Two-Stage Memory Allocation
using AHP & Knapsack at PT
Berca Hardayaperkasa

by Khanis Satya

Submission date: 07-Aug-2022 10:22PM (UTC+0700)

Submission ID: 1879757872

File name: Two-Stage_Memory_Allocation_ICISETIM_submit.docx (1.42M)
Word count: 4822

Character count: 24154

Two-Stage Memory Allocation using AHP & Knapsack
at PT Berca Hardayaperkasa

Khanis Satya', Indriati N. Bisono?, Hanijanto Soewandi?

'2 International Business Engineering Program, Universitas Kristen Petra, Surabaya, Indonesia
“ MicroStrategy, Tysons Corner, VA, USA
'khanissatya@gmail.com, *mlindri @petra.ac.id , *hsoewandi@ microstrategy.com

Abstract

We propaose to manage a (MicroStrategy) Business Intelligence Server in term of RAM allocation for its
Intelligent Cubes as a two-stage resource allocation problem in which the first stage is formulated as an
multi criteria problem that can be solved using Analytic Hierarchy Process (AHP) and the second stage
is multiple (several) 0-1 classic Knapsack problems with the constraints that are obtained using the result
[from the first stage. This Approach happens to have advantage in rerm of computational complexiry as
well, it reduces from O(nM) to O(max{nimax{M}) when calculated in parallel. We illustrate our
proposal with a numerical example based on our experience.

Keywords: Business Intelligence Server; Analytic Hierarchy Process; Knapsack problem

I. INTRODUCTION

In recent years, Business Intelligence (BI) is growing very rapidly in Indonesia. Inkwood Research
predicted that between 2017 — 2022, the compound annual growth rate (CAGR) is 9.7%. Recent prediction
for global BI world-wide is also expected to grow further from USD 23.1B to USD 33.3B from 2020 to
2025. Therefore, it is not surprising that many companies and organizations in Indonesia started to adopt
BI technology.

When many employees (business analysts) from a large organization (or company) start to adopt BI
technology, the Information Technology (IT) department usually will set up a BI Server for economics of
scale as well as to make sure that analysis is done on uniformly accepted data by the entire organization.
Those employees who want to analyze similar subject are usually grouped together and given a set of Data
Warehouse tables as the source of data. On the database side, this is often referred as Datamart. On the
Business Intelligence side. in particular MicroStrategy BI enterprise software, usually these Datamart (or
even Data Warehouse) tables are imported to form MicroStrategy Project.

Each MicroStrategy Project essentially starts with a collection of lookup tables, relationship tables, and fact
tables from Data Warehouse (or Datamart). These tables are then imported, and from these tables a BI
Architect will create a set of schema objects, i.e., Attributes (grouping of data, e.g., Item, Region, Month,
erc.) and Facts (measures of interest, e.g., Cost, Profit, erc.). The Facts (together with aggregation
functions/other type of calculations, e.g., Sum, Avg, Min, Max, efc.) are then used to construct Metrics
(e.g.,Revenue, Profit, erc.). To provide those business analysts with access to the data, the most common
method is to use several Intelligent Cubes (I-Cubes) within a MicroStrategy Project, in which Attributes
and Metrics are placed together to be dragged & dropped to create Report/Dashboard. Figures 1 and 2 are
very high-level pictures of MicroStrategy BI Server in the context of I-Cubes, Project, usages, and some
statistics.

In Figure 1, an Intelligent Cube in a particular project is shared as a single in-memory dataset, among the
different reports created by many users. A set of data is returned from the data warehouse and saved directly
to the Intelligence Server memory. Multiple reports are built that gather data from the Intelligent Cube
instead of querying the data warehouse.

Warehouse Intelligence Server Client

Report 1
Report 2
"
Intetiigent | - v ety
Cube |~ .
- =
. E ’]
- J T Report 4
Fegion. Month Report 3~ |

[Revenue, Cost

MicroStrategy Project

Figure 1. High-level MicroStrategy Bl Server with X)
respect to 1-Cubes for a particular Project Figure 2. Eight I-Cubes that belong to three

Projects with various Status

Figure 2 illustrates the fact that in a single MicroStrategy BI Server, there could be multiple projects (in the
above example, there are 3 projects) and each project will have multiple 1-Cubes (2 I-Cubes belong to
“Finance” project, 4 I-Cube belongs to “Human Resource Analysis™ project, and 2 [-Cubes belong to
“Marketing” project). Furthermore, it is worth to point out that each I-Cube will have its own size, i.e., use
memory, and it can have different Status, namely: A = Active, F = File, L = Loaded (to memory). There is
also “hit count” concept to illustrate how often a particular cube is being used in the past.

