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June 2013 Published Online at stacks.iop.org/MSMSE/20 Abstract Molecular dynamics simulations are used to
investigate the effects of temperature and strain rate on the deformation of amorphous polyethylene. The simulations
predict the effects of temperature and strain rate on the stress–strain responses, Young’s modulus and Poisson’s ratio
similar to those observed in laboratory experiments performed by other researchers. The time–temperature
superposition principle is applied to the Young’s modulus and Poisson’s ratio to form a master curve to address the
discrepancies in strain rates between the simulations and the experiments. Differences in the numbers of monomers
and chains, the degree of crystallinity and molecular orientation lead to discrepancies in the Young’s modulus and
Poisson’s ratio between simulations and experiments. 1. Introduction Molecular dynamics (MD) can predict material
properties based on first principles, mainly using the atomistic forces between molecules. This approach could help
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in the design of new materials by modelling the behaviour of materials with altered molecular structures. The user
could predict material performance under different loads and environments without performing traditional physical
experiments in the laboratory. MD modelling of polymers has not yet reached this level. Current computational power
is not sufficient to model the many macromolecules in polymeric materials and describe all the interactions within a
reasonable time frame. This particularly applies to the modelling of long-term properties such as creep and fatigue.
This paper investigates as to what extent temperature and strain rate effects can be described by MD. In particular,
we investigate the possibility of using the time–temperature superposition 0965-0393/12/000000+15$33.00 © 2012
IOP Publishing Ltd Printed in the UK & the USA 1 JNL: MSMS PIPS: 455170 TYPE: PAP TS: NEWGEN DATE: 30/7/2013
EDITOR: TT SPELLING: UK principle. High-density polyethylene (HDPE) is used for this investigation. HDPE has a
simple molecular structure, even though it has amorphous and crystalline phases, and this polymer is employed in a
wide range of demanding industrial applications, for example in gas distribution pipes [1]. Several MD studies have
been performed to investigate the behaviour of polyethylene (PE). Brown and Clark [2] modelled a single linear
polymer containing 1000 monomers of PE in tension, performing simulations at different loading rates and
temperatures. By qualitative comparison, they observed similar stress–strain responses between the simulations and
laboratory measurements carried out at much lower strain rates. Yang et al [3] presented simulations of 1500 atoms
of PE arranged in five chains of equal length. Their simulation produced a similar Young’s modulus value as reported
by Brown and Clark [2]. However, the simulated yield stress/strain and the ultimate strength predicted by these
simulations were much higher than those obtained from laboratory experiments at a strain rate approximately six
orders of magnitude smaller. Capaldi et al [4] used non-equilibrium MD simulations to simulate four chains with 1000
beads representing PE monomers at a variety of temperatures and strain rates. They found that their simulations
were able to qualitatively reproduce the experimentally observed stress– strain behaviour of polymer glasses during
compressive deformation. They also demonstrated that the simulated modulus is consistent with the experimentally
determined modulus, but the yield stress was much higher. Rottler and Robbins [5] studied the effect of temperature
and strain rate on shear yielding of amorphous glassy solids. A bead–spring model was used for non-particular
polymers and the other model was a binary mixture composed of two particles. Both models were subjected to
tensile or compressive strains with strain rates much higher than typical experimental tests. They found that the
maximum shear yield stress drops linearly with increasing temperature and the dependence on strain rate can be
described by either a logarithm or a power law added to a constant. Mahajan and Basu [6] investigated the effects of
sample preparation, quench rate, sample size and strain rate on the ensemble and stress–strain response. They used
a force field and mass of atoms that closely resembles that of PE and performed uniaxial compression simulations.
