PROOF COVER SHEET

Author(s): Iwan H. Sahputra Article title: Temperature and configurational effects on the Young's modulus of poly (methyl methacrylate): a molecular dynamics study comparing the DREIDING, AMBER and OPLS force fields Article no: GMOS 1450983 Enclosures: 1) Query sheet 2) Article proofs

Dear Author,

Please find attached the proofs for your article.

1. Please check these proofs carefully. It is the responsibility of the corresponding author to check these and approve or amend them. A second proof is not normally provided. Taylor & Francis cannot be held responsible for uncorrected errors, even if introduced during the production process. Once your corrections have been added to the article, it will be considered ready for publication

Please limit changes at this stage to the correction of errors. You should not make trivial changes, improve prose style, add new material, or delete existing material at this stage. You may be charged if your corrections are excessive (we would not expect corrections to exceed 30 changes).

For detailed guidance on how to check your proofs, please paste this address into a new browser window: http://journalauthors.tandf.co.uk/production/checkingproofs.asp

Your PDF proof file has been enabled so that you can comment on the proof directly using Adobe Acrobat. If you wish to do this, please save the file to your hard disk first. For further information on marking corrections using Acrobat, please paste this address into a new browser window:http://journalauthors.tandf.co.uk/production/acrobat.asp

2. Please review the table of contributors below and confirm that the first and last names are structured correctly and that the authors are listed in the correct order of contribution. This check is to ensure that your names will appear correctly online and when the article is indexed.

Sequence	Prefix	Given name(s)	Surname	Suffix
1		Iwan H.	Sahputra	
2		Alessio	Alexiadis	
3		Michael J.	Adams	

Queries are marked in the margins of the proofs, and you can also click the hyperlinks below.

Content changes made during copy-editing are shown as tracked changes. Inserted text is in red font and revisions have a blue indicator \checkmark . Changes can also be viewed using the list comments function. To correct the proofs, you should insert or delete text following the instructions below, but **do not add comments to the existing tracked changes.**

AUTHOR QUERIES

General points:

- 1. **Permissions:** You have warranted that you have secured the necessary written permission from the appropriate copyright owner for the reproduction of any text, illustration, or other material in your article. For further guidance on this topic please see: http://journalauthors.tandf.co.uk/copyright/usingThirdPartyMaterial.asp
- 2. Third-party material: If there is material in your article that is owned by a third party, please check that the necessary details of the copyright/rights owner are shown correctly.
- 3. Affiliation: The corresponding author is responsible for ensuring that address and email details are correct for all the co-authors. Affiliations given in the article should be the affiliation at the time the research was conducted. For further guidance on this topic please see: http:// journalauthors.tandf.co.uk/preparation/writing.asp.
- 4. **Funding:** Was your research for this article funded by a funding agency? If so, please insert 'This work was supported by <insert the name of the funding agency in full>', followed by the grant number in square brackets '[grant number xxxx]'.
- 5. Supplemental data and underlying research materials: Do you wish to include the location of the underlying research materials (e.g. data, samples or models) for your article? If so, please insert this sentence before the reference section: 'The underlying research materials for this article can be accessed at <full link>/ description of location [author to complete]'. If your article includes supplemental data, the link will also be provided in this paragraph. See http://journalauthors.tandf.co.uk/preparation/multimedia.asp> for further explanation of supplemental data and underlying research materials.
- 6. The CrossRef database (www.crossref.org/) has been used to validate the references. Changes resulting from mismatches are tracked in red font.

AQ1	The disclosure statement has been inserted. Please correct if this is inaccurate.
AQ2	The CrossRef database (www.crossref.org/) has been used to validate the references. Mismatches between the original manuscript and CrossRef are tracked in red font. Please provide a revision if the change is incorrect. Do not comment on correct changes.
AQ3	Please provide missing page numbers for Ref. '[3].'
AQ4	Please provide names of all authors for Refs '[1,3–9,11,13,15,17,19,20,23,24,29,30,38,45,50–52]' (or only the first three authors if there are more than three), as per journal style.
AQ5	Please provide missing details for Refs. '[30.31,47]'.
AQ6	Please provide missing last page number for Ref. '[36]'.
AQ7	Please provide missing city for Ref. '[39]'. Toronto

How to make corrections to your proofs using Adobe Acrobat/Reader

Taylor & Francis offers you a choice of options to help you make corrections to your proofs. Your PDF proof file has been enabled so that you can mark up the proof directly using Adobe Acrobat/Reader. This is the simplest and best way for you to ensure that your corrections will be incorporated. If you wish to do this, please follow these instructions:

- 1. Save the file to your hard disk.
- 2. Check which version of Adobe Acrobat/Reader you have on your computer. You can do this by clicking on the "Help" tab, and then "About".

