small strain incre­
ments (i.e. 0.1% strain increments each for step 2 in figure 1) 
in order to obtain sufficient data points for calculating the 
gradient. The Polak–Ribiere version [23] of the conjugate 
gradient algorithm was used for the energy minimization pro­
cesses with a force stopping criteria of 10−9. Steps 3 and 4 

Figure 2.  Step 3 may be combined with additional energy 
minimization processes and repeated several times in order to 
gradually change the pressure to the specified value.

Figure 3.  An energy minimization process may be performed in 
between two MD simulations in step 4 to accelerate the rate at 
which the equilibrium state is achieved.
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were performed as those described in figures 2 and 3. The MD 
simulations were done with a time step of 1 fs.

Figure 4 shows an example of the implementation of the 
method using the model equilibrated at 200 K, during step 
4—MD simulations. The temperature and pressure were 
controlled using the Nosé–Hoover thermostat and barostat. 
Initially, the temperature was calculated to be about 100 K. 
The lower temperature here is due to the previous energy min­
imization (step 3), where the temperature was not maintained 
at 200 K. After about 3000 time-steps of the simulations, the 
temperature increases to the specified value of 200 K. There 
was a corresponding increase in the kinetic energy (figure 
4(a)) and a reduction (i.e. less negative value) in the poten­
tial energy (figure 4(b)). There is a linear relationship between 
the calculated stress and strain as shown in figure 5 and the 
Young’s modulus was calculated from the gradient.

The computed effect of temperature on the Young’s mod­
ulus is plotted in figure 6 together with the DMA experimental 
tensile storage modulus data [17] and previous MD simulation 
results [21, 24]. The DMA measurements were performed at 
a frequency of 1 Hz, which corresponds to a strain rate of 
2.1  ×  10−3 s−1. The previous MD simulations were carried 
out with a full atom model at a constant strain rate of 109 s−1 
and the Young’s moduli were calculated from the gradients 
of the stress–strain curves [21], and also with a united atom 
model at a small deformation with the Young’s moduli calcu­
lated from the stiffness matrix constants [24].

Figure 6 shows that MD alone (MD-1 and MD-2) does 
not result in a close fit to the experimental data, while the 
MM-MD technique proposed here achieves a very close 
agreement. The moduli calculated by simulations MD-1 are 
in a good agreement with the experimental values at temper­
atures in the range 200–300 K. However, the results are much 
greater than experimental values at temperatures  >  300 K. On 
the other hand, the modulus calculated by simulations MD-2 
is smaller at temperature 300 K, and the moduli are greater at 
temperatures  >  375 K compared to the experimental values. 
The high strain rates associated with MD simulations (MD-1 

Figure 4.  Evolution of the kinetic energy (a) and potential energy (b) during the first 5000 MD simulation time-steps (step 4). The 
temperature decreases after the energy minimization in step 3 and the thermostat in the MD simulations of step 4 increases the temperature, 
and thus the kinetic energy.

Figure 5.  A plot of the stress as a function of strain calculated for 
the PMMA model at 200 K; the Young’s modulus is calculated from 
the gradient of the best linear fit (dashed line).

Figure 6.  A comparison of the measured (DMA experiments 
[17]) and computed values of the Young’s moduli as a function of 
temperature. The computed values correspond to those obtained 
in the current work (MM-MD) and previous MD results (MD-1 
(previous work) [21] and MD-2 (previous work) [24]).
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and MD-2) restrict the mobility of the polymer chains under 
uniaxial tension and the polymer has a glassy response even 
at temperatures greater than the glass transition value (Tg). 
Thus, it is not possible to study thermally induced transitions 
to the rubbery or melt states using the conventional MD simu­
lations. However, the moduli calculated using the proposed 
method at various temperatures are in a close agreement with 
the experimental values, even at high temperatures. Thus, this 
method can be developed further to examine other temper­
ature and rate dependent behaviour of viscoelastic materials, 
such as creep and stress relaxation. For example, it could be 
applied to examine the plasticisation of organic polymers that 
result in a transition from the glassy to the rubbery state.

