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Abstract—Genetic Algorithm (GA) is one of the most 

popular optimization techniques. Inspired by the theory of 

evolution and natural selection, it is also famous for its 

simplicity and versatility. Hence, it has been applied in diverse 

fields and domains. However, since it involves iterative and 

evolutionary processes, it takes a long time to obtain optimal 

solutions. To improve its performance, in this research work, 

we had parallelized GA processes to enable searching through 

the solution space with concurrent efforts. We had 

experimented with both CPU and GPU architectures. Speed-

ups of GA solutions on CPU architecture range from 7.2 to 

22.2, depending on the number of processing cores in the CPU. 

By contrast, speed-ups of GA solutions on GPU architecture 

can reach up to 172.4. 

Keywords—genetic algorithm, parallel, OpenMP, CUDA, 

traveling salesman problem  

I. INTRODUCTION 

Genetic Algorithm (GA) is a metaheuristic to solve 
optimization and search problems by relying on biologically 
inspired operators such as selection, crossover, and mutation. 
It is inspired by the process of natural selection belonging to 
the larger class of evolutionary algorithms. Since its 
conception by John Holland and his collaborators in the 
1960s and 1970s, many variants of GAs have been proposed 
and used to address a variety of optimization problems [1]: 
from graph coloring to pattern recognition, from discrete 
systems (e.g., the traveling salesman problem) to continuous 
systems (e.g., the efficient design of airfoil), and from 
financial analysis to multi-objective engineering 
optimization. 

To explore the search space, GA involves multiple 
individuals that can randomly and independently find a mate 
in the population and produce new individuals. This 
characteristic process is excellent for parallelization, and 
consequently, different optimization parameters and 
objectives can be examined simultaneously and quickly. 
Several parallel schemas for GAs [2] – either on CPU, GPU, 
or both – have been proposed in the past decade. Leveraging 

the multi-processing capabilities provided by today’s 
computers, we believe the use of parallel GAs will empower 
many research and industrial works to obtain feasible 
solutions in a short time. 

As part of our efforts to build capabilities and 
experiences with our high throughput computing platform 
(PakCarik) [3], we evaluate the execution of a parallel GA – 
using the Traveling Salesman Problem (TSP) as the case 
study – on the computing platform. This manuscript is just a 
preliminary report on our research work, as we will explore 
other possibilities to speed up GA with parallelization in the 
future. 

In the following sections, we will detail some 
applications of GAs and some techniques to parallelize GAs. 
Next, the GA implementation for solving TSP is discussed. 
Finally, we will present the results of this research work and 
discuss them, before giving conclusion. 

II. APPLICATIONS OF GENETIC ALGORITHMS 

Generally, there are two major areas of potential for GAs 
[4]: optimizing an operating system and fitting a quantitative 
model. Such examples of operating system are a gas 
distribution pipeline system, traffic lights, traveling 
salesmen, allocation of funds to projects, scheduling, 
handling and blending of materials, and so forth. The system 
designer or operator usually selects a few decision 
parameters (perhaps within constraints) and measure the 
system’s performance by some relevant objective or fitness 
function. The other potential area, which arguably has been 
less explored and discussed, deals with testing and fitting 
quantitative models. Instead of maximizing the performance 
of an operating system, here we are trying to find parameters 
that minimize the misfit between the model and the data. The 
fitness function (or, more aptly called the “misfit function”) 
represents the difference between the observed and predicted 
data values. Hence, the optimization objective is to obtain 
parameter values for the model that minimize the misfit 
function. 

TABLE I.  LEVELS OF PARALLELISM 

Processing Level Granularity Typical Instruction# Computer Architecture* 

Job (Program) Level Coarse 1,000,000’s  MIMD (generally MPMD) 

Subprogram Level Medium – Coarse 10,000’s – 100,000’s  MIMD (SPMD or MPMD) 

Procedure Level Medium < 2,000  MIMD (generally SPMD) 

Loop Level Fine < 500  SIMD (and some MIMD) 

Instruction Level Fine < 20  Often processor-specific, compiler-assisted 

a. Source: Summarized from Hwang and Jotwani [5] 

*Note: SIMD = Single Instruction-stream, Multiple Data-streams 

MIMD = Multiple Instruction-streams, Multiple Data-streams 

SPMD = Single Program, Multiple Data-streams 

MPMD = Multiple Programs, Multiple Data-streams 

 



III. PARALLELIZING GENETIC ALGORITHMS 

Noting the broad and versatile use of GAs to a vast of 
problems, it would really be sensible and desirable thing to 
speed up GA’s iterative, evolutionary process. Parallel 
computing, the simultaneous use of multiple compute 
resources to solve a computational problem, is deemed 
suitable to address the speed-up issue. To leverage on 
parallel computing, the computational problem should be 
able to: 

• Be divided into smaller segments that can be handled 
concurrently;  

• Run multiple program instructions at any given time;  

• Be executed in a shortened time with multiple 
compute resources. 

