

Performance Analysis of a Parallel Genetic Algorithm:

A Case Study of the Traveling Salesman Problem

Henry Novianus Palit

Department of Informatics

Petra Christian University

Indonesia

hnpalit@petra.ac.id

Indar Sugiarto

Department of Electrical Eng.

Petra Christian University

Indonesia

indi@petra.ac.id

Doddy Prayogo

Department of Civil Eng.

Petra Christian University

Indonesia

prayogo@petra.ac.id

Alexander T.K. Pratomo

Department of Informatics

Petra Christian University

Indonesia

alexander.thomas@petra.ac.id

Abstract—Genetic Algorithm (GA) is one of the most

popular optimization techniques. Inspired by the theory of

evolution and natural selection, it is also famous for its

simplicity and versatility. Hence, it has been applied in diverse

fields and domains. However, since it involves iterative and

evolutionary processes, it takes a long time to obtain optimal

solutions. To improve its performance, in this research work,

we had parallelized GA processes to enable searching through

the solution space with concurrent efforts. We had

experimented with both CPU and GPU architectures. Speed-

ups of GA solutions on CPU architecture range from 7.2 to

22.2, depending on the number of processing cores in the CPU.

By contrast, speed-ups of GA solutions on GPU architecture

can reach up to 172.4.

Keywords—genetic algorithm, parallel, OpenMP, CUDA,

traveling salesman problem

I. INTRODUCTION

Genetic Algorithm (GA) is a metaheuristic to solve
optimization and search problems by relying on biologically
inspired operators such as selection, crossover, and mutation.
It is inspired by the process of natural selection belonging to
the larger class of evolutionary algorithms. Since its
conception by John Holland and his collaborators in the
1960s and 1970s, many variants of GAs have been proposed
and used to address a variety of optimization problems [1]:
from graph coloring to pattern recognition, from discrete
systems (e.g., the traveling salesman problem) to continuous
systems (e.g., the efficient design of airfoil), and from
financial analysis to multi-objective engineering
optimization.

To explore the search space, GA involves multiple
individuals that can randomly and independently find a mate
in the population and produce new individuals. This
characteristic process is excellent for parallelization, and
consequently, different optimization parameters and
objectives can be examined simultaneously and quickly.
Several parallel schemas for GAs [2] – either on CPU, GPU,
or both – have been proposed in the past decade. Leveraging

the multi-processing capabilities provided by today’s
computers, we believe the use of parallel GAs will empower
many research and industrial works to obtain feasible
solutions in a short time.

As part of our efforts to build capabilities and
experiences with our high throughput computing platform
(PakCarik) [3], we evaluate the execution of a parallel GA –
using the Traveling Salesman Problem (TSP) as the case
study – on the computing platform. This manuscript is just a
preliminary report on our research work, as we will explore
other possibilities to speed up GA with parallelization in the
future.

In the following sections, we will detail some
applications of GAs and some techniques to parallelize GAs.
Next, the GA implementation for solving TSP is discussed.
Finally, we will present the results of this research work and
discuss them, before giving conclusion.

II. APPLICATIONS OF GENETIC ALGORITHMS

Generally, there are two major areas of potential for GAs
[4]: optimizing an operating system and fitting a quantitative
model. Such examples of operating system are a gas
distribution pipeline system, traffic lights, traveling
salesmen, allocation of funds to projects, scheduling,
handling and blending of materials, and so forth. The system
designer or operator usually selects a few decision
parameters (perhaps within constraints) and measure the
system’s performance by some relevant objective or fitness
function. The other potential area, which arguably has been
less explored and discussed, deals with testing and fitting
quantitative models. Instead of maximizing the performance
of an operating system, here we are trying to find parameters
that minimize the misfit between the model and the data. The
fitness function (or, more aptly called the “misfit function”)
represents the difference between the observed and predicted
data values. Hence, the optimization objective is to obtain
parameter values for the model that minimize the misfit
function.