They showed the sample preparation and simulation procedures, which were able to produce realistic stress–strain
curves with strain rates much higher compared with the experimental tests. Lyulin et al [7] used united-atom models
to simulate uniaxial deformation of low-molecular weight isopropylbenzene (iPB), brittle atactic polystyrene (PS) and
tough bisphenol A polycarbonate (PC). After the deformation simulation at room temperature, they found the Young’s
modulus and yield stress values close to the typical value obtained from the experimental results at the same
temperature; however, there was huge discrepancy in the strain rates. These previous results indicate that MD is a
useful tool to qualitatively investigate the relationship between micro-scale phenomena and macro-scale mechanical
properties and, to some extent, to quantitatively determine these terms. However, there is a huge discrepancy
between the simulated and laboratory strain rates. Because of the computational cost and time required, MD
simulations typically use strain rates about six to ten orders of magnitude larger than the highest strain rates
commonly used in laboratory experiments. This study will investigate the effects of temperature and strain rate on
the deformation mechanisms of amorphous PE using MD simulations. This investigation will further explore the
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ability of MD simulations to serve as a tool, not only to produce results that are qualitatively similar to experimental
results, but also to provide quantitative results. This is done by 2 Table 1. Functional forms and parameters for
molecular potential energy. Interaction Functional form Parameters Bond stretch Bond angle bend Dihedral angle
torsion van der Waals Vb = kb(rb − ro)2 Va = ka(θa − θb)2 Vd = ∑4 kn cosn−1 φd n=1 [ ( σij )12 σij )6] ( Vij = 4εij
rij − rij × r < rc = 0r rc ? kb = 350 kcal mol−1 rb = bond length ro = equilibrium bond length = 1.53 Å ka = 60 kcal
mol−1 θa = bond angle θb = equilibrium bond angle = 109.5◦ K1 = 1.73 kcal mol−1, K2 = −4.49 kcal mol−1 K3 =
0.776 kcal mol−1, K4 = 6.99 kcal mol−1 φd = dihedral angle εlj = 0.112 kcal mol−1, σlj = 4.01 Å rc = 10 Å
comparing the dependence of the simulated Young’s modulus and Poisson’s ratio on the temperature and strain rate
with the dependences observed in laboratory experiments performed by other researchers. Discrepancies in strain
rates between simulations and laboratory experiments will be discussed. 2. Model and simulation procedure Pure PE
consists of alkanes, and its chemical formula is (CH2)n, where n is the degree of polymerization or the number of
ethylene monomers. The typical degree of polymerization of PE is between 100 and 250 000 or more. The molecular
weight of PE is 14.02 per monomer. A PE sample consists of a large number of chains with a range of different
lengths. HDPE has the chemical structure closest to pure PE because it consists primarily of unbranched PE molecules
compared with other types of PE such as low-density polyethylene (LDPE). The united-atom approach was used to
model the amorphous PE system. This approach simplifies each CH2 monomer as a single monomer particle and has
been used by several researchers [2–4]. The DREIDING force field [8] was used to simulate the interaction between
monomers. In DREIDING, the potential energy of a molecule consists of the combined energies of bonded
interactions (bond stretching, bond angle bending and dihedral angle torsion) and non-bonded interactions (van der
Waals interactions, represented by the Lennard- Jones potential). The functional forms and parameters [9, 10] of the
DREIDING force field are presented in table 1. The initial amorphous PE sample was generated using Monte Carlo
self-avoiding random walks similar to previously developed methods [10]. The basic idea of this method is each
monomer is placed on each site of the face-centred cubic (fcc) lattice with a lattice constant of 1.53 Å. The initial
position is randomly selected and the next atom is placed according to the probability for each possible bond angle
direction and the density of unoccupied neighbour sites. The sample contains ten chains, each consisting of 1000 
monomers. An MD program designed for parallel computers, LAMMPS [11], was used to equilibrate the initial sample
structure and simulate the deformation process. All the simulations were performed on the ‘Njord’ IBM p575+ super
computer system at NTNU. This simulation represents the most complex simulation that can be performed on our
supercomputer within a reasonable time frame, but it is a very small sample compared with real PE. 3 Figure 1.