Now, imagine the task for a BI Administrator to manage this (MicroStrategy) BI Server. The BI
Administrator is given a computer (or a set of computers if clustering is configured) with a certain amount
of memory (e.g., 32 GB, 128 GB, or several TBs in real large-scale implementation) in which (s)he needs
to load multiple I-Cubes that are grouped in multiple (MicroStrategy) Projects to serve many users (business
analysts) so that they can create their Reports/Dashboards. This is the problem that we consider in this
paper. In real life, the number of projects in a MicroStrategy [-Server typically less than 10. However, the
number of Cubes could range from a handful numbers to several hundreds.

We have to consider this problem as a two-stage resource allocation problem because considering all I-
Cubes may lead to a situation in which some particular projects do not have any I-Cube loaded into the
memory. Similarly, loading all I-Cubes from a particular important project may leave other project with
very little (or even no) I-Cubes being loaded. Furthermore, there are multiple criteria that need to be
considered among those projects.

II. LITERATURE REVIEW

This type of problem is commonly known as Resource Allocation problem — a well -known problem. In
this particular case, there are two stages, i.e., the first stage is how to allocate computer memory at the
Project level considering multiple factors, and then the second stage is how to distribute further those
memory to load certain set of [-Cubes. Even though, numerous papers have been published for two-stage
resource allocation problem, none fits well with our problem. Nonetheless, here are some that we review.

Wang et.al. (2020) presented a Mathematical Programming formulation for a problem of scheduling
surgeons and his/her assistant surgeons in the context of health care as two-stage resource allocation
optimization problem. In the first stage, they proposed an integer programming formulation on how to
allocate a (pair of) surgeon(s) to a particular operation, and in the second stage they propose another
mathematical programming formulation for the start time of the surgery. Obviously, they consider all
constraints related to the subject. Our problem is certainly different both in the context as well as the
approach. In our problem, the e are numerous criteria that needs to be considered.

Hong & Li (2020) considered the cloud resource provisgning problem and they formulated as the problem
as a two-stage stochastic programming problem. This two-stage stochastic programming problem can be
transformed into a deterministic integer program and solved by exact methods such as: branch & bound
and cutting plane methods, or heuristic methods such as: genetic algorithm, particle swarm optimization,
and hybrid algorithms. While their proposed approach is elegant, we still cannot adapt to our problem since

we have our Virtual Machine provision already, and we want to make sure that all projects have enough
RAM allocated.

Lin & Gen (2008) considered multi-criteria human resoffice allocation for solving multistage combinatorial
optimization problem. They propose a multi-objective hybrid genetic algorithm (mohGA) approach based
on the multi-stage decision-making model for solving combinatorial optimization problems. We believe
our problem is much simpler, and we do not want to rely on Genetic Algorithm that may take some time
due to mutation of chromosome. Furthermore, some of our criteria is ordinal , i.e., more difficult to quantify.

The closest papers in term of application that we can find are: Singh & Dutta (2015) and Revathy and Sekar
(2018). In the first paper, they considered AHP to solve multi criteria nature of Cloud Computing. However,
their problem is just a simple single stage selection of Cloud Computing resources. The second one is
equally interesting as they consider how to allocate Virtual Machines (VMs) to a particular job considering
multiple criteria. They also use AHP to find out a good balance. But, again, the problem is just a single
stage resource allocation.

In term of methodology. we found out that Olfati er.al. (2018) is using a combination of AHP and Linear
Programming in two-stage problem. However, their approach to the problem is different from ours. They
presented two-stage Linear Programming problem to obtain weight to the AHP formulation. Several other
papers are also in this category: Balachandran & Golden (2005), Patel er.al. (2016) are some examples.