TABLE I. LEVELS OF PARALLELISM

Processing Level Granularity Typical Instruction# Computer Architecture*

Job (Program) Level Coarse 1,000,000’s MIMD (generally MPMD)

Subprogram Level Medium – Coarse 10,000’s – 100,000’s MIMD (SPMD or MPMD)

Procedure Level Medium < 2,000 MIMD (generally SPMD)

Loop Level Fine < 500 SIMD (and some MIMD)

Instruction Level Fine < 20 Often processor-specific, compiler-assisted

a. Source: Summarized from Hwang and Jotwani [5]

*Note: SIMD = Single Instruction-stream, Multiple Data-streams

MIMD = Multiple Instruction-streams, Multiple Data-streams

SPMD = Single Program, Multiple Data-streams

MPMD = Multiple Programs, Multiple Data-streams

III. PARALLELIZING GENETIC ALGORITHMS

Noting the broad and versatile use of GAs to a vast of
problems, it would really be sensible and desirable thing to
speed up GA’s iterative, evolutionary process. Parallel
computing, the simultaneous use of multiple compute
resources to solve a computational problem, is deemed
suitable to address the speed-up issue. To leverage on
parallel computing, the computational problem should be
able to:

• Be divided into smaller segments that can be handled
concurrently;

• Run multiple program instructions at any given time;

• Be executed in a shortened time with multiple
compute resources.

Typical compute resources for parallel computation are a
single computer with multiple processors / cores (i.e., CPUs)
or an arbitrary number of such computers connected to a
network. Over tens of processes (or threads) may be
executed simultaneously on this multi-processor platform.
Parallelism may run on different processing levels, as shown
in Table 1. The lower the processing level being parallelized,
the finer the granularity of the software processes, and
usually the higher the parallelism gain (although the
communication and scheduling overheads may offset the
parallelism gain). A typical parallel program may involve a
combination of these levels of parallelism [5]. The actual
combination depends on the application, formulation,
algorithm, language, program, compilation support, and
hardware characteristics.

To run GA in a parallel fashion, the basic idea is to
distribute the computations over multiple processors or
computers. GA operators such as selection, crossover, and
mutation are commonly implemented as procedures
(subroutines) or subprograms. Leveraging the multi-
processor (multi-core) platform, many research works
embrace parallelism by running a sequential GA operator
directly on multiple processors to exploit data parallelism. In
this scenario, all computations pertaining to a particular GA
operator are assigned to a single process / thread (and
consequently, to a single processing core). Multiple GA
operators, each of which handles a different data-stream, can
run on multiple cores in a parallel fashion. Hence, from the
algorithm’s point of view, each instance of parallel processes
is essentially a sequential GA operator. This naive approach
can still yield significant speed-up on the GA processes.
Nevertheless, higher speed-up may be obtained as we seek
finer granularity of the parallel processes. In addition, the
emergence of CPU + GPU heterogeneous architecture has
attracted many researchers and practitioners to exploit this
computing platform.

A. Parallelization with OpenMP

OpenMP [6] is an API (Application Programming
Interface) comprising compiler directives, library routines,
and environment variables that can be used to specify high-
level parallelism in programs written in Fortran, C, or C++.
It is the most widely used standard for SMP (Symmetric
Multi-Processing) systems. OpenMP provides special
notation (e.g., instructions or directives) to specify how a
program’s fragments are assigned to the individual
processors / cores, as well as to control the ordering of
accesses to shared data by different threads. This information

will be used by the compiler to generate the actual machine
code for execution by each processor.

It is the onus of the program developer to dictate where
and how parallelization should be carried out in the program.
Employing the OpenMP notation, we can specify the code
fragments (e.g., loop nests) of a GA process to be
parallelized and later executed by multiple threads. Thus, the
fine-grained parallelization (i.e., on loop level) can be
attained.

B. Parallelization with GPU + CUDA

With the proliferating use of GPU (Graphics Processing
Unit) for accelerating computations, not just limited to image
or video processing, we may further gain speed-up from
hundreds to thousands of cores available. GPU computing
has thrusted the research of parallel GAs to the world of
high-performance computing (HPC) and brought forth a
great potential to many research and industrial works that can
benefit from the GPU-accelerated stochastic and global
search for better solutions [2]. However, as indicated earlier,
many research works adopted a naive approach: running a
sequential GA process on a GPU thread, in exactly the same
fashion as how parallel GAs generally run on CPU. As GPU
provides a massive number of processing cores, the parallel
program on GPU should be designed differently from that on
CPU.