If Adobe Reader is not installed, you can get the latest version free from http://get.adobe.com/reader/.

- 3. If you have Adobe Acrobat/Reader 10 or a later version, click on the "Comment" link at the right-hand side to view the Comments pane.
- 4. You can then select any text and mark it up for deletion or replacement, or insert new text as needed. Please note that these will clearly be displayed in the Comments pane and secondary annotation is not needed to draw attention to your corrections. If you need to include new sections of text, it is also possible to add a comment to the proofs. To do this, use the Sticky Note tool in the task bar. Please also see our FAQs here: http://journalauthors.tandf.co.uk/ production/index.asp.
- 5. Make sure that you save the file when you close the document before uploading it to CATS using the "Upload File" button on the online correction form. If you have more than one file, please zip them together and then upload the zip file.

If you prefer, you can make your corrections using the CATS online correction form.

Troubleshooting

Acrobat help:http://helpx.adobe.com/acrobat.html Reader help:http://helpx.adobe.com/reader.html

Please note that full user guides for earlier versions of these programs are available from the Adobe Help pages by clicking on the link "Previous versions" under the "Help and tutorials" heading from the relevant link above. Commenting functionality is available from Adobe Reader 8.0 onwards and from Adobe Acrobat 7.0 onwards.

Firefox users: Firefox's inbuilt PDF Viewer is set to the default; please see the following for instructions on how to use this and download the PDF to your hard drive:

http://support.mozilla.org/en-US/kb/view-pdf-files-firefox-without-downloading-them#w_using-a-pdf-reader-plugin

© 2018 Informa UK Limited, trading as Taylor & Francis Group

Temperature and configurational effects on the Young's modulus of poly (methyl methacrylate): a molecular dynamics study comparing the DREIDING, AMBER and OPLS force fields

5 Iwan H. Sahputra, Alessio Alexiadis and Michael J. Adams

School of Chemical Engineering, University of Birmingham, Birmingham, UK

ABSTRACT

10

15

The effects of the configuration and temperature on the Young's modulus of poly (methyl methacrylate) (PMMA) have been studied using molecular dynamics simulations. For the DREIDING force field under ambient temperatures, increasing the number of monomers significantly increases the modulus of isotactic PMMA while the isotactic form has a greater modulus. The effects of temperature on the modulus of isotactic PMMA have been simulated using the DREIDING, AMBER, and OPLS force fields. All these force fields predict the effects of temperature on the modulus from 200 to 350 K that are in close agreement with experimental values, while at higher temperatures the moduli are greater than those measured. The glass transition temperature determined by the force fields, based on the variation of the volume as a function of the temperature, there is closer agreement. The Young's moduli calculated in this study are in closer agreement to the experimental data than those reported by previous simulations.

1. Introduction

Poly (methyl methacrylate), PMMA, is classified as a polyacrylate and is biocompatible and non-biodegradable. Consequently, it can be used alone as a matrix material or as a minor phase to improve some properties of biodegradable matrices [1]. In addition to its mechanical stability and strength, low cost and ease of manufacture, it has some properties that make it a valuable material for biomedical and pharmaceutical applications, such as non-toxicity and minimal inflammatory reactions with tissues [2]. Examples of biomedical applications include microspheres [1,3], microcapsules [4,5], dental [6,7], implants [8,9], bone cements [10,11] and contact lenses [12,13].

For such applications, it is crucial to fully understand the impact of the raw material properties on the final products. Hlinak et al. [14] presented a set of critical material properties in pharmaceutical formulations and for process developments of solid dosage forms. For example, the elastic modulus of micro-35 sphere materials will influence the final mechanical properties of the dosage form. This is also the case for other polymeric materials, e.g. the degree of polymerisation and molecular weight of microcrystalline cellulose show a strong positive impact on tablet strength [15,16]. Therefore it is important to be able to measure 40 material properties by laboratory experiments or to predict them by mathematical modelling. Such modelling has an advantage compared to an experimental approach since it can provide a more fundamental scientific understanding of the parameters governing the properties.

Molecular dynamics (MD) simulation has been increasingly employed to predict the mechanical properties of polymers. It is based on an empirical mathematical model of the potential energy of atoms and classical equations of motion in order to simulate the interactions and dynamics of materials at an atomistic level. However, to derive more reliable predictions of the macroscopic properties of polymers, a large number of conditions needs to be studied and compared to laboratory data. For PMMA, some MD simulations have been performed to study its various properties; however, there are discrepancies between the results and experimental values.