Typical compute resources for parallel computation are a 
single computer with multiple processors / cores (i.e., CPUs) 
or an arbitrary number of such computers connected to a 
network. Over tens of processes (or threads) may be 
executed simultaneously on this multi-processor platform. 
Parallelism may run on different processing levels, as shown 
in Table 1. The lower the processing level being parallelized, 
the finer the granularity of the software processes, and 
usually the higher the parallelism gain (although the 
communication and scheduling overheads may offset the 
parallelism gain). A typical parallel program may involve a 
combination of these levels of parallelism [5]. The actual 
combination depends on the application, formulation, 
algorithm, language, program, compilation support, and 
hardware characteristics. 

To run GA in a parallel fashion, the basic idea is to 
distribute the computations over multiple processors or 
computers. GA operators such as selection, crossover, and 
mutation are commonly implemented as procedures 
(subroutines) or subprograms. Leveraging the multi-
processor (multi-core) platform, many research works 
embrace parallelism by running a sequential GA operator 
directly on multiple processors to exploit data parallelism. In 
this scenario, all computations pertaining to a particular GA 
operator are assigned to a single process / thread (and 
consequently, to a single processing core). Multiple GA 
operators, each of which handles a different data-stream, can 
run on multiple cores in a parallel fashion. Hence, from the 
algorithm’s point of view, each instance of parallel processes 
is essentially a sequential GA operator. This naive approach 
can still yield significant speed-up on the GA processes. 
Nevertheless, higher speed-up may be obtained as we seek 
finer granularity of the parallel processes. In addition, the 
emergence of CPU + GPU heterogeneous architecture has 
attracted many researchers and practitioners to exploit this 
computing platform. 

A. Parallelization with OpenMP 

OpenMP [6] is an API (Application Programming 
Interface) comprising compiler directives, library routines, 
and environment variables that can be used to specify high-
level parallelism in programs written in Fortran, C, or C++. 
It is the most widely used standard for SMP (Symmetric 
Multi-Processing) systems. OpenMP provides special 
notation (e.g., instructions or directives) to specify how a 
program’s fragments are assigned to the individual 
processors / cores, as well as to control the ordering of 
accesses to shared data by different threads. This information 

will be used by the compiler to generate the actual machine 
code for execution by each processor. 

It is the onus of the program developer to dictate where 
and how parallelization should be carried out in the program. 
Employing the OpenMP notation, we can specify the code 
fragments (e.g., loop nests) of a GA process to be 
parallelized and later executed by multiple threads. Thus, the 
fine-grained parallelization (i.e., on loop level) can be 
attained. 

B. Parallelization with GPU + CUDA 

With the proliferating use of GPU (Graphics Processing 
Unit) for accelerating computations, not just limited to image 
or video processing, we may further gain speed-up from 
hundreds to thousands of cores available. GPU computing 
has thrusted the research of parallel GAs to the world of 
high-performance computing (HPC) and brought forth a 
great potential to many research and industrial works that can 
benefit from the GPU-accelerated stochastic and global 
search for better solutions [2]. However, as indicated earlier, 
many research works adopted a naive approach: running a 
sequential GA process on a GPU thread, in exactly the same 
fashion as how parallel GAs generally run on CPU. As GPU 
provides a massive number of processing cores, the parallel 
program on GPU should be designed differently from that on 
CPU.  

Developed by NVIDIA and introduced in 2006, CUDA 
(Compute Unified Device Architecture) platform [7] exposes 
GPU memory and execution models for developers to 
leverage its computing power. Many CUDA libraries and 
tools are available to provide developers everything they 
need to build GPU-accelerated programs in popular 
languages such as C, C++, Fortran, Python, and MATLAB. 
Parallelism can be expressed through the given extensions in 
the form of a few basic keywords. The sequential parts of the 
GPU-accelerated program still run on CPU, whereas the 
compute intensive portions run simultaneously on hundreds 
or thousands of GPU cores. 