Developed by NVIDIA and introduced in 2006, CUDA
(Compute Unified Device Architecture) platform [7] exposes
GPU memory and execution models for developers to
leverage its computing power. Many CUDA libraries and
tools are available to provide developers everything they
need to build GPU-accelerated programs in popular
languages such as C, C++, Fortran, Python, and MATLAB.
Parallelism can be expressed through the given extensions in
the form of a few basic keywords. The sequential parts of the
GPU-accelerated program still run on CPU, whereas the
compute intensive portions run simultaneously on hundreds
or thousands of GPU cores.

Similar to the OpenMP program, the GPU-accelerated
program can attain fine-grained parallelization through
explicit programming. Different to the development of an
OpenMP program that relatively requires no additional effort
on the program developer, building a GPU-accelerated
program requires much understanding of the GPU system
architecture and the CUDA programming model.

IV. GENETIC ALGORITHM FOR TRAVELING SALESMAN

PROBLEM

This section details various aspects required to solve TSP
using GA. Firstly, we describe the representation of the path
that the salesman needs to travel. Next, we explain how the
basic GA operators are implemented for TSP.

A. Path Representation

Since the traveled path is essentially the solution of TSP,
the path should be coded as the individual’s chromosome.

For example [8], a tour 1→4→8→2→5→3→6→7 (where

each number represents a location ID) can be represented as
a chromosome with sequence (1 4 8 2 5 3 6 7). Note that
each location must be visited exactly once.

The traveling distance, from location 1 to location 7 in
the above example, can represent the GA’s fitness value.
Since the best solution should have the shortest traveling
distance, the iterative GA processes will try to minimize the
fitness value as low as possible.

B. Selection Operator

The purpose of selection operator is to select some
individuals from the population for later breeding (i.e.,
crossover operator). The selection operator is expected to
have high probability to find the good individuals (i.e., good
solutions), so they as parents will produce other good, or
even better, offspring. The individual’s fitness value can
differentiate the good from the bad. Since the fitness value in
TSP is represented by the traveling distance, the less is the
better: minimization problem.

Two methods are employed for the selection operator:

• Tournament Selection: Running several tournaments
among some individuals selected randomly from the
population. In each tournament, the individual with
the best fitness (i.e., the least value) is the winning
candidate for generating offspring later.

• Roulette Wheel Selection (a.k.a. Fitness Proportionate
Selection): A sector of the wheel is proportionately
(based on the reciprocal fitness value) assigned to
each individual. The winning candidate is then
selected by rotating the wheel (i.e., randomly picked).

C. Crossover Operator

The classical crossover operators such as one-point, two-
point, and uniform crossovers would not be appropriate for
TSP, since the results should maintain the combinatorial
nature of sequencing locations. Alternatively, the partially
mapped, order, and cycle crossover operators were mostly
suggested in past research works [8]. Among those three
crossover operators, we employ the order one, as maintaining
the relative order of locations is quite important in our
opinion. The order crossover operator is explained in the
following paragraph.

Consider the chromosomes of two parents to be
crossover-ed are as follows (with randomly two cut points
marked by “|”):

P1 = (3 4 8 | 2 7 1 | 6 5)
 P2 = (4 2 5 | 1 6 8 | 3 7)

The offspring should maintain the parents’ sequences
within the two cut points, which gives

O1 = (x x x | 2 7 1 | x x)
 O2 = (x x x | 1 6 8 | x x)

Afterward, starting from the second cut point of one
parent, the sequence of locations from the other parent is
copied in the same order omitting existing locations. For
instance, the sequence of locations in the second parent from

the second cut point is 3→7→4→2→5→1→6→8. After

omitting locations 2, 7, and 1 (which has existed in the first

offspring), the resulting sequence is 3→4→5→6→8, which

is then placed in the first offspring starting from the second
cut point:

O1 = (5 6 8 | 2 7 1 | 3 4)
 O2 = (4 2 7 | 1 6 8 | 5 3)

The second offspring is completed in the same way.

D. Mutation Operator

Mutation operator is used to maintain genetic diversity in
the population from one generation to the next. It is also an
attempt to avoid being trapped in the local optima. Every
individual is subject to mutation, although mutation seldom
occurs (i.e., very small probability). When an individual is
selected for mutation, two genes of its chromosome would be
randomly determined and then exchanged.