Jaramillo et al. [17] developed a PMMA model consisting of 1080 chains, where each has 96 monomers, to study how volu-55 metric and deviatoric strains influence the yield behaviour for a wide range of loading conditions. They observed that permanent deformation occurred when either the deviatoric or volumetric strains reached critical values. Kim et al. [18] developed 60 two models based on five and also forty 96-monomer chains in order to characterise the molecular structure, thermal properties and energetics of PMMA films. The calculated free surface energies agreed closely with experimental measurements and 65 they observed that the annealing process had a strong effect on the molecular structure. Sane et al. [19] constructed a model of amorphous PMMA consisting of 3 chains, where each chain had 50 monomers, and calculated the bulk compliance as a 70 function of temperature. Near room temperature, their results were consistent with experimental values; however, the variation

ARTICLE HISTORY

Received 24 October 2017 Accepted 5 March 2018

KEYWORDS Poly (methyl methacrylate) (PMMA); DREIDING; AMBER; OPLS; Young's modulus

45

50

Check for updates

5

2 👄 I. H. SAHPUTRA ET AL.

of the compliance with temperature could not be reproduced completely.

Soldera and Grohens [20] performed MD simulations of PMMA chains with different tacticity to investigate the glass transition behaviour and carried out energetic and local dynamics analyses. Their simulated glass transition temperature (Tg) for isotactic PMMA (i-PMMA) and syndiotactic PMMA (s-PMMA) are higher than experimental values, however, the difference in the two values is in close agreement with experimental data.

- Mohammadi et al. [21] attempted to estimate the Tg of i-PMMA 10 by employing the united atom model consisting of 3 chains each with 100 monomers. To achieve this objective, the polymer properties including the thermal conductivity, volume, thermal expansion and Young's modulus were examined. They found that
- the Young's modulus ranged from 1.9-1.2 GPa in the temperature 15 range of 300-600 K. The values at low temperatures up to room temperature were less than experimental values while at high temperatures they were higher, and the simulated Tg was higher than experimental values.
- 20 The aim of the current study is to present a further exploration of MD simulations that reproduce the effects of tacticity, number of monomers per chain (degree of polymerisation) and temperature on the elastic properties of PMMA. The previous work did not include these factors, for example, they did not consider the
- 25 effects of different numbers of monomers on the properties and the numbers of monomers were much fewer than commercial PMMA. The mechanical properties of PMMA, such as the toughness, improve with increasing molecular weight up to a limiting value of $\sim 10^5$, which corresponds about 1000 monomer units
- [22]. Therefore, it is necessary to build PMMA models with more 30 monomer units since the previous simulations were unable to produce results that were in close agreements with experiments, e.g. in terms of the smaller Young's modulus at room temperature or higher Tg values.
- 35 The suitability of three force fields is also evaluated for reproducing the effects of temperature on the Young's modulus of i-PMMA. In MD simulations, the force field used to describe the interaction between atoms and molecules is one of the most important factors influencing the accuracy of the simulated sys-40 tem and its properties. The force fields evaluated and compared for the first time in this study are the DREIDING [23], AMBER [24], and OPLS all-atom [25]. These force fields were selected because they have been employed in previous studies of PMMA. The DREIDING force field has been validated by comparing i-PMMA crystals to X-ray structural analysis data [19] and has
- 45

Table 1. PMMA models for the simulations.

No	Configuration	Number of mono- mers in each chain	Total number of atoms
1	Isotactic PMMA (i-PMMA)	100	7510
2	Isotactic PMMA (i-PMMA)	200	15,010
3	Isotactic PMMA (i-PMMA)	400	30,010
4	Syndiotactic PMMA (s-PMMA)	100	7510
5	Syndiotactic PMMA (s-PMMA)	200	15,010
6	Syndiotactic PMMA (s-PMMA)	400	30,010

been applied to study the Tg of s-PMMA [26]. The AMBER force field has been used to study syndiotactic and isotactic oligomers of PMMA and is able to reproduce quantitatively the experimental X-ray scattering results obtained in dilute solutions of benzene, especially for syndiotactic oligomers of PMMA [27]. The OPLS force field has been validated by direct comparison to structural and dynamic neutron scattering measurements, and by comparison via temperature extrapolation of activation energies and rotational times for methyl group rotations [28]. It also has been used to study the effects of tactility and temperature on the 55 surface structure of PMMA at a polymer-vacuum interface [29].

2. Modelling and simulation

The initial structures of PMMA, -[CH₂-C(CH₂)(OCOCH₂)]-, were created using Polymer Modeler [30]. To study the various configurations, six models were created (Table 1), where each 60 model has 5 chains. Figure 1 shows the structure of a single chain i-PMMA and s-PMMA models containing 4 monomers visualised using Jmol [31]. The ester groups of i-PMMA are projected on the same side of the polymer chain while for the syndiotactic form, they are projected in a regular alternation on both sides 65 of the polymer chain. The tacticity of polymers influences their physical properties such as the Tg and solubility. The parameters for DREIDING, AMBER and OPLS force fields were those reported in references [19,27,28] respectively.