Similar to the OpenMP program, the GPU-accelerated 
program can attain fine-grained parallelization through 
explicit programming. Different to the development of an 
OpenMP program that relatively requires no additional effort 
on the program developer, building a GPU-accelerated 
program requires much understanding of the GPU system 
architecture and the CUDA programming model. 

IV. GENETIC ALGORITHM FOR TRAVELING SALESMAN 

PROBLEM 

This section details various aspects required to solve TSP 
using GA. Firstly, we describe the representation of the path 
that the salesman needs to travel. Next, we explain how the 
basic GA operators are implemented for TSP. 

A. Path Representation 

Since the traveled path is essentially the solution of TSP, 
the path should be coded as the individual’s chromosome. 

For example [8], a tour 1→4→8→2→5→3→6→7 (where 

each number represents a location ID) can be represented as 
a chromosome with sequence (1 4 8 2 5 3 6 7). Note that 
each location must be visited exactly once. 



The traveling distance, from location 1 to location 7 in 
the above example, can represent the GA’s fitness value. 
Since the best solution should have the shortest traveling 
distance, the iterative GA processes will try to minimize the 
fitness value as low as possible. 

B. Selection Operator 

The purpose of selection operator is to select some 
individuals from the population for later breeding (i.e., 
crossover operator). The selection operator is expected to 
have high probability to find the good individuals (i.e., good 
solutions), so they as parents will produce other good, or 
even better, offspring. The individual’s fitness value can 
differentiate the good from the bad. Since the fitness value in 
TSP is represented by the traveling distance, the less is the 
better: minimization problem. 

Two methods are employed for the selection operator: 

• Tournament Selection: Running several tournaments 
among some individuals selected randomly from the 
population. In each tournament, the individual with 
the best fitness (i.e., the least value) is the winning 
candidate for generating offspring later. 

• Roulette Wheel Selection (a.k.a. Fitness Proportionate 
Selection): A sector of the wheel is proportionately 
(based on the reciprocal fitness value) assigned to 
each individual. The winning candidate is then 
selected by rotating the wheel (i.e., randomly picked). 

C. Crossover Operator 

The classical crossover operators such as one-point, two-
point, and uniform crossovers would not be appropriate for 
TSP, since the results should maintain the combinatorial 
nature of sequencing locations. Alternatively, the partially 
mapped, order, and cycle crossover operators were mostly 
suggested in past research works [8]. Among those three 
crossover operators, we employ the order one, as maintaining 
the relative order of locations is quite important in our 
opinion. The order crossover operator is explained in the 
following paragraph. 

Consider the chromosomes of two parents to be 
crossover-ed are as follows (with randomly two cut points 
marked by “|”): 

P1 = (3 4 8 | 2 7 1 | 6 5)  
 P2 = (4 2 5 | 1 6 8 | 3 7) 

The offspring should maintain the parents’ sequences 
within the two cut points, which gives 

O1 = (x x x | 2 7 1 | x x) 
 O2 = (x x x | 1 6 8 | x x) 

Afterward, starting from the second cut point of one 
parent, the sequence of locations from the other parent is 
copied in the same order omitting existing locations. For 
instance, the sequence of locations in the second parent from 

the second cut point is 3→7→4→2→5→1→6→8. After 

omitting locations 2, 7, and 1 (which has existed in the first 

offspring), the resulting sequence is 3→4→5→6→8, which 

is then placed in the first offspring starting from the second 
cut point: 

O1 = (5 6 8 | 2 7 1 | 3 4) 
 O2 = (4 2 7 | 1 6 8 | 5 3) 

The second offspring is completed in the same way. 

D. Mutation Operator 

Mutation operator is used to maintain genetic diversity in 
the population from one generation to the next. It is also an 
attempt to avoid being trapped in the local optima. Every 
individual is subject to mutation, although mutation seldom 
occurs (i.e., very small probability). When an individual is 
selected for mutation, two genes of its chromosome would be 
randomly determined and then exchanged. 

E. Elitism Operator 

Elitism operator allows a few best individuals (i.e., 
having the least fitness values) from the current generation to 
carry over to the next, unaltered. To a certain extent, this 
would guarantee that the GA solution quality does not 
degrade from one generation to another. The proportion of 
elites should be kept small to maintain diversity and avoid 
premature convergence. 