Distribution of the bond length, bond angle and dihedral angle after the final equilibration stage at a temperature of
200 K. The simulation method used here followed that in [10]. Initial velocities were assigned to the atoms by
randomly selecting from a uniform distribution at a temperature of 500 K. Before the deformation process, the
system was equilibrated using a Langevin thermostat as described in [12] for 10 picoseconds (ps) at 500 K. The
Langevin thermostats follow the Langevin equation of motion, where a frictional force proportional to the velocity is
added to the conservative force, adjusting the kinetic energy of the particle so that the temperature matches the set
temperature [13]. This thermostat was used within NVE ensembles to perform Brownian dynamics simulation of the
melted polymer. The system was then equilibrated at constant particle number, pressure and temperature (NPT 
ensembles) for 25 ps at 500 K and then cooled to the desired temperature (100, 200, 250 and 350 K) for 25 ps. The
final equilibration stage was carried out for NPT ensembles at the desired temperatures for 25 ps. The NPT
ensembles were performed using a Nose–Hoover thermostat and a barostat coupled to the atom velocities and
simulation box dimensions. The time integration of the motion equations was performed using the time-reversible
measure-preserving Verlet and rRESPA integrators. Periodic boundary conditions were applied to all directions of the
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simulation box. During the sample preparation processes, pressure and stress were monitored to characterize
whether equilibration has been satisfied. In the final equilibration stage, all the potential energies (bond, angle,
dihedral and van der Waals) and polymer chain geometries were also monitored to check whether the final
equilibrium was reached and the sample was ready to be deformed. Figure 1 shows an example of the polymer chain
geometry after the final equilibration stage at a temperature of 200 K. The mean value of bond length is 1.529 Å
with a standard deviation of 0.023 Å, while the mean value of bond angle is 109.29◦ with a standard deviation of
3.393◦. These mean values are slightly lower than the equilibrium values of the potential parameters for bond length
and angle, which are 1.53 Å and 109.5◦, respectively. The dihedral angles are distributed around trans and gauche
states, centred around 66◦ and 180◦. The distributions are similar to those in other MD simulations of PE [6, 10]. A
polymer’s size can be characterized by the end-to-end distance, r, or the radius of gyration. For the freely jointed
chain model, the end-to-end distance, r, is proportional to the bond length, l, and to the square root of the number of
bonds, n. The characteristic ratio is defined as C = nl2 〈r2〉 . (1) In the freely jointed PE chain, C = 1, in the freely
rotating chain, C = 2, and in the hindered rotation chain, C = 3.4 [14]. For real PE, the characteristic ratios are 
estimated from direct intrinsic viscosity measurements to be 7.10, 6.99 and 6.80 at temperatures of 127.5 ◦C, 142.2
◦C 4 and 163.9 ◦C, respectively [15]. In more recent light scattering measurements on linear PE in diphenyl at 400 K
(= 127 ◦C), characteristic ratios from 8.7 to 10.5 were found [16]. The sample of this study, after being equilibrated 
at a temperature of 500 K (= 227 ◦C) has a characteristic ratio, C, of 3.4. This indicates that the simulation sample
is composed of more tightly coiled chains compared with the real PE. The accuracy of the stress–strain response of
glassy polymers with MD simulations depends on the characteristic ratio, C [6]. However, the accuracy of C is
especially important for the stress–strain response after the yield stress and for the slope of the rehardening part.
The initial low strain is not influenced significantly by the value of C. As the focus of this study is on the Young’s
modulus and Poisson’s ratio calculated at a low strain (0.02% or 2%), only the initial deformation responses of the
simulations are used to calculate the elastic properties. For this reason, the model is considered adequate for
studying elastic properties at low strains. However, this model is not an adequate model to predict properties beyond
the elastic limit, such as the yield stress, softening and hardening, which is typically also beyond the practical
application of polymers. Deformation was simulated by changing the simulation box in one longitudinal direction
during a dynamic run. The other two transverse directions of the box had zero applied pressure, allowing the box to
contract sideways. The change in longitudinal dimension occurred at a constant engineering strain rate. The tensile
strain is unitless and is defined as the length change divided by the original box length. For each combination of 
temperature and strain rate, three simulations were performed to calculate the Young’s modulus and Poisson’s ratio.