E. Elitism Operator

Elitism operator allows a few best individuals (i.e.,
having the least fitness values) from the current generation to
carry over to the next, unaltered. To a certain extent, this
would guarantee that the GA solution quality does not
degrade from one generation to another. The proportion of
elites should be kept small to maintain diversity and avoid
premature convergence.

V. RESULTS AND DISCUSSION

This section begins with hotspot analysis on the
sequential GA program. Next, we detail the test environment
for our research work. The main findings of this research
work are then presented and discussed.

A. Hotspot Analysis on Sequential GA Program

VTune Profiler (formerly VTune Amplifier) [9] was
employed for this hotspot analysis. Displayed in Table 2 are
the top 10 subroutines having the longest running time in the
sequential GA program. These subroutines (except those
from the standard library) are our target for parallelization.
As predicted, the crossover operator (involving subroutines
starting with XO) took the lion’s share of the execution time.

TABLE II. HOTSPOT ANALYSIS

Subroutine Name Running Time (in minutes)

XOCross 75.37

Mutation 72.99

CalculateGenesFitness 62.81

XORankedPairing 31.19

XOCutting 28.42

XOGeneChecking 21.91

SelectionElitism 20.62

GenerateGene 4.03

std::stable_sort 1.14

XOJoinGene 0.87

B. Test Environment

This subsection explains the TSP test cases to be solved
with GA and the compute resources employed for running
different (i.e., three variants) GA programs.

1) TSP Test Cases

In our experiment, the TSP test cases were downloaded
from the National Traveling Salesman Problems webpage
[10], maintained by the Department of Combinatorics and
Optimization, the University of Waterloo (Canada). In
particular, three test cases were used:

• CA4663: a list of 4,663 cities in Canada (the optimal
tour has the length of 1,290,319);

• FI10639: a list of 10,639 cities in Finland (the optimal
tour has the length of 520,527);

• IT16862: a list of 16,862 cities in Italy (the optimal
tour has the length of 557,315).

2) Compute Resources

Two computers were mainly used for running different
GA programs to solve TSP test cases. The third computer
(with the highest specification) was only used for the most
complex test case (i.e., IT16862). Below are the
specifications of the computers:

• Comp1 (R5-1600, RTX 2060)
CPU : AMD Ryzen 5 1600 (6 cores, 3.2 GHz)
RAM : 16 GB DDR4 (3200 MHz)
GPU : NVIDIA GeForce RTX 2060 (30 SM x 64
 CUDA cores, 1365 MHz, 6 GB GDDR6)

• Comp2 (E5-2630v4, Tesla P4)
CPU : 2 (two) Intel Xeon E5-2630 v4
 (10 cores, 2.2 GHz)
RAM : 128 GB DDR4 (2133 MHz)
GPU : NVIDIA Tesla P4 (20 SM x 128 CUDA
 cores, 886 MHz, 8 GB GDDR5)

• Comp3 (TR-2990WX, RTX 2080 Ti, GTX 1070 Ti)
CPU : AMD Ryzen Threadripper 2990 WX
 (32 cores, 3.0 GHz)
RAM : 64 GB DDR4 (2400 MHz)
GPU : NVIDIA GeForce RTX 2080 Ti (68 SM x 64
 CUDA cores, 1350 MHz, 11 GB GDDR6) &
 NVIDIA GeForce GTX 1070 Ti (19 SM x 128
 CUDA cores, 1607 MHz, 8 GB GDDR5)

3) GA Programs

We developed 3 (three) variants of GA to solve TSP
cases: Sequential GA, Parallel (OpenMP) GA, and Parallel
(CUDA) GA. Other GA parameters that we set are:

• Mutation Rate: 5%,

• Elitism Rate: 5%,

• Population Size: number of cities * 0.25,

• Tournament Size: 3.

C. Comparative Results

For each TSP test case, the three variants of GA were run
on the test computers, and results (i.e., average number of
generations per minute) were compared.

1) Test Case CA4663

As shown in Table 3, the parallel GA solutions can
produce more generations per minute than the sequential GA
solutions do. For CPU architecture, the AMD Ryzen 5 1600
obtains the speed-up of 7.4x when it is executed in parallel
(with OpenMP), whereas the Intel Xeon E5-2630 v4 obtains
the speed-up of 14.8x when similarly executed in parallel
(with OpenMP).