V. RESULTS AND DISCUSSION 

This section begins with hotspot analysis on the 
sequential GA program. Next, we detail the test environment 
for our research work. The main findings of this research 
work are then presented and discussed. 

A. Hotspot Analysis on Sequential GA Program 

VTune Profiler (formerly VTune Amplifier) [9] was 
employed for this hotspot analysis. Displayed in Table 2 are 
the top 10 subroutines having the longest running time in the 
sequential GA program. These subroutines (except those 
from the standard library) are our target for parallelization. 
As predicted, the crossover operator (involving subroutines 
starting with XO) took the lion’s share of the execution time. 

TABLE II.  HOTSPOT ANALYSIS 

Subroutine Name Running Time (in minutes) 

XOCross 75.37 

Mutation 72.99 

CalculateGenesFitness 62.81 

XORankedPairing 31.19 

XOCutting 28.42 

XOGeneChecking 21.91 

SelectionElitism 20.62 

GenerateGene 4.03 

std::stable_sort 1.14 

XOJoinGene 0.87 

B. Test Environment 

This subsection explains the TSP test cases to be solved 
with GA and the compute resources employed for running 
different (i.e., three variants) GA programs. 

1) TSP Test Cases 

In our experiment, the TSP test cases were downloaded 
from the National Traveling Salesman Problems webpage 
[10], maintained by the Department of Combinatorics and 
Optimization, the University of Waterloo (Canada). In 
particular, three test cases were used: 

• CA4663: a list of 4,663 cities in Canada (the optimal 
tour has the length of 1,290,319); 

• FI10639: a list of 10,639 cities in Finland (the optimal 
tour has the length of 520,527); 

• IT16862: a list of 16,862 cities in Italy (the optimal 
tour has the length of 557,315). 



2) Compute Resources 

Two computers were mainly used for running different 
GA programs to solve TSP test cases. The third computer 
(with the highest specification) was only used for the most 
complex test case (i.e., IT16862). Below are the 
specifications of the computers: 

• Comp1 (R5-1600, RTX 2060) 
CPU : AMD Ryzen 5 1600 (6 cores, 3.2 GHz) 
RAM : 16 GB DDR4 (3200 MHz) 
GPU : NVIDIA GeForce RTX 2060 (30 SM x 64  
  CUDA cores, 1365 MHz, 6 GB GDDR6) 

• Comp2 (E5-2630v4, Tesla P4) 
CPU : 2 (two) Intel Xeon E5-2630 v4  
  (10 cores, 2.2 GHz) 
RAM : 128 GB DDR4 (2133 MHz) 
GPU : NVIDIA Tesla P4 (20 SM x 128 CUDA  
  cores, 886 MHz, 8 GB GDDR5) 

• Comp3 (TR-2990WX, RTX 2080 Ti, GTX 1070 Ti) 
CPU : AMD Ryzen Threadripper 2990 WX  
  (32 cores, 3.0 GHz) 
RAM : 64 GB DDR4 (2400 MHz) 
GPU : NVIDIA GeForce RTX 2080 Ti (68 SM x 64  
  CUDA cores, 1350 MHz, 11 GB GDDR6) & 
  NVIDIA GeForce GTX 1070 Ti (19 SM x 128  
  CUDA cores, 1607 MHz, 8 GB GDDR5) 

3) GA Programs 

We developed 3 (three) variants of GA to solve TSP 
cases: Sequential GA, Parallel (OpenMP) GA, and Parallel 
(CUDA) GA. Other GA parameters that we set are: 

• Mutation Rate: 5%, 

• Elitism Rate: 5%, 

• Population Size: number of cities * 0.25, 

• Tournament Size: 3. 

C. Comparative Results 

For each TSP test case, the three variants of GA were run 
on the test computers, and results (i.e., average number of 
generations per minute) were compared. 

1) Test Case CA4663 

As shown in Table 3, the parallel GA solutions can 
produce more generations per minute than the sequential GA 
solutions do. For CPU architecture, the AMD Ryzen 5 1600 
obtains the speed-up of 7.4x when it is executed in parallel 
(with OpenMP), whereas the Intel Xeon E5-2630 v4 obtains 
the speed-up of 14.8x when similarly executed in parallel 
(with OpenMP).  