The Polak–Ribiere version of the conjugate gradient algorithm 70 [32] was employed to minimise the energy of the initial structure, with a force stopping criteria of 10⁻⁹. The MD simulations were then performed under isothermal conditions for 50 ps at two high temperatures (600 and 1000 K) with the temperature controlled by a Langevin thermostat. Two different initial tempera-75 tures were selected in order to study the effects of the annealing temperature on the mechanical properties. Subsequently, further simulations of 50 ps duration were conducted under isobaric-isothermal conditions at the same temperature and zero pressure, where the temperature and pressure were controlled 80 using a Nose-Hoover barostat and thermostat, respectively. The temperature was cooled to the required value (200, 250, 300, 350, 400, 450, 500, 550, 600, 650, and 700 K) within 100 ps again using a Nose-Hoover barostat and thermostat. The model was then subjected to seven equilibration process cycles with each 85 cycle composed of an energy minimisation using the conjugate gradient algorithm and an equilibration process for 50 ps under isobaric-isothermal conditions at the specified temperature and zero pressure. The measurement of the volume of the samples corresponded to a duration of 50 ps after equilibration. 90

To compute the Young's moduli, MD simulations of uniaxial extension were implemented using LAMMPS [33] with periodic boundary conditions. Each model was stretched sequentially in orthogonal directions to a true strain of 2% at a constant strain rate of 10⁹s⁻¹. The stretching duration was 21 ps. The mean values 95 of the Young's moduli were calculated from the gradients of the stress-strain curves.

3. Result and discussion

Table 2 presents the Young's modulus for the two PMMA configurations calculated from the simulations using the DREIDING 50

Figure 1. (Colour online) Structure of small (a) i-PMMA and (b) s-PMMA models. Red: oxygen, grey: carbon, white: hydrogen.

force field at 300 K. For comparison, experimental values at strain rates of 4×10^{-5} and 4×10^{-2} s⁻¹ are 3.4 and 6.3 GPa, respectively [34]. Information about the tacticity of the sample was not available, however, commercial PMMA materials generally have 50–70% syndiotactic, about 30% atactic, and <10% isotactic [35] configurations.

To the authors' knowledge, data have not been published for the Young's modulus of both pure i-PMMA and s-PMMA. However, increasing the chain regularity and isotacticity of polypropylene has been shown to be accompanied by proportionally greater increase in the stiffness [36]. Moreover, the barrier energy of the ester methyl groups for rotation in i-PMMA is greater than in s-PMMA [37,38], which implies higher local order and

stronger non-bonded interactions with neighbouring groups.
 The current simulations show that the dihedral angle energy for i-PMMA is greater than for s-PMMA e.g. for 400 monomer models, the energy is 4182 and 3763 kcal/mole for i-PMMA and s-PMMA, respectively. Therefore, it is expected that i-PMMA has a greater stiffness than s-PMMA, which is consistent with the simulated data shown in Table 2.

25

5

10

It can be seen in Table 2 that the Young's moduli of the samples containing 400 monomers are greater than the published experimental data in [34] measured at the lowest strain rate, but smaller than the one measured at the fastest strain rate. It is well known that the Young's modulus of a polymer increases with increasing strain rate [34]. The simulations involved a much higher strain rate than the highest experimental value, however, the moduli are lower. This can be explained by the differences between the

 Table 2. Effect of configuration on the mean values Young's modulus calculated in three orthogonal directions at 300 K using the DREIDING force field.

_	Young's modu	lus (GPa)
Number of monomer	s-PMMA	i-PMMA
100	2.82 ± 0.56	3.12 ± 0.68
200	2.74 ± 0.25	3.69 ± 0.60
400	3.60 ± 0.67	3.95 ± 0.47

simulations and experiment, in term of number of monomers 30 and thermal history, as discussed below.

In [34] information is not given about the number of monomers, however, commercial PMMA materials may consist of about 1300-22,000 monomers [39]. While the largest model considered here has only 400 monomers, which is relatively 35 small compared to commercial PMMA, but is a higher molecular weight than considered previously in published models (100 monomers or less). The smaller molecular weight of the models contributes to the lower Young's modulus compared to the experimental values. It has been shown that the molecular weight of 40 PMMA influences the flexural modulus of cross-linked dentures based on this polymer [7]; increasing the molecular weight from 120,000 to 220,000 (corresponding to an increase in the number of monomers from about 1200 and 2200, respectively) significantly increases the modulus. The molecular weight of PMMA 45 also influences the modulus at room temperature measured using the dynamic mechanical analysis technique (DMA) [40] and the modulus of elasticity measured using transverse deflection [41]. The current work also shows a similar trend of an increase in the Young's modulus with an increase of the number of monomer 50 units (Table 2). It may be concluded that the DREIDING force field is satisfactory in this respect.