On industrial application, Sharma & Dubey (2010) and Mohammadi er.al. (2015) are two papers that
combined AHP and Knapsack to solve industrial problems. Sharma & Dubey also considered two-stage
approach like ours. Their application is on carton sourcing. However, they use the weight obtained from
AHP as the coetficient of the constraint in the Knapsack problem. Qurs is slightly ditferent, we will use the
weight of the AHP to decide on the capacity of the knapsack. We will have to solve multiple knapsack
problem, while Sharma & Dubey only need to solve one. Unfortunately, we could not find the paper by
Mohammadi et.al. on a language that we can understand.

III. PROBLEM FORMULATION AND RESEARCH METHOD

The detail of our problem can be depicted in Table 1. We have 30 I-Cubes that are grouped into 5
MicroStrategy Projects (for privacy & security reasons of our client, we call them Project 1 — Project 5 and
Cube 11 to Cube 54 respectively). The Server machine that hosts MicroStrategy I-Server has 32 GB of
RAM and those 5 projects will use up 3.6 GB to load their Schema Objects. Similarly, we plan to allocate:
e 2 GB for Object cache (across 5 projects) — see Figure 3 (red box),

e 2 GB for Element cache (across 5 projects) — see Figure 3 (red box).

¢ 4 GB for Report & Document caches (across 5 projects) — see Figure 3 (red box), and

¢ 8 GB for processing/calculation.

Therefore, the total available memory will only be 12.4 GB (=32 - 3.6 — 2 -2 — 4 — B) to load some out of
30 I-Cubes (notice that the sum of RAM for all 30 I-Cubes = 16053 MB > 12.4 GB). Hence, the need for
an optimization. A naive approach would be to formulate a Knapsack problem with all 30 I-Cubes and it
will result in loading all I-Cubes in Project 1 and Project 5 as indicated by the solution in green in Table 1
(24 I-Cubes will be loaded and 6 I-Cubes are not loaded at the start-up of Intelligent Server).

At this point, it is important to understand that MicroStrategy [-Server has some governing rules that need
to be set. Most of those governing rules are per project as shown in Figure 3 (the green box indicates that
it is per project). The red box in Figure 3 shows where the Object, Element, & Report/Document (Result)
caches can be set, and finally the black box indicates where the RAM allocation per project for [-Cubes can
be set.

In Figure 3, the check-box option that says: “Load Intelligent Cubes on startup™ is not an option that we
want to do since there is NOT enough RAM to load all Cubes. Therefore, we have to selectively choose
which I-Cubes to load. Hence, our motivation to solve this problem as two-stage optimization problem.

Table 1. Thirty I-Cubes that are grouped into 5 Projects

MicroStrategy i I-Cube Size Hit MicroStrategy B I-Cube Size Hit
Project Xy Name (MB) | Count Project Xy Name (MB) Count
Xt Cube 11 408 271 . X35 | Cube 36 278 315
Project 3
Proiect 1 xiz | Cube 12 694 385 x37 | Cube 37 462 255
J x;3 | Cube 13 625 475 x4y | Cube 41 708 66
x14 | Cube 14 360 431 x42 | Cube 42 707 224
X2 Cube 21 412 23 x43 | Cube 43 500 325
x22 | Cube 22 951 273 . X44 | Cube 44 714 269
Project 4
Proiect 2 X237 Cube 23 639 30 xyg5 | Cube 45 628 49
rojec
! Y2 | Cube24 | 667| 393 s | Cubed6 | 393| 252
x25 | Cube 25 811 181 X47 | Cube 47 370 467
x26 | Cube 26 870 258 X458 | Cube 48 581 180
X3t Cube 31 566 157 xs5; | Cube 51 324 328
X3 | Cube 32 398 331 xs52 | Cube 52 444 455
Project 3 x33 | Cube 33 580 12 Project 5 xs53 | Cube 53 357 318
x3¢ | Cube 34 526 125 xs¢ | Cube 54 326 125
x35 | Cube 35 383 171 xs55 | Cube 55 371 155

First-Stage Multi-Criteria Problem

The first-stage problem then is clearly how to allocate 12.4 GB memory across 5 projects. For this, we will
use Analy(@hl Hierarchy Process (AHP) since there are multiple criteria that we need to consider.
Analytical Hierarchy Process (AHP) is a structured technique for organizing and analyzing complex
decisions, based on mathematics and psycholog@}It was developed by Thomas Saaty in the 1970s (see
Forman & Gass 2001 for an excellent review). It represents an approach to quantifying the weights of
decision criteria. Individual experts’ experiences are utilized to estimate the relative magnitudes of factors
through pair-wise comparisons. Each of the respondents compares the relative importance each pair of
items using a specially designed questionnaire.