In each of the three simulations, the system was either elongated in the X, Y or Z direction and the obtained Young’s
modulus and Poisson’s ratio were averaged. This was done because the initial structure and velocities were randomly
generated, and after the equilibrium processes, the system could have different morphological configurations. This is
similar to the practice of using several samples in laboratory experiments to ensure that the results are statistically
representative of the material properties, which could vary. 3. Results and discussion 3.1. Effects of temperature and
strain rate on the stress–strain curve and volume strain Figure 2 presents typical stress–strain curves obtained from
the simulations performed in this study. The simulations were conducted using a strain rate of 109 s−1 at a
temperature of 200 K. The stress–strain curves were obtained from three simulations in which the sample was
elongated in the X, Y or Z direction in each simulation. The heterogeneity and small size of the sample produced
noisy stress–strain curves and therefore polynomial smoothing was used to reduce the fluctuation of the stress. This
was done by applying the polynomial equations to the original stress–strain data and by calculating the least-squares
fit through the data points. The three curves are close to each other at a low strain. At a higher strain, above
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approximately 0.2% or 20%, the curves demonstrate that the stress–strain responses of the sample differ depending
on the direction of elongation. This is due to the anisotropy of the structure of the polymer chain in the small sample
modelled here. As the focus of this study is on the Young’s modulus and Poisson’s ratio calculated at a low strain
(0.02 or 2%), similar initial deformation responses of the simulations in three different directions could be used to
calculate the elastic properties. But this small model is not an adequate model to simulate large strain beyond the
elastic limit, which is typically also beyond the practical application 5 Figure 2. Stress–strain curves of three
simulations elongated in the X, Y or Z direction at a strain rate of 109 s−1 at 200 K. The main focus in this study is
on the initial strain range up to about 0.02% or 2%. of polymers. For the following discussion in this section, only
stress–strain curves from the deformation along the X-direction will be shown. The curve for X-direction elongation in
figure 2 has the same typical shape as those obtained from laboratory experiments on PE, for instance the
experiments using strain rates between 10−4 and 10−2 s−1 performed by Hiss et al [17] and Addiego et al [18].
However, there is a significant difference in yield stress between experiments and simulations. Yield stress is defined
here as the first stress point on the stress–strain curve where an increase in strain occurs without an increase in
stress. The experimentally obtained yield stresses are between 20 and 30 MPa while in this simulation they are about
120 MPa. This is the same order of magnitude as found in other simulations, for instance [2–4]. As the yield stress
increases with the strain rate, the simulations are expected to produce a higher yield stress than the experiments.
The effect of the strain rate is presented in figure 3 and is limited to deformation at the strain of 0.02% or 2% for
calculating the Young’s modulus and Poisson’s ratio. The simulations show Hookean elasticity responses to the
applied uniaxial load at low strains. Figure 3 indicates that the stiffness and yield stress increase with increasing
strain rate. Hiss et al [17] and Addiego et al [18] also found that increasing strain rate increases the yield stress.
Figure 4 presents the influence of temperature on the stress–strain behaviour. Decreasing temperature increases the
stiffness and the yield stress. The Young’s modulus and Poisson’s ratio values discussed in the following sections were
obtained by averaging the values calculated from the stress–strain curves from the three simulations, in which the
sample was elongated in the X, Y or Z direction in each simulation. The average values for different strain rates and
temperatures are shown in table 2 together with the standard deviations. The standard deviations are reasonably
low. 3.2. Effects of temperature and strain rate on the Young’s modulus The Young’s modulus was calculated from
the slope of the stress–strain curve below the linear limit, typically below a strain of 0.02% or 2%. For each
combination of temperature and strain 6 Figure 3. Effect of strain rate on the stress–strain curve at 200 K. Figure 4.
Effect of temperature on the stress–strain curve at a strain rate of 1010 s−1. rate, the Young’s modulus values were
obtained from three simulations and averaged. Table 2 shows the average value and standard deviation. Figure 5
presents the average value of the Young’s modulus as a function of temperature and strain rate. Sigmoid curve
fitting equations were applied to these average values to show the trend of the Young’s modulus as a function of
temperature. Figure 5 indicates that the Young’s modulus decreases with increasing temperature in all simulations.