The mechanical behaviour of glassy polymers is known to be dependent on their thermal history, such as quenching and annealing. Annealed samples of polycarbonate, poly(vinyl chlo-55 ride), polystyrene, and poly(methyl methacrylate) have been shown to have a greater yield stress and Young's modulus than the quenched samples [42-44]. Quenched polymer samples have a greater enthalpy change measured by differential scanning calorimetry, which is consistent with the greater degree of 60 structural disorder preserved by quenching [43]. By quenching, the mobility of polymer molecules is reduced therefore they cannot organise themselves periodically to form a crystal structure, hence the relatively smaller yield stress and modulus. The fast cooling rate for preparing the samples in the MD simulations 65 also contributes to the calculated Young's modulus being smaller than the experimental values.

🔄 I. H. SAHPUTRA ET AL. 4

Table 3 presents the influence of the annealing temperature on the Young's modulus of i-PMMA and s-PMMA calculated at various temperatures using the DREIDING force field. There is not a significant discrepancy between the values calculated from the two annealing temperatures; the difference between them is within the statistical deviation of the calculation. However, at a temperature of 500 K, the model annealed at 1000 K tends to give a smaller Young's modulus, which is closer to experimental values. It should be emphasised that the selection of the current annealing temperatures (600 and 1000 K) did not significantly influence the Young's modulus of the polymers calculated at ambient temperatures. However, for investigating the effect of temperature, the annealing temperature was set at 1000 K since the results were in closer agreement with experimental data at high temperatures.

15

5

10

20

The effect of temperature on the Young's modulus calculated using the three force fields is presented in Figure 2. For this purpose, an i-PMMA model with 400 monomers/chain and an annealing temperature of 1000 K was used. As would be expected, the figure shows that increasing the temperature reduces the Young's modulus. A similar trend has been found for the storage modulus of PMMA measured by DMA, for example [45,46].

At room temperature, the Young's modulus is about 3.74, 3.69 25 and 4.68 GPa for the simulations using the DREIDING, AMBER, and OPLS force fields respectively; the measured storage modulus at 1 Hz is about 3 [46] and 5 GPa [45]. The storage modulus is approximately equal to the elastic modulus for a single, rapid stress at low strain in the linear viscoelastic region [47].

30 Therefore under ambient temperatures, the three force fields are able to reproduce the Young's modulus in close agreement with the experimental data. At temperatures between 200 and 300 K, all force fields also predicted that the Young's modulus is in close agreement with experimental data, which are between 4.8-3 GPa 35 [46] and 7.3–5 GPa [45], where the OPLS predicted a greater

modulus than the other two force fields.

It can be observed in Figure 2 that for all force fields there is a sharp decrease (about 1 GPa) in the Young's modulus for the temperature range of 450 to 500 K. This indicates a transition

- between the glassy and rubbery regions of PMMA. In [45,46], 40 such reductions (about 2.1 and 1.3 GPa, respectively) were measured between 380 and 400 K corresponding to the Tg (381 and 388 K respectively). These Tg values indicate that the samples are composed mainly of syndiotactic configurations.
- 45
- According to [48], the measured Tg of s-PMMA is between 328 and 397 K depending on the degree of polymerisation, while for i-PMMA it is between 295 and 323 K, and also depends on the degree of polymerisation. The current values for i-PMMA are higher than the measured Tg. It is known that the Tg determined

Table 3. Effect of annealing temperature on Young's modulus at various temperature using the DREIDING force field.

	Young's modulus (GPa)		
Temperature (K)	Annealing temperature = 600 K	Annealing temperature = 1000 K	
200	4.53 ± 0.55	4.14 ± 0.16	
300	3.95 ± 0.47	3.74 ± 0.38	
400	2.89 ± 0.23	3.10 ± 0.44	
500	1.70 ± 0.24	1.52 ± 0.14	

CE: XX QA: XX

OC:XX

Coll:XX

50 by thermomechanical techniques depends on the deformation rate. Therefore, the origin of the discrepancy could be the much higher strain rate applied in the MD simulations compared to those applied in the DMA. The higher strain rate in the current simulations results in a shorter time for the polymer chains to reorientate when stretched, and hence the Tg is higher. 55

Initial

At high temperatures (>350 K), the current simulations using all force fields cannot reproduce the measured values of the Young's modulus although the OPLS predicted greater modulus values than the other two force fields. For example, at 400 K the measured values of the Young's modulus are about 0.1 [46] 60 and 0.03 GPa [45]. It is possible that the greater values computed here arise from the much greater imposed strain rates, which restricts the mobility of the chains under uniaxial tension. For the DREIDING potential, Sane et al. [19] reported that the bulk compliance of PMMA at high temperatures (>350 K) also can-65 not be reproduced accurately compared to experimental values.