We skipped reviewing/explaining AHP since there are already numerous books, journal articles on this
topic. Readers who are interested to learn about AHP can visit AHP Tutorial on Teknomo’s website
(Teknomo, 2006). For the first-stage problem, the formulation can be presented as in Figure 5.

After talking to various managers at PT Berca Hardayaperkasa, we found out that these criteria, namely:
due date of the projects, the numbers of business analysts/users for each project, numbers of objects (in
particular Reports/Dashboards/Hypercards) in each project, processing speeds, and overall system
performance are factors that everybody wants to have. It is important to point out that three of these criteria,
e.g., Due Date, Perceived Response Time of Dashboards, and Perceived Response Time of the System
(Browsing, efc.) are subjective (or qualitative) in nature. The other two criteria, i.e., Number of Users and
Number of Objects, can be measured quantitatively. Obviously, the more users the more important, and
similarly. the more objects in a project the more important it is. Hence, both quantitative criteria are
supposed to be maximized. We can use Super Decisions or AHPHybrid package in R to solve this problem.

For the relative importance of one criterion to another and qualitative criteria among projects, we then
construct AHP questionnaires given to a director who oversees the whole system. The result is presented
in the next section. Generally speaking, using AHP, we can calculate w;¥i = 1,...,5 that satisfy
Y7, w; = 1 where w; is the normalized weight for every project. Obviously, a very simple RAM allocation
can then be made by multiplying w; with 12.4 GB.

| &3 Project Configuration - Finance Project | X
Intelligent Cubes - General

e Inteligent Cube file directory:
- Database instances ;
overning Rules Maximum RAM usage (MBytes): 256 __.;I
i Maximum number of cubes: [1IJEIEI 3
=-Caching
T Maximum size allowed for download (ME): =1
i esult Caches ke i 100 =
Creation Maximum % growth of an Intelligert Cube due to =) 2
indexes =
Storage
Maintenance Cube growth check frequency fin mins) 30 _,;I
Auxiliary Caches -
T objects [Create Inteligert Cubes by database connection
il klements o} 8 Load Inteligert Cubes on sartup
i *Subscription Execution e S .
il I ent Cisbes Mlow reports to drll outside the Intelligent Cube.
| 8 Load Inteligent Cubes into Ineligence Servermemory upon pubication
(- Statistics o
- Project access Dynamic Sourcng.
- Security filter 1 Enabls Dyniamic: Sourcing
@ Report definition
H {8 Make Inteligent Cubes avaiable for Dynamic Sourcing by default
@3- Language
: [i e E e R e P e
oK Cancel Help

Figure 3. MicroStrategy per Project Memory Allocation/Governing

Project
Prioritization

v v v ! v

of Users . . Perceived Perceived
f # of Objects in
Due Date Accessing the) Response Time Response Time
X the Project .
Project of Dashboards of Browsing
Project 1 Project 2 Project 3 Project 4 Project 5

Figure 4. Multi-criteria AHP Formulation for 1** Stage Problem

Second Stage Knapsack Problem
Once we have allocated RAM into each project (the result of 1% stage problem), we can then formulate a
Knapsack problem to decide on which I-Cubes within a project to load as our 2™ stage problem.
Mathematically, for every project, we can write the problem as:
n;
max ¥ L, p;x;

i (1)
s.t E;Lzl CjXj <w;M

where: x; € {0,1}. p; is the (historical) hit count of I-Cube j, ¢; is the memory requirement of I-Cube j, w; is

the normalized weight for every project as the result of AHP, and M = 124 GB.

Again, Knapsack is a very well-known problem that had been studied extensively. Even though, it is still
an NP-Complete problem, it actually belongs to the class of pseudo polynomial. Readers are referred to a
classic and excellent book by Martello & Toth (1990) for detail. We simply use R packages: adagio for this
purpose.