The relatively close agreement between the calculated and 
the DMA measurement values shown in figure 6 suggests that 
the MM-MD method can achieve stable states of the system 
deformed with a strain rate equivalent to an experimental 
value of order 10−3 s−1. Thus this method can be used to cal­
culate the Young’s modulus of polymers at a strain rate that is 
comparable to typical experimental quasi-static loading rates. 
With the current computation technology, the smallest strain 
rates that are accessible by conventional MD simulations are 
still much greater than those that can be achieved by the pro­
posed method.

Figure 6 also demonstrates that the hybrid MM-MD method 
can be used to calculate, within a close approximation, the 
Tg of the polymer. It may be observed that there is a sharp 
decrease in the calculated and experimental Young’s modulus 
for the temperature range of 350–400 K. This indicates a 
transition between the glassy and rubbery regions of PMMA. 
Previous MD studies (MD-1 and MD-2) could not effectively 
reproduce this transition. Simulations MD-1 produce only 
a slow decrease in the modulus in the temperature of range  
400–500 K. Moreover, simulations MD-2 indicate only a small 
change in modulus at high temperatures. Therefore, it is dif­
ficult to predict the Tg by using conventional MD simulations.

Small discrepancies between the calculated Tg by using 
the proposed method and the experimental value may be 

caused by several factors, such as the differences in the tac­
ticity, number of monomers, number of chains, and thermal 
history of the experimental samples and the simulation model. 
The Tg of PMMA has been shown experimentally to depend 
on the degree of polymerisation and tacticity [25] but is in 
the range 328–397 K. Additionally, the molecular weight of 
the current simulated PMMA is 40 kDa, which is greater than 
the critical entanglement value; it is considerably less than 
that of typical commercial PMMAs, which are in the range 
130–2200 kDa [26]. The computational time required by the 
method is approximately a factor of 10 longer than previous 
work (MD-1) when performed using the same number of pro­
cessors and the same high performance computing machine. 
Considering that the strain rate applied in the previous method 
(MD-1) is much faster (109 s−1) compared with the proposed 
method (~10−3 s−1), the computational time required by the 
method is still reasonable.

The glass transition behaviour is also shown in the other 
temperature dependence properties, such as specific volume 
or enthalpy, measured experimentally. Theoretically, the 
volume change and glass transition when polymers are cooled 
may be explained by the free volume concept; at the same 
temperature, a polymer with higher Tg has a lower percentage 
free volume than one with lower Tg [27]. The free volume is 
the volume which is not ‘occupied’ by polymers’ molecules. 
The volume occupied by polymers’ molecules depends on the 
arrangement of the polymer chains. In MD, some properties 
at atomistic level can be accessed and calculated to provide 
additional insights about the nature of the glass transition.

Figure 7 presents the normalised dihedral, improper and 
van der Waals (vdW) energies as a function of temperature cal­
culated in step 4 (see figure 1). It may be observed that there is 
a transition in the gradient of the energies at a temperature of 
~350 K, which is related to the Tg. The dihedral and improper 
energies are those required for rotation about a chemical bond 
and out-of-plane bending motions respectively, thus they 
affect the change in structure of individual polymer chains. 
These motions require less energy than stretching or bending 
bonds and therefore most variation in polymer structure arises 
from these motions. Higher dihedral and improper energies 
at a high temperature indicate that the structure has a larger 
free volume, providing more space for molecular vibrations. 
On other hand, the vdW energy depends on the interactions 
between different polymer chains, which is affected by the 
structure of individual chains and their neighbours. A greater 
vdW energy at a low temperature indicates a more compact 
structure of the polymer chains and thus less free volume, 
which restricts the movement of the chains sliding against 
each other.

4.  Conclusion

A hybrid MM-MD method for calculating the temperature 
dependence of the Young’s modulus for organic polymers has 
been developed. It overcomes the limitation of MD of being 
restricted to extremely high strain rates and thus not able to 
accurately account for thermal softening, which is observed at 

Figure 7.  Normalised dihedral, improper and van der Waals (vdW) 
energies as a function of temperature. There is a change in the 
gradient at the temperature about 350 K, which is related to the Tg.
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experimental accessible strain rates. Additionally, the method 
can be used to calculate the temperature of the glass-rubber 
transition within a close approximation.
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