For GPU architecture, the NVIDIA GeForce RTX 2060 
obtains the speed-up of 82.9x over the AMD Ryzen 5 1600 
(both GA solutions, CPU sequential and CUDA parallel, 
were executed in the same Comp1 machine). The NVIDIA 
Tesla P4 obtains the speed-up of 55.9x over the Intel Xeon 
E5-2630 v4 (both GA solutions, CPU sequential and CUDA 
parallel, were executed in the same Comp2 machine). 

Observing the fitness value progress in Figure 1, we see 
that the sequential GA solutions took very long time to 
converge, and even after 12-hour run, they were still far 
away from the optimal solution. On the other hand, the 
parallel (OpenMP) GA solutions cut down the individuals’ 
fitness values steeply in the first 1 hour (60 minutes), and 
afterward, the fitness values were reduced gradually and 
steadily. The parallel (CUDA) GA solutions cut down the 
individuals’ fitness values steeply in the first 30-40 minutes, 
and then, the fitness values were reduced very slowly. After 
the 12-hour run, the best fitness value (with the length of 
1,527,875.8) is about 15.5% less optimal than the most 
optimal tour (with the length of 1,290,319). 

TABLE III.  COMPARATIVE PERFORMANCE OF GA SOLUTIONS FOR TEST CASE CA4663 (AFTER 12-HOUR RUN) 

GA Solution Avg. Generation# per Minute Min. Fitness Avg. Fitness Max. Fitness 

E5-2630v4S* (CPU) 63.7 4,372,899.0 4,468,292.1 4,835,286.1 

R5-1600S* (CPU) 81.8 3,673,959.5 3,756,221.1 4,117,880.8 

R5-1600 (OpenMP) 603.4 2,111,284.3 2,268,885.6 2,732,384.0 

E5-2630v4 (OpenMP) 940.0 1,967,163.1 2,127,867.7 2,510,704.3 

Tesla P4 (CUDA) 3,561.7 1,564,348.6 1,656,947.6 1,822,434.8 

RTX 2060 (CUDA) 6,781.3 1,527,875.8 1,685,845.1 1,892,503.0 
*Note: The GA solution ending with ‘S’ means the sequential variant 

 

 

Fig. 1. Fitness Value Progress of GA Solutions for Test Case CA4663 (after 12-hour run) 



TABLE IV.  COMPARATIVE PERFORMANCE OF GA SOLUTIONS FOR TEST CASE FI10639 (AFTER 12-HOUR RUN) 

GA Solution Avg. Generation# per Minute Min. Fitness Avg. Fitness Max. Fitness 

E5-2630v4S* (CPU)  12.0 15,752,507.8 15,808,694.2 15,889,584.2 

R5-1600S* (CPU) 15.0 14,154,926.6 14,194,222.1 14,252,572.3 

R5-1600 (OpenMP) 109.5 3,030,184.6 3,052,983.9 3,116,257.0  

E5-2630v4 (OpenMP) 192.0 1,910,552.7 1,931,680.6 1,995,457.2 

Tesla P4 (CUDA) 476.2 1,096,557.4 1,116,583.2 1,145,332.1 

RTX 2060 (CUDA) 1,224.7 888,951.5 903,758.6 927,015.0 
*Note: The GA solution ending with ‘S’ means the sequential variant 

 

 

Fig. 2. Fitness Value Progress of GA Solutions for Test Case FI10639 (after 12-hour run) 

 

2) Test Case FI10639 

Table 4 shows that the parallel GA solutions can produce 
more generations per minute than the sequential GA 
solutions do. For CPU architecture, the AMD Ryzen 5 1600 
obtains the speed-up of 7.3x when it is executed in parallel 
(with OpenMP), whereas the Intel Xeon E5-2630 v4 obtains 
the speed-up of 16.0x when similarly executed in parallel 
(with OpenMP). Overall, the speed-ups we obtain for this 
test case (FI10639) are pretty similar to those we obtain for 
the previous test case (CA4663). 

For GPU architecture, the NVIDIA GeForce RTX 2060 
obtains the speed-up of 81.6x over the sequential solution 
running on the AMD Ryzen 5 1600. The NVIDIA Tesla P4 
obtains the speed-up of 39.7x over the sequential solution 
running on the Intel Xeon E5-2630 v4. The speed-up on 
NVIDIA GeForce RTX 2060 we obtain for this test case 
(FI10639) is quite similar to that we obtain for the previous 
test case (CA4663). By contrast, there is a drop in speed-up 
on NVIDIA Tesla P4 (from 55.9 to 39.7) when we increase 
the test case’s complexity (from CA4663 to FI10639). 