IV. FINDINGS AND DISCUSSION

First-Stage AHP Result

The result of our questionnaire for the qualitative subjects can be summarized in Table 2 and Table 3. For
the other 2 quantitative criteria, the result is given in Table 4. The quantitative criteria can be easily
converted into normalized weight directly using the following formulation:

w; = SL for maximization (2a)
Lj=1%)
Eon %) o
or P = @ for minimization (2b)
Ej:‘lxj
where: x; is the value of quantitative value.
Table 2. Comparison Across Five Criteria
Criteria i Criteria j
Due Date 7 # of Users accessing the Project
Due Date 2 #of Objects in the Project
Due Date 9 Perceived Response Time of Dashboards
Due Date 9 Perceived Response Time of Browsing
of Users accessing the Project 5 # of Objects in the Project
of Users accessing the Project 6 Perceived Response Time of Dashboards
of Users accessing the Project 5 Perceived Response Time of Browsing
of Objects in the Project 8 Perceived Response Time of Dashboards
of Objects in the Project 9 Perceived Response Time of Browsing
Perceived Response Time of Dashboards | Perceived Response Time of Browsing

Table 3. Pairwise comparison across three qualitative criteria

Due Date Cirteria Perceived Dashboards

Response Perceived Browsing Response

_a‘ﬂiect i a'oiect i Project i ellject J Project i Project j
Project 1 4 Project 2 Project | 3 Project2 Project 1 2 Project 2
Project 1 3 Project 3 Project 1 6 Project 3 Project 1 3 Project 3
Project 1 4 Project 4 Project 1 7 Project 4 Project | 3 Project 4
Project 1 ¢ Project 5 Project 1 2 Project 5 Project 1 3 Project 5
Project 2 7 Project 3 Project 2 3 Project 3 Project 2 6 Project 3
Project 2 8 Project 4 Project 2 4 Project 4 Project 2 6 Project 4
Project2 3 Project 5 Project2 2 Project 5 Project 2 | Project 5
Project 3 2 Project 4 Project 3 2 Project4 Project 3 | Project 4
Project3 5 Project 5 Project3 4 Project 5 Project 3 6 Project 5
Project4 6 Project 5 Project4 5 Project 5 Project4 6 Project 5

From the input, we can obtain the result as in Table 5 using AHPhybrid package. Without any surprise, the
perceived performance of both the Dashboard (or Report/Hypercard) is the most important follows by the
perceived browsing (overall system) performance, and then the number of users, and objects. Finally, the
due date came at the very bottom of the list. It is also important to point out that all pair-wise comparison
seems to meet consistency ratio.

Table 4. Quantitative criteria for five projects (both are maximizing criteria)

Project # of Phs:ll';srgjc::tsmng # of OIEI l_ﬂ]zjc:gtm the
Project | 12 9

Project 2 40 21

Project 3 29 77

Project 4 105 122

Project 5 7 20

Table 5. AHP Result for Criteria and Overall Project Ranking

Criteria Weight Project Weight RAM (GB)
Due Date 0.032 Project 1 0.088 1.09
of Users accessing the Project 0.139 Project 2 0.110 1.36
of Objects in the Project 0.046 Project 3 0.305 378
Perceived Response Time of Dashboards 0.395 Project 4 0.433 5.37
Perceived Response Time of Browsing 0.388 Project 5 0.064 0.79

Nonetheless, the result in Table 5 provide a way to allocate available memory across 5 different projects as
we have explained previously. The RAM allocation for every project is given in the last column of Table
5.

Once the RAM for Intelligent Cube had been allocated for every project, we can easily proceed solving 5
Knapsack problems. At this point, we would like to draw readers” attention that the weight for every project
above can also be used to distribute RAM across five different projects for caching the Object, Element, &
Report/Document (Result) — see Figure 3. Basically, any resource allocation that needs to be distributed
across five different projects can be done using the above weights.

Second-stage Knapsack Result

The formulation of five knapsacks problem is relatively straight forward. We presented Table 6 for the
problem and the shaded blue part as the solution to each independent Knapsack problem. Please note that
this is still the same traditional 0-1 Knapsack problem, and NOT the 0-1 multiple knapsack problem. We
just happened to assign the constraints per project using AHP. However, one can clearly see the advantage
of this breakdown in term of computational complexity (in particular in conjunction with parallel
computation). The traditional 0-1 Knapsack problem has the complexity O(rM) where n = 30 and M =
12698 (124 GB = 12698 MB) in our original example, after the assignment of memory (RAM) across 5
different projects, the problem will reduce to O(rnaMs) where: ns = 8 and Ms = 5499.