For GPU architecture, the NVIDIA GeForce RTX 2060
obtains the speed-up of 82.9x over the AMD Ryzen 5 1600
(both GA solutions, CPU sequential and CUDA parallel,
were executed in the same Comp1 machine). The NVIDIA
Tesla P4 obtains the speed-up of 55.9x over the Intel Xeon
E5-2630 v4 (both GA solutions, CPU sequential and CUDA
parallel, were executed in the same Comp2 machine).

Observing the fitness value progress in Figure 1, we see
that the sequential GA solutions took very long time to
converge, and even after 12-hour run, they were still far
away from the optimal solution. On the other hand, the
parallel (OpenMP) GA solutions cut down the individuals’
fitness values steeply in the first 1 hour (60 minutes), and
afterward, the fitness values were reduced gradually and
steadily. The parallel (CUDA) GA solutions cut down the
individuals’ fitness values steeply in the first 30-40 minutes,
and then, the fitness values were reduced very slowly. After
the 12-hour run, the best fitness value (with the length of
1,527,875.8) is about 15.5% less optimal than the most
optimal tour (with the length of 1,290,319).

TABLE III. COMPARATIVE PERFORMANCE OF GA SOLUTIONS FOR TEST CASE CA4663 (AFTER 12-HOUR RUN)

GA Solution Avg. Generation# per Minute Min. Fitness Avg. Fitness Max. Fitness

E5-2630v4S* (CPU) 63.7 4,372,899.0 4,468,292.1 4,835,286.1

R5-1600S* (CPU) 81.8 3,673,959.5 3,756,221.1 4,117,880.8

R5-1600 (OpenMP) 603.4 2,111,284.3 2,268,885.6 2,732,384.0

E5-2630v4 (OpenMP) 940.0 1,967,163.1 2,127,867.7 2,510,704.3

Tesla P4 (CUDA) 3,561.7 1,564,348.6 1,656,947.6 1,822,434.8

RTX 2060 (CUDA) 6,781.3 1,527,875.8 1,685,845.1 1,892,503.0
*Note: The GA solution ending with ‘S’ means the sequential variant

Fig. 1. Fitness Value Progress of GA Solutions for Test Case CA4663 (after 12-hour run)

TABLE IV. COMPARATIVE PERFORMANCE OF GA SOLUTIONS FOR TEST CASE FI10639 (AFTER 12-HOUR RUN)

GA Solution Avg. Generation# per Minute Min. Fitness Avg. Fitness Max. Fitness

E5-2630v4S* (CPU) 12.0 15,752,507.8 15,808,694.2 15,889,584.2

R5-1600S* (CPU) 15.0 14,154,926.6 14,194,222.1 14,252,572.3

R5-1600 (OpenMP) 109.5 3,030,184.6 3,052,983.9 3,116,257.0

E5-2630v4 (OpenMP) 192.0 1,910,552.7 1,931,680.6 1,995,457.2

Tesla P4 (CUDA) 476.2 1,096,557.4 1,116,583.2 1,145,332.1

RTX 2060 (CUDA) 1,224.7 888,951.5 903,758.6 927,015.0
*Note: The GA solution ending with ‘S’ means the sequential variant

Fig. 2. Fitness Value Progress of GA Solutions for Test Case FI10639 (after 12-hour run)

2) Test Case FI10639

Table 4 shows that the parallel GA solutions can produce
more generations per minute than the sequential GA
solutions do. For CPU architecture, the AMD Ryzen 5 1600
obtains the speed-up of 7.3x when it is executed in parallel
(with OpenMP), whereas the Intel Xeon E5-2630 v4 obtains
the speed-up of 16.0x when similarly executed in parallel
(with OpenMP). Overall, the speed-ups we obtain for this
test case (FI10639) are pretty similar to those we obtain for
the previous test case (CA4663).

For GPU architecture, the NVIDIA GeForce RTX 2060
obtains the speed-up of 81.6x over the sequential solution
running on the AMD Ryzen 5 1600. The NVIDIA Tesla P4
obtains the speed-up of 39.7x over the sequential solution
running on the Intel Xeon E5-2630 v4. The speed-up on
NVIDIA GeForce RTX 2060 we obtain for this test case
(FI10639) is quite similar to that we obtain for the previous
test case (CA4663). By contrast, there is a drop in speed-up
on NVIDIA Tesla P4 (from 55.9 to 39.7) when we increase
the test case’s complexity (from CA4663 to FI10639).