Observing the fitness value progress in Figure 2, we see 
that the sequential GA solutions were still far away from the 
optimal solution even after 12-hour run. The parallel 
(OpenMP) GA solutions cut down the individuals’ fitness 
values steeply in the first 1 hour, and afterward, the fitness 
values were reduced gradually and steadily. The parallel 
(CUDA) GA solutions cut down the individuals’ fitness 
values steeply in the first 30-40 minutes, and then, the fitness 
values were reduced very slowly. After the 12-hour run, the 
best fitness value is still 41.4% less optimal than the most 
optimal tour (with the length of 520,527). 

3) Test Case IT16862 

Table 5 shows that the parallel GA solutions can produce 
more generations per minute than the sequential GA 

solutions do. For CPU architecture, the AMD Ryzen 5 1600, 
the Intel Xeon E5-2630 v4, and the AMD Ryzen 
Threadripper 2990 WX obtain the speed-ups of 7.2x, 15.9x, 
and 22.2x, respectively, when they are executed in parallel 
(with OpenMP). Overall, the speed-ups we obtain on the 
AMD Ryzen 5 1600 and the Intel Xeon E5-2630 v4 for this 
test case (IT16862) are pretty similar to those we obtain on 
the respective computers for the previous test cases (CA4663 
and FI10639). 

For GPU architecture, the NVIDIA GeForce RTX 2060 
obtains the speed-up of 59.0x over the sequential solution 
running on the AMD Ryzen 5 1600. The NVIDIA Tesla P4 
obtains the speed-up of 22.8x over the sequential solution 
running on the Intel Xeon E5-2630 v4. Finally, the NVIDIA 
GeForce RTX 2080 Ti and the NVIDIA GeForce GTX 1070 
Ti obtain the speed-ups of 172.4x and 42.7x, respectively, 
over the sequential solution running on the AMD Ryzen 
Threadripper 2990 WX. There are significant drops in speed-
ups on NVIDIA Tesla P4 (from 55.9 to 22.8) and NVIDIA 
GeForce RTX 2060 (from 82.9 to 59.0), when we increase 
the test case’s complexity (from CA4663 to IT16862). It is 
obvious that those GPU devices were no longer scalable. 
Among the GPU devices, the NVIDIA GeForce RTX 2080 
Ti yields the best speed-up (172.4). 

Observing the fitness value progress in Figure 3, we see 
that the sequential GA solutions were still far away from the 
optimal solution even after 12-hour run. The parallel 
(OpenMP) GA solutions cut down the individuals’ fitness 
values steeply in the first 1 hour, and afterward, the fitness 
values were reduced gradually and steadily. The parallel 
(CUDA) GA solutions cut down the individuals’ fitness 
values steeply in the first 30-40 minutes, and then, the fitness 
values were reduced very slowly. After the 12-hour run, the 
best fitness value is still 53.0% less optimal than the most 
optimal tour (with the length of 557,315). 



TABLE V.  COMPARATIVE PERFORMANCE OF GA SOLUTIONS FOR TEST CASE IT16862 (AFTER 12-HOUR RUN) 

GA Solution Avg. Generation# per Minute Min. Fitness Avg. Fitness Max. Fitness 

E5-2630v4S* (CPU)  4.9 35,162,753.9 35,291,258.7 35,463,585.1 

TR-2990WXS* (CPU) 5.1 34,423,275.3 34,549,554.5 34,706,707.7 

R5-1600S* (CPU) 5.7 33,315,569.9 33,451,954.6 33,622,007.5 

R5-1600 (OpenMP) 41.0 13,966,778.9 14,006,352.0 14,091,529.7 

E5-2630v4 (OpenMP) 78.0 7,750,217.7 7,774,997.7 7,846,569.6 

TR-2990WX (OpenMP) 113.1 5,289,105.1 5,314,011.7 5,382,960.2 

Tesla P4 (CUDA) 111.8 4,178,787.6 4,199,267.2 4,228,963.7 

GTX 1070 Ti (CUDA) 217.7 2,501,517.8 2,518,557.8 2,545,618.7 

RTX 2060 (CUDA) 336.3 1,900,081.5 1,921,036.1 1,949,108.7 

RTX 2080 Ti (CUDA) 879.0 1,185,113.7 1,208,297.9 1,238,566.8 
*Note: The GA solution ending with ‘S’ means the sequential variant 