When a polymer is stretched, the chains ends are moved apart and the conformations are changed. The methyl side groups (CH, and OCOCH,) of PMMA hinders the free rotation about the main C-C bonds, which is required to change the conformation. 70 For example, in neutron scattering experiments, the ester methyl group is assumed to be in one of three states, with a dihedral angle of C-O-C-H approximately equal to 0 and ±120° and that the observed motion involves jumps between these states [49]. Thermal energy is required to activate such jumps in order to 75 overcome the dihedral torsional energy, where at low temperatures the available thermal energies are insufficient. The temperature at which this jump can occur is related to the Tg. The computed changes in the dihedral torsional energy of i-PMMA as a function of temperature are presented in Figure 3. At about 80 350 K, there is a small change in the gradient of the change in dihedral energy. This temperature corresponds to the computed Tg of i-PMMA. This is less than the value (450 to 500 K) determined from the Young's modulus - temperature curve (Figure 2). However, it is more consistent with the measured range of 85 295-323 K [48].

The cooling rate to prepare the sample in the MD simulations is much faster than the experimental rates, which contributes to the higher Tg. It is well known that cooling rate affects the Tg viz., increasing cooling rate increases Tg [50]. It has been 90 shown for poly(vinyl acetate) that a ~5000 times faster cooling rate increased the Tg by about 8 K [51]. The effect of the cooling rate effect on the Tg also has been studied by MD simulations using a coarse-grained polymer model [52]; increasing the cooling rate by three orders of magnitude increased the Tg by about 95 9%. By cooling, polymer melts very fast (i.e. quenching it) to far below the melting temperature, the mobility of the polymer molecules is immobilised to the extent that they cannot undergo translational or rotational motion in order to rearrange themselves periodically since there is insufficient vibrational energy. 100 Thus, there is a correlation between increasing cooling rates and an increase in the Tg.

The Tg also corresponds to the change in the gradient in a dilatometrical plot of the volume as a function of the temperature. Figure 4 shows such a plot based on the current computed 105 data, where the Tg is about 350 K, which is consistent with the value obtained in Figure 3. Again, this is higher than the measured range of 295-323 K [48], possibly because of the higher

6 △ OPLS * AMBER DREDING 5 Exp. [34] + Exp. [42] o Exp. [43] Young's modulus (GPa) 4 3 2 1 0 250 350 450 550 750 150 650 Temperature (K)

Figure 2. Effects of temperature on the Young's modulus for i-PMMA simulated using the AMBER, DREIDING and OPLS force fields. There is a sharp decrease in the Young's modulus between 450 and 500 K. Experimental values at ambient temperature are shown for comparison.

Figure 3. Change in the dihedral energy as a function of temperature for i-PMMA calculated using the AMBER, DREIDING and OPLS force fields. There is a small change in the gradient of the change in dihedral energy at about 350 K.

cooling rates applied in the simulations, however it is more realistic than the previously published results of 430 K [20,21] using other force field and the united atom model. The technique applied here to further equilibrate the model after cooling from a high annealing temperature, as described in the previous section, has reduced the effect of high cooling rates on the Tg hence the it is in closer agreement with the experimental values. A comparison between the experimental and simulated values of the Tg can be seen in Table 4.

5

CE· XX

Coll:XX

QA: XX

OC:XX

30

50

Figure 4. Volume as a function of temperature for i-PMMA calculated using the AMBER, DREIDING and OPLS force fields. There is a small change in gradient of the volume at about 350 K.

Table 4. Glass transition temperature of PMMA from experimental measurements and MD simulations.

Method	Glass transition temperature (K)
Experiment s-PMMA [48]	328–397
Experiment i-PMMA [48]	295-323
MD simulations i-PMMA (modulus vs. temperature)	450–500
MD simulations i-PMMA (volume vs.	350
temperature)	

The Tg has been considered to be related to the sudden change of expansion in the free volume of a polymer, for example as discussed in [53]. In Figure 3, it can be seen that at temperatures greater than the Tg of the current PMMA model, the change in the dihedral energy is greater than at temperatures less than the Tg. The thermal energy at high temperatures is sufficient for PMMA molecules to vibrate and overcome the energy barrier to rotation required for jumping to a different state. This mechanism increases the free volume, creating more space availabe for the polymer to undergo rotation and translation, and eventually reducing the Young's modulus above the Tg.