This dependence of stiffness on temperature has also been observed for other polymers, for instance by Mahieux and
Reifsnider [19] and Richeton et al [20]. The results 7 Table 2. Young’s modulus and Poisson’s ratio calculated from
the simulations. Strain rate (s−1) Temperature (K) Average Young’s modulus (GPa) Standard deviation Poisson’s
ratio Average Standard deviation 1011 100 200 250 350 5.457 3.313 1.846 0.579 0.404 0.961 0.030 0.195 0.283
0.277 0.269 0.265 0.025 0.022 0.017 0.005 1010 100 200 250 350 3.198 2.069 1.438 0.608 0.200 0.278 0.319
0.146 0.326 0.327 0.339 0.416 0.051 0.034 0.042 0.041 109 100 200 250 350 2.334 1.765 1.172 0.429 0.233
0.106 0.139 0.192 0.374 0.397 0.451 0.482 0.061 0.042 0.025 0.107 108 100 200 250 350 1.609 1.349 0.625
0.161 0.199 0.147 0.005 0.069 0.385 0.435 0.504 0.495 0.025 0.025 0.083 0.125 Figure 5. Effect of strain rate and
temperature on Young’s modulus. also show that the simulation using a higher strain rate produces a higher Young’s
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modulus compared with the simulation using a slower rate. The results produced by the highest strain rate
simulations (1011 s−1) require careful attention. This strain rate is close to the vibrational frequency of PE, which is
between 1.53 × 1012 and 8.76 × 1013 s−1 according to [21]. Strain rates close to the vibrational frequencies may
lead to errors in the molecular trajectories, with the result that the system may no longer have a normal structure.
In each time step of the deformation process, the atomic positions are remapped following the change in the size of
the simulation box at a constant strain rate. The changes of the atomic positions could be sufficiently large compared
with the atomic oscillations, resulting in a discontinuous jump in the molecular bond distance without any physical
meaning. Therefore, the 1011 s−1 simulation results will not be used in the subsequent analysis and discussion. 8 It
is well known that the mechanical properties of polymers vary with both time and temperature. As indicated in figure
5, increasing the temperature affects the Young’s modulus in a similar way as decreasing the strain rate. The time–
temperature superposition based on this phenomenon is widely used to form a ‘master curve’ using a shift factor to
superimpose mechanical properties measured at different temperatures. Experimental test results, such as the
Young’s moduli, are multiplied by a shift factor to produce a single master curve. The shift factor is determined
experimentally with respect to a reference temperature. The shift factor used to construct a master curve was
experimentally determined for a large number of amorphous polymers by Williams, Landel and Ferry [22], who
expressed the WLF equation: log10aT = C2 + (T − T0) −C1(T − T0) . (2) Equation (2) is an empirical equation found
as an approximately identical shift factor–temperature relation for a wide variety of polymers, polymer solutions,
organic glass-forming liquids and inorganic glasses. The theoretical basis to this equation is Doolittle’s free volume
[23] that is based on experimental data. The temperature dependence of viscosity arises largely from its dependence
on free volume. The free volume is constant up to Tg and then increases linearly with increasing temperature.
Equation (2) has been validated with higher strain rates than typical experimental test rates [24, 25]. But the strain
rates were still much lower than typical MD simulation rates. Equation (2) is valid above the glass transition
temperature (Tg) because below this temperature, log aT increases less rapidly with decreasing temperature [22].