Observing the fitness value progress in Figure 2, we see
that the sequential GA solutions were still far away from the
optimal solution even after 12-hour run. The parallel
(OpenMP) GA solutions cut down the individuals’ fitness
values steeply in the first 1 hour, and afterward, the fitness
values were reduced gradually and steadily. The parallel
(CUDA) GA solutions cut down the individuals’ fitness
values steeply in the first 30-40 minutes, and then, the fitness
values were reduced very slowly. After the 12-hour run, the
best fitness value is still 41.4% less optimal than the most
optimal tour (with the length of 520,527).

3) Test Case IT16862

Table 5 shows that the parallel GA solutions can produce
more generations per minute than the sequential GA

solutions do. For CPU architecture, the AMD Ryzen 5 1600,
the Intel Xeon E5-2630 v4, and the AMD Ryzen
Threadripper 2990 WX obtain the speed-ups of 7.2x, 15.9x,
and 22.2x, respectively, when they are executed in parallel
(with OpenMP). Overall, the speed-ups we obtain on the
AMD Ryzen 5 1600 and the Intel Xeon E5-2630 v4 for this
test case (IT16862) are pretty similar to those we obtain on
the respective computers for the previous test cases (CA4663
and FI10639).

For GPU architecture, the NVIDIA GeForce RTX 2060
obtains the speed-up of 59.0x over the sequential solution
running on the AMD Ryzen 5 1600. The NVIDIA Tesla P4
obtains the speed-up of 22.8x over the sequential solution
running on the Intel Xeon E5-2630 v4. Finally, the NVIDIA
GeForce RTX 2080 Ti and the NVIDIA GeForce GTX 1070
Ti obtain the speed-ups of 172.4x and 42.7x, respectively,
over the sequential solution running on the AMD Ryzen
Threadripper 2990 WX. There are significant drops in speed-
ups on NVIDIA Tesla P4 (from 55.9 to 22.8) and NVIDIA
GeForce RTX 2060 (from 82.9 to 59.0), when we increase
the test case’s complexity (from CA4663 to IT16862). It is
obvious that those GPU devices were no longer scalable.
Among the GPU devices, the NVIDIA GeForce RTX 2080
Ti yields the best speed-up (172.4).

Observing the fitness value progress in Figure 3, we see
that the sequential GA solutions were still far away from the
optimal solution even after 12-hour run. The parallel
(OpenMP) GA solutions cut down the individuals’ fitness
values steeply in the first 1 hour, and afterward, the fitness
values were reduced gradually and steadily. The parallel
(CUDA) GA solutions cut down the individuals’ fitness
values steeply in the first 30-40 minutes, and then, the fitness
values were reduced very slowly. After the 12-hour run, the
best fitness value is still 53.0% less optimal than the most
optimal tour (with the length of 557,315).

TABLE V. COMPARATIVE PERFORMANCE OF GA SOLUTIONS FOR TEST CASE IT16862 (AFTER 12-HOUR RUN)

GA Solution Avg. Generation# per Minute Min. Fitness Avg. Fitness Max. Fitness

E5-2630v4S* (CPU) 4.9 35,162,753.9 35,291,258.7 35,463,585.1

TR-2990WXS* (CPU) 5.1 34,423,275.3 34,549,554.5 34,706,707.7

R5-1600S* (CPU) 5.7 33,315,569.9 33,451,954.6 33,622,007.5

R5-1600 (OpenMP) 41.0 13,966,778.9 14,006,352.0 14,091,529.7

E5-2630v4 (OpenMP) 78.0 7,750,217.7 7,774,997.7 7,846,569.6

TR-2990WX (OpenMP) 113.1 5,289,105.1 5,314,011.7 5,382,960.2

Tesla P4 (CUDA) 111.8 4,178,787.6 4,199,267.2 4,228,963.7

GTX 1070 Ti (CUDA) 217.7 2,501,517.8 2,518,557.8 2,545,618.7

RTX 2060 (CUDA) 336.3 1,900,081.5 1,921,036.1 1,949,108.7

RTX 2080 Ti (CUDA) 879.0 1,185,113.7 1,208,297.9 1,238,566.8
*Note: The GA solution ending with ‘S’ means the sequential variant