4. Conclusion

Initial

The effects of the number of monomers and tacticity on the Young's modulus of PMMA at ambient temperatures can be satisfactorily simulated using the DREIDING force field. Increasing the number of monomer units increases the Young's modulus of both isotactic and syndiotactic PMMA, which also has been observed experimentally. The calculated Young's modulus of isotactic PMMA is greater than the value for the syndiotactic form. In general, the DREIDING, AMBER and OPLS force fields have similar performances in predicting the effects of temperature on the Young's modulus and Tg of isotactic PMMA. The effects of temperature on the Young's modulus from low temperatures to ambient values calculated using all force fields showed a similar trend to those measured. At ambient temperatures, all force fields reproduced the Young's modulus in close agreement with experimental values. However, for all force fields, because of much greater strain rates of the simulations compared to experiments, the computed Tg is higher and the Young's moduli predicted at temperatures above the Tg are greater. In contrast, the Tg predicted by all force fields from volume-temperature curves, is in closer agreement with experimental values. For the modulus at temperatures above the Tg, the OPLS force field is less accurate than the other two force fields.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/M02959X/1]. Molecular Dynamics simulations have been performed on the supercomputing system of the Institute of Process Engineering, Chinese Academy of Sciences.

References

- Yuksel N, et al. Investigation of triacetin effect on indomethacin release from poly(methyl methacrylate) microspheres: evaluation of interactions using FT-IR and NMR spectroscopies. Int J Pharm. 2011;404(1-2):102-109.
- [2] Ali U, Karim KJBA, Buang NA. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev. 2015;55(4):678–705.
- [3] Bux J, et al. Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification. Phil Trans R Soc A: Math Phys Eng Sci. 2016;374(2072).
- [4] Pan X, et al. Structure and mechanical properties of consumer-friendly PMMA microcapsules. Ind Eng Chem Res. 2013;52(33):11253– 11265.
- [5] Kim J-W, et al. Microencapsulation of cholesteryl alkanoate by polymerization-induced phase separation and its association with drugs. J Polym Sci Part A: Polym Chem, 2004;42(9):2202–2213.
- [6] Zuber M, et al. Biocompatibility and microscopic evaluation of polyurethane–poly(methyl methacrylate)–titanium dioxide based composites for dental applications. J Appl Polym Sci. 2014;131(3):n/a– n/a.
- [7] Kawaguchi T, et al. Influence of molecular weight of polymethyl(methacrylate) beads on the properties and structure of cross-linked denture base polymer. J Mech Behav Biomed Mater. 2011;4(8):1846-1851.
- [8] Freitag CPF, et al. Endoscopic implantation of polymethylmethacrylate augments the gastroesophageal antireflux barrier: a short-term study in a porcine model. Surg Endosc, 2009;23(6):1272–1278.
- [9] Itokawa H, et al. A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite. Biomaterials, 2007;28(33):4922-4927.
- [10] Nien Y-H, Lin S-W, Hsu Y-N. Preparation and characterization of acrylic bone cement with high drug release. Mater Sci Eng C. 2013;33(2):974–978.
 - [11] Sugino A, et al. Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane. J Mater Sci Mater Med. 2008;19(3):1399–1405.
 - [12] MacRae SM, Matsuda M, Phillips DS. The long-term effects of polymethylmethacrylate contact lens wear on the corneal endothelium. Ophthalmology, 101(2):365–370.