Using the WLF equation at much higher strain rates than used in laboratory experiments is an unproven approach,
but as discussed later it can explain results from MD fairly well. The values of the WLF constants C1 and C2 for these
simulations were taken to be 15.0 and 50.5, respectively, from [26]. They were calculated using experimental results
of an HDPE sample. The sample’s Tg (= 155 K) was chosen as the reference temperature T0. Since our sample in the
simulations was purely amorphous PE, the WLF constants for the HDPE sample with the lowest degree of crystallinity
(40%) in [26] were chosen to be used for the calculation of the shift factor for our simulation results. Bauwens et al
[27] reported that the yield stress of glassy polymers below Tg can be described by the Eyring theory of non-
Newtonian flow. The linear form of the Eyring equation is similar to the Arrhenius activation energy equation. The
shift factor is given by log10aT = 2.303R Q [ 1 1 ] T − T0 (3) where Q is the activation energy and R is the universal
gas constant. The activation energy of linear PE is taken from [28] as 27 kJ mol−1. The Young’s modulus values at 
different temperatures and strain rates obtained from the simulations were plotted against the shifted log strain rate
from equation (2) for data at the temperature above Tg and from equation (3) for data at the temperature below Tg.
The master curve at Tg (155 K) is presented in figure 6. This figure shows that the original log strain rate between 8
and 10 has been shifted to between about −4 and 5. This indicates that the simulations predict Young’s modulus
behaviour in accordance with the time–temperature superposition principle. Young’s moduli calculated from the
simulation results were compared with the values obtained by experimental measurements reported by Bucknall
[29]. In his report, the Young’s modulus was measured from HDPE samples using tensile tests over a range of strain
rates and at different temperatures. The Young’s modulus was found to increase with increasing strain 9 Figure 6.
Master curve (dashed line) of Young’s modulus. Figure 7. Comparison of Young’s modulus as a function of strain rate
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from measurements by Bucknall [29] and the master curve (dashed line) of the simulation at Tg (155 K). rate and
decreasing temperature. Figure 7 compares measurements by Bucknall [29] and the master curve obtained from the
simulations. The WLF equation, equation (2), was again applied to the Young’s modulus values of Bucknall [29] to
form a master curve. The values of the constants C1 and C2 for the previous WLF equation could not be used
because the samples studied by Bucknall [29] have degrees of crystallinity between 94% and 97%. Therefore, the
C1 and C2 constants were assigned values of 8.86 and 101.6 based on [22], and the reference temperature (T0) was
set to 233 K. Over a range of temperatures between Tg and Tg + 100, these values are valid for a wide variety of
polymers, polymer solutions, organic glass-forming liquids and inorganic glasses [22]. 10 Figure 8. Comparison of
the master curve of Bucknall [29] at 233 K (solid line) and the master curve of the simulation at 155 K (dashed line).
Figure 8 compares the master curve found by Bucknall with the simulation. The Young’s moduli of these simulations
are lower than those of the experiments, but the master curves have similar shapes. HDPE has a high degree of
crystallinity and a varying amount of amorphous structure. The elastic modulus increases approximately in
proportion to the degree of crystallinity in a certain range [30–32]. In this simulation, the PE system is purely
amorphous, while the HDPE in Bucknall’s report has a degree of crystallinity between 94% and 97% as measured by
Pranadi and Manuel [33]. According to Popli and Mandelkern [32], for degrees of crystallinity less than 25%, the
moduli remain constant at approximately 20 MPa. Therefore, the degree of crystallinity leads to a difference in the
Young’s modulus between experimental measurements and the simulated results. Semicrystalline PE has not only a
crystalline region surrounded by a disordered (amorphous) region, but also an interfacial region that connects the
two. Therefore, the elastic modulus will be affected both by the degree of crystallinity and by how the interfacial
region connects the crystalline and amorphous regions. Another possible reason for the discrepancy between the
simulations and experimental measurements is the effect of molecular orientation. HDPE elongated in the solid state
exhibits a strong dependence of the Young’s modulus on molecular orientation, for instance as reported by Capaccio
and Ward [34] and Capaccio et al [35]. Increasing the degree of orientation increases the Young’s modulus. The
experimental samples studied by Bucknall [29] were prepared by an injection moulding process and could have had