 

 

Fig. 3. Fitness Value Progress of GA Solutions for Test Case IT16862 (after 12-hour run) 

 

VI. CONCLUSION AND FUTURE WORK 

Owing to its simplicity and versatility, genetic algorithm 
(GA) has been applied to diverse fields. With the rising use 
of GPU in many computation platforms, we can leverage on 
its huge number of cores to accelerate processes. GA’s 
characteristics – which involve many individuals, comprise 
some operators, and run iteratively in search for optimal 
solutions – can gain much benefit from GPU acceleration. 

We had parallelized some GA operators using OpenMP 
(for running on CPU) and CUDA (for running on GPU). The 
traveling salesman program (TSP) was employed as the case 
study. Our experimental results show that indeed we can 
obtain significant speed-ups with both devices. Speed-ups of 
GA solutions on CPU range from 7.2 to 22.2, depending on 
the number of processing cores in the CPU. By contrast, 
speed-ups of GA solutions on GPU can reach up to 172.4.  

In the near future, we want to employ different 
parallelization techniques for GA to get more benefits from 
multiple GPU devices. We also intend to improve our 
understanding and capability in this CPU-GPU architecture 
by testing out different but equally challenging algorithms. 

ACKNOWLEDGMENT 

This research project was partially supported by the 
Indonesian Ministry of Education, Culture, Research and 
Technology / National Research and Innovation Agency 
through the PDUPT Grant No. 007/SP2H/PDUPT/LPPM-
UKP/IV/2021 and also by the Bureau of Research and 
Community Service as well as the Faculty of Industrial 
Technology at Petra Christian University through the 

research funding: No. 01/PNLT/FTI/UKP/2018. We express 
our sincere gratitude and appreciation for all the supports. 

REFERENCES 

[1] X.-S. Yang, “Genetic Algorithms,” in Nature-Inspired Optimization 
Algorithms, 2nd ed., Academic Press, 2021, pp. 91-100. 

[2] J. R. Cheng and M. Gen, “Parallel Genetic Algorithms with GPU 
Computing,” IntechOpen, 5 February 2020. [Online] Available: 
https://www.intechopen.com/chapters/69121. 

[3] I. Sugiarto, D. Prayogo, H. Palit, F. Pasila, R. Lim, A. Noertjahyana, 
I. G. A. Widyadana, S. Hermawan, A. B. Gumelar and B. N. Yahya, 
“Custom Built of Smart Computing Platform for Supporting 
Optimization Methods and Artificial Intelligence Research – 
PakCarik: GPU-Accelerated Platform for AI Researches,” 
Proceedings of the Pakistan Academy of Sciences: A. Physical and 
Computational Sciences, vol. 58, no. S, pp. 59-64, 2021. 

[4] J. Everett, “Model Building, Model Testing and Model Fitting,” in 
The Practical Handbook of Genetic Algorithms, Applications, 2nd 
ed., Boca Raton (FL, USA), Chapman & Hall / CRC, 2001, pp. 1-29. 

[5] K. Hwang and N. Jotwani, Advanced Computer Architecture: 
Parallelism, Scalability, Programmability, 3rd ed., New Delhi: 
McGraw-Hill Education, 2016.  

[6] OpenMP Architecture Review Board, “OpenMP FAQ,” 6 June 2018. 
[Online] Available: https://www.openmp.org/about/openmp-faq. 

[7] NVIDIA, “CUDA Zone,” July 2021. [Online] Available: 
https://developer.nvidia.com/cuda-zone. 

[8] A. Hussain, Y. S. Muhammad, M. N. Sajid, I. Hussain, A. M. 
Shoukry and S. Gani, “Genetic Algorithm for Traveling Salesman 
Problem with Modified Cycle Crossover Operator,” Computational 
Intelligence and Neuroscience, vol. 2017, 2017.  

[9] Intel Corporation, “Intel VTune Profiler User Guide,” 9 November 
2021. [Online] Available: https://www.intel.com/content/www/us/en/ 
develop/documentation/vtune-help/top.html. 

[10] W. Cook, “National Traveling Salesman Problems,” 10 March 2017. 
[Online] Available: http://www.math.uwaterloo.ca/tsp/world/ 
countries.html. 