- [13] Hosaka S, et al. Mechanical properties of the soft contact lens of poly(methyl methacrylate-N-vinylpyrrolidone). J Biomed Mater Res. 30 1980;14(5):557–566.
- [14] Hlinak AJ, et al. Understanding critical material properties for solid dosage form design. J Pharm Innov. 2006;1(1):12–17.
- [15] Liao Z, et al. Multivariate analysis approach for correlations between material properties and tablet tensile strength of microcrystalline 35 cellulose. Die Pharm – Int J Pharm Sci. 2012;67(9):774–780.
- [16] Shlieout G, Arnold K, Müller G. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech, 2002;3(2):45–54.
- [17] Jaramillo E, et al. Energy-based yield criterion for PMMA from largescale molecular dynamics simulations. Phys Rev B. 2012;85(2):024114.
- [18] Kim Y-J, Lin K-H, Strachan A. Molecular dynamics simulations of PMMA slabs: role of annealing conditions. Modell Simul Mater Sci Eng, 2013;21(6):065010.
- [19] Sane SB, et al. Molecular dynamics simulations to compute the bulk response of amorphous PMMA. J Comput Aided Mater Des. 2001;8(2/3):87–106.
- [20] Soldera A, Grohens Y. Molecular modeling of the glass transition of stereoregular PMMAs. Polym Plast Technol Eng. 2002;41(3):561– 571.
- [21] Mohammadi M, Davoodi J. The glass transition temperature of PMMA: a molecular dynamics study and comparison of various determination methods. Eur Polymer J, 2017;91:121–133.
- [22] Beech DR. Molecular weight distribution of denture base acrylic. J Dent, 1975;3(1):19-24.
- [23] Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897–8909.
- [24] Cornell WD, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soci 1995;117(19):5179–5197.
- [25] Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc, 1996;118(45):11225– 11236.
- [26] Tsige M, Taylor PL. Simulation study of the glass transition temperature 65 in poly(methyl methacrylate). Phys Rev E, 2002;65(2):843,
- [27] Apel U, Hentschke R, Helfrich J. Molecular dynamics simulation of syndio- and isotactic poly(methyl methacrylate) in Benzene, Macromolecules, 1995;28(6):1778–1785.
- [28] Chen C, Maranas JK, García-Sakai V. Local dynamics of syndiotactic 70 poly(methyl methacrylate) using molecular dynamics simulation. Macromolecules, 2006;39(26):9630–9640.
- [29] Jha KC, et al. Molecular structure of poly(methyl methacrylate) surface II: effect of stereoregularity examined through all-atom molecular dynamics. Langmuir, 2014;30(43):12775–12785.
- [30] Haley BP, et al. Polymer modeler. 2017.
- [31] Jmol: an open-source Java viewer for chemical structures in 3D.
 [32] Polak E, Ribiere G. Note sur la convergence de méthodes de directions conjuguées. ESAIM: Math Model Numer Anal Modélisation Mathématique et Analyse Numérique. 1969;3(R1):35–43.
- [33] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
- [34] Li Z, Lambros J. Strain rate effects on the thermomechanical behavior of polymers. Int J Solids Struct, 2001;38(20):3549–3562.
- [35] Salamone JC. Polymeric materials encyclopedia. Boca Raton (FL): 8 CRC Press; 1996.
- [36] Menyhárd A, Suba P, László Z, et al. Direct correlation between modulus and the crystalline structure in isotactic polypropylene. Express Polym Lett. 2015;9(3):12.
- [37] Cereghetti PM, Kind R, Higgins JS. Tacticity effects on the barriers to rotation of the ester methyl group in poly (methyl methacrylate): a deuteron magnetic resonance study. J Chem Phys. 2004;121(16):8068– 8078.
- [38] Gabrys B, et al. Rotational motion of the ester methyl group in stereoregular poly(methyl methacrylate): a neutron scattering study. Macromolecules, 1984;17(4):560–566.
- [39] Wypych G. Handbook of polymers. ChemTec Publishing; 2016.

75

55

60

85

10

15

20

25

GMOS 1450983	
15 March 2018	

Coll:XX QC:XX

CE: XX QA: XX

- [40] Kusy RP, Greenberg AR. Influence of molecular weight on the dynamic mechanical properties of poly(methyl methacrylate). J Therm Anal, 1980;18(1):117–126.
- [41] Huggett R, Bates JF, Packham DE. The effect of the curing cycle upon the molecular weight and properties of denture base materials. Dent Mater, 1987;3(3):107–112.
- [42] Cross A, Haward RN, Mills NJ. Post yield phenomena in tensile tests on poly(vinyl chloride). Polymer, 1979;20(3):288–294.
- [43] Hasan OA, Boyce MC. Energy storage during inelastic deformation of glassy polymers. Polymer, 1993;34(24):5085–5092.
- [44] van Melick HGH, Govaert LE, Meijer HEH. Localisation phenomena in glassy polymers: influence of thermal and mechanical history. Polymer, 2003;44(12):3579–3591.
- [45] Richeton J et al. A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer. 2005;46(19):8194–8201.
- [46] Mulliken AD, Boyce MC. Mechanics of the rate-dependent elasticplastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct, 2006;43(5):1331–1356.

[47] ISO 6721, in plastics – determination of dynamic mechanical properties-Part 1: general principles. 2011.

Initial

- [48] Ute K, Miyatake N, Hatada K. Glass transition temperature Toronto and melting temperature of uniform isotactic and syndiotactic AQ7 poly(methyl methacrylate)s from 13mer to 50mer. Polymer, 25 1995;36(7):1415-1419.
- [49] Nicholson TM, Davies GR. Modeling of methyl group rotations in PMMA. Macromolecules, 1997;30(18):5501–5505.
- [50] Moynihan CT, et al. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78(26):2673–2677.
- [51] Kovacs AJ. La contraction isotherme du volume des polymères amorphes. J Polym Sci. 1958;30(121):131–147.
- [52] Buchholz J, et al. Cooling rate dependence of the glass transition temperature of polymer melts: molecular dynamics study. J Chem Phys, 2002;117(15):7364–7372.
- [53] White RP, Lipson JEG. Polymer free volume and its connection to the glass transition. Macromolecules, 2016;49(11):3987–4007.

5

10

15

40

30

35