Fig. 3. Fitness Value Progress of GA Solutions for Test Case IT16862 (after 12-hour run)

VI. CONCLUSION AND FUTURE WORK

Owing to its simplicity and versatility, genetic algorithm
(GA) has been applied to diverse fields. With the rising use
of GPU in many computation platforms, we can leverage on
its huge number of cores to accelerate processes. GA’s
characteristics – which involve many individuals, comprise
some operators, and run iteratively in search for optimal
solutions – can gain much benefit from GPU acceleration.

We had parallelized some GA operators using OpenMP
(for running on CPU) and CUDA (for running on GPU). The
traveling salesman program (TSP) was employed as the case
study. Our experimental results show that indeed we can
obtain significant speed-ups with both devices. Speed-ups of
GA solutions on CPU range from 7.2 to 22.2, depending on
the number of processing cores in the CPU. By contrast,
speed-ups of GA solutions on GPU can reach up to 172.4.

In the near future, we want to employ different
parallelization techniques for GA to get more benefits from
multiple GPU devices. We also intend to improve our
understanding and capability in this CPU-GPU architecture
by testing out different but equally challenging algorithms.

ACKNOWLEDGMENT

This research project was partially supported by the
Indonesian Ministry of Education, Culture, Research and
Technology / National Research and Innovation Agency
through the PDUPT Grant No. 007/SP2H/PDUPT/LPPM-
UKP/IV/2021 and also by the Bureau of Research and
Community Service as well as the Faculty of Industrial
Technology at Petra Christian University through the

research funding: No. 01/PNLT/FTI/UKP/2018. We express
our sincere gratitude and appreciation for all the supports.

REFERENCES

[1] X.-S. Yang, “Genetic Algorithms,” in Nature-Inspired Optimization
Algorithms, 2nd ed., Academic Press, 2021, pp. 91-100.

[2] J. R. Cheng and M. Gen, “Parallel Genetic Algorithms with GPU
Computing,” IntechOpen, 5 February 2020. [Online] Available:
https://www.intechopen.com/chapters/69121.

[3] I. Sugiarto, D. Prayogo, H. Palit, F. Pasila, R. Lim, A. Noertjahyana,
I. G. A. Widyadana, S. Hermawan, A. B. Gumelar and B. N. Yahya,
“Custom Built of Smart Computing Platform for Supporting
Optimization Methods and Artificial Intelligence Research –
PakCarik: GPU-Accelerated Platform for AI Researches,”
Proceedings of the Pakistan Academy of Sciences: A. Physical and
Computational Sciences, vol. 58, no. S, pp. 59-64, 2021.

[4] J. Everett, “Model Building, Model Testing and Model Fitting,” in
The Practical Handbook of Genetic Algorithms, Applications, 2nd
ed., Boca Raton (FL, USA), Chapman & Hall / CRC, 2001, pp. 1-29.

[5] K. Hwang and N. Jotwani, Advanced Computer Architecture:
Parallelism, Scalability, Programmability, 3rd ed., New Delhi:
McGraw-Hill Education, 2016.

[6] OpenMP Architecture Review Board, “OpenMP FAQ,” 6 June 2018.
[Online] Available: https://www.openmp.org/about/openmp-faq.

[7] NVIDIA, “CUDA Zone,” July 2021. [Online] Available:
https://developer.nvidia.com/cuda-zone.

[8] A. Hussain, Y. S. Muhammad, M. N. Sajid, I. Hussain, A. M.
Shoukry and S. Gani, “Genetic Algorithm for Traveling Salesman
Problem with Modified Cycle Crossover Operator,” Computational
Intelligence and Neuroscience, vol. 2017, 2017.

[9] Intel Corporation, “Intel VTune Profiler User Guide,” 9 November
2021. [Online] Available: https://www.intel.com/content/www/us/en/
develop/documentation/vtune-help/top.html.

[10] W. Cook, “National Traveling Salesman Problems,” 10 March 2017.
[Online] Available: http://www.math.uwaterloo.ca/tsp/world/
countries.html.