The solution to each Knapsack problem is marked in green in Table 6. We can immediately notice there is
a different in term of decision to which I-Cubes to load, when (MicroStrategy) BI Server starts, compared
to the original solution in table 3. This allocation of RAM makes sure that Project 4 and Project 3 which
are two of the most important projects have all their I-Cubes loaded to memory (of course, at the expense
at other [-Cubes).

Very careful readers will immediately notice that there are some left over RAM from Project 3 and Project
4 since all I-Cubes will only need 3193 + 4601 = 7794 MB, while we assign 3871 + 5499 = 9370 MB of
RAM to Projects 3 and 4. Similarly, we have some unused memory from initial assignment in Projects 1,
2, and 5. Therefore, we can further optimize by redistributing the remaining RAM (= 131 + 87 + 678 + 898
+ 41 = 1835 MB). At this point, we propose to solve another auxiliary Knapsack problem by combining
the remaining RAM as well as considering unassigned [-Cubes’ hit-count and memory. Hence, we have the
auxiliary 0-1 Knapsack problem. The problem formulation and solution (marked in yellow) are given Table
7.

Table 6. Five independent 0-1 Knapsack problem that can be solved in parallel

| I-Cube Xii Xi2 Xi3 X4
Project1 Hit Count |271 385 475 431 | tobe maximized
Memory 408 694 625 360 | <= 1116 MB

| I-Cube X2r X» X3 X X5 X
Project2 Hit Count 23 273 30 393 181 258 | to be maximized
Memory 412 951 639 667 811 870 | <= 1393 MB

|[-Cuhe X3i Xi2 X3z X34 X35 Xig Xir
Project 3 Hit Count 157 331 12 125 171 315 255 | to be maximized

Memory 566 398 580 526 383 278 462 | <=3871 MB

| I-Cube Xy X Xy3 Xy Xgs Xgs Xy Xus
Project4 Hit Count 66 224 325 269 49 252 467 180 | to be maximized
Memory 708 707 500 714 628 393 370 581 | <= 5499 MB

| I-Cube Xsi Xs2 Xs3 Xs4 Xss
Project5 Hit Count 328 455 318 125 155 | to be maximized
Memory 324 444 357 326 371 | <=809 MB

Table 7. The auxiliary 0-1 Knapsack problem

I-Cube X Xi2 Xz X2 X25 Xz Xs3 Xsq Xss

BI

Hit Count |271 385 23 273 181 258 318 125 155 to be maximized
Server

Memory |408 694 412 951 811 870 357 326 371|<=1835MB

After the last aux Knapsack problem being solved, we have the following assignment of I-Cubes that will
be loaded from each Project as in Table 8. The amount in the last column (in red) can be used to fill in the
RAM govering in MicroStrategy BI Server in Figure 4.

We will configure to load 25 I-Cubes into Intelligent Server memory, and keep the remaining 5 I-Cubes as
Active, but not loaded into memory yet. We can contrast the final solution in Table 8 to the original single
knapsack problem in Table 1 as in Table 9.

Table 8. The final RAM assignment for all 5 Projects

| I-Cube X1 X1z X3 X4 Assigned RAM
Project1 Hit Count | 271 385 475 431
Memory 408 694 625 360 2087 MB
| I-Cube X1 X» X3 X4 Xas X
Project2 HitCount | 23 273 30 393 181 258
Memory 412 951 639 667 811 870 1306 MB
Project 3 | I-Cube X31 Xz X33 X34 X35 X Xy
Hit Count | 157 331 12 125 171 315 255

| Memory 566 398 580 526 383 278 462 3193 MB

| I-Cube X4l X42 X43 Xad X45 Xd6 X4 X48
Project4 HitCount | 66 224 325 269 49 252 467 180
Memory [708 707 500 714 628 393 370 58l 4601 MB
| I-Cube Xs51 Xs52 X531 Xsq4 X535
Project 5 Hit Count |328 455 318 125 155
Memory |[324 444 357 326 371 1496 MB

Table 9. Some Statistics comparisons between single criterion vs. multi-criteria solutions