higher degree of molecular orientation compared with the simulated samples. 3.3. Effects of temperature and strain
rate on Poisson’s ratio In each simulation, a curve of transverse strain versus longitudinal strain was obtained and
Poisson’s ratio was calculated from the slope of the curve at a low strain. For each combination of temperature and
strain rate, the Poisson’s ratio values were obtained from three simulations 11 Figure 9. Effects of temperature and
strain rate on Poisson’s ratio. Figure 10. Master curve (dashed line) of Poisson’s ratio. and averaged. Table 2 shows
the average value and standard deviation. Figure 9 presents the average value of Poisson’s ratio as a function of
temperature and strain rate. Again, the sigmoid curve fitting equations were applied to these average values to show
the trend of Poisson’s ratio as a function of temperature. Figure 9 indicates that in the simulations using strain rates
of 108, 109 and 1010 s−1, Poisson’s ratio increases with temperature following a sigmoidal trend. This trend is
similar to the experimental results of other polymers reported by Seitz [36] for PC, PS, PMMA, PVT, ST/MMA, PVC and
POMS; by Mott et al [37] for PS and PMMA; by Pandini and Pegoretti [38] for PBT and by Pandini and Pegoretti [39]
for epoxy resins. Poisson’s ratio depends on the strain rate and temperature, as indicated in figure 9. In the same
way as for the Young’s modulus, equation (2) was used to calculate the log shift factor for Poisson’s ratio at the
temperature above Tg and equation (3) was used for the temperature below Tg. The Poisson’s ratio master curve is
presented in figure 10. These simulations are 12 Figure 11. Comparison of Poisson’s ratio from data measured by
Bilgin et al [40], Waterman [41] and the simulation model. able to produce the trend in Poisson’s ratio following the
time (or strain rate)–temperature superposition principle. Poisson’s ratios obtained from the simulation results were
compared with experimental measurements. Bilgin et al [40] found that Poisson’s ratio of the MDPE pipe at a strain
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rate close to 1000 µε min−1 (approximately 1.6 × 10−5 s−1) increased from 0.42 at −6.7 ◦C to 0.48 at 49 ◦C. The
equation of the curve fit to the simulation at a strain rate of 109 s−1 in figure 10 showed that Poisson’s ratio was
0.464 at a temperature of −6.7 ◦C (approximately 266 K), and 0.481 at 49 ◦C (approximately 322 K). Waterman [41]
calculated the complex Poisson’s ratio of six different samples of PE by measuring the velocity and attenuation of
ultrasonic longitudinal and transverse pulses at a frequency of 5 MHz and a strain rate of approximately 102 s−1. For
comparison with the simulations, we used the real part of the complex Poisson’s ratios of these measurements
because the value of the real part is close to the time-dependent Poisson’s ratio [42]. At −80 ◦C, the experimental
value of Poisson’s ratio was 0.35, and at 50 ◦C it was 0.47. In the simulations, Poisson’s ratio was 0.39 at −80 ◦C
(approximately 193 K) and 0.48 at 50 ◦C (approximately 323 K). Figure 11 presents a comparison between the
simulation and the experimental values of Poisson’s ratio. Figure 11 shows that the trends of the effects of strain
rate and temperature on Poisson’s ratio in the simulations are similar to those in the experiments. The difference
between Poisson’s ratios measured experimentally and calculated in the simulations results from the same factors
that influence the Young’s modulus as discussed in the previous section. 4. Conclusion Molecular dynamics
simulations of the deformation of amorphous PE are performed at various engineering strain rates and temperatures.
Comparisons of the effects of temperature and strain rate on the deformation responses between MD simulations 
and laboratory experiments are 13 presented and discussed. The stress–strain curves at a low strain obtained from
the simulations have the same typical shapes as those obtained from laboratory experiments. The Young’s modulus
and Poisson’s ratio values were calculated from the simulations showing the strain rate and temperature
dependences and were in reasonable agreement with the experimental measurements. The time (or strain rate)–
temperature superposition principle was applied to the Young’s modulus and Poisson’s ratio to form master curves.
These master curves can be used to bridge the difference between the high strain rates of the simulations and the
much lower rates of the laboratory experiments. The differences in terms of the numbers of monomers and chains,
the degree of crystallinity and the molecular orientation lead to discrepancies between the Young’s modulus and
Poisson’s ratio values calculated from the simulations and those measured in laboratory experiments. AQ1
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