Statistics S-ingle Criteria - Mult.i Criteria —
Single Knapsack Multi Knapsack
Hit Count Objective 6994 6439
Memory Usage (MB) 12560 12683
Project 1 Memory Setting 2087 2087
Project 2 Memory Setting 3299 1306
Project 3 Memory Setting 2087 3193
Project 4 Memory Setting 3265 4601
Project 5 Memory Setting 1822 1496
Unused Memory (MB) 128 5
Loaded I-Cubes 24 25
Unloaded (but Active I-Cubes) 6 5

V. CONCLUSION

We have demonstrated a two-stage approach to manage RAM allocation across several different projects
in a (MicroStrategy) Business Intelligent Server that incorporates several criteria (both qualitative and
quantitative). The approach is not limited to AHP, but it can also be extended to other methodology as long
as it can provide a reasonable weight that can be used to allocate memory at the first stage. The result of
the first stage multi criteria problem is also useful since it can be used to allocate RAM for Object, Element,
and Result caches as well (not just limited to I-Cubes that are loaded when Intelligent Server starts).

A second stage approach using Knapsack becomes much simpler in term of computational complexity once
the problem is broken down into multiple projects. We use the last auxiliary problem to squeeze the
available RAM so that we can load as much I-Cubes as possible.

This simple multi-criteria optimization is able to satisfy more objectives with a bit extra memory usage, but
it is able to load more I-Cubes into memory.

Limitation & Further Research

We would like to point out that the use of AHP (& its pairwise comparison) has many criticisms, in
particular when it comes to criteria that is quantitative (see: Barzilai 1998, Saari & Sieberg 2004, Rezaii
2015, etc.). However, it also has many supports (see: Whitaker 2007). We do not intend to take side one
way or the other. Qur approach is generic enough and the AHP can be replaced by any other multi-criteria
methodology if one likes to do so (e.g., McCaffrey 2009, efc.). Nonetheless, we choose AHP to demonstrate
since it remains one of the most popular methods for multi-criteria problem to illustrate our approach to the
problem that we face.

Furthermore, in this paper, we have not considered the stochastic nature of the demand. In reality, the setting
needs to allow I-Cubes to grow up to certain percentage. So, the constraint parameter of the knapsack

problem is actually a random variable. This may provide different perspective to the system and could be
the subject for further research.

REFERENCES

Wang, J., Li, X., Chu, J. and Tsui, K.L., 2020. A two-stage approach for resource allocation and surgery
scheduling with assistant surgeons. IEEE Access, 8, pp.49487-49496.

Chen, J. and Li, H., 2020. A Two-Phase Cloud Resource Provisioning Algorithm for Cost
Optimization. Mathematical Problems in Engineering, 2020.

Lin, C.M. and Gen, M., 2008. Multi-criteria human resource allocation for solving multistage combinatorial
optimization problems wusing multiobjective hybrid genetic algorithm. Experr Systems with
Applications, 34(4), pp.2480-2490.

Singh, A. and Dutta, K., 2015. Apply AHP for resource allocation problem in cloud. Journal of Computer
and Communications, 3(10), p.13.

Revathy, C. and Sekar, G.. 2018. Analytic hierarchy process for resource allocation in cloud
environment. Journal of Cyber Security and Mobility, pp.25-38.

Paydar, M.M. and Olfati, M., 2018. Designing and solving a reverse logistics network for polyethylene
terephthalate bottles. Journal of cleaner production, 195, pp.605-617.

Chandran, B., Golden, B. and Wasil, E., 2005. Linear programming models for estimating weights in the
analytic hierarchy process. Computers & Operations Research, 32(9), pp.2235-2254.

Patel, G., Mjema, G.D. and Godwin, K.M., 2016. Linear programming models for estimating weights in
analytic hierarchy process and for optimization of human resource allocation. International Journal of the
Analvytic Hierarchy Process, 8(2).

Sharma, S. and Dubey, D., 2010. Multiple sourcing decisions using integrated AHP and knapsack model:
a case on carton sourcing. The International Journal of Advanced Manufacturing Technology,51(9),
pp.1171-1178.

Mohammadi, S., Kheirkhah, A.S., & Behnamian, J. (2015), “Providing an Integrated Fuzzy AHP and
Knapsack Method in Decision-Making and Resource Allocation to Suppliers,” Arth prabandh: A Journal
of Economics and Management, 4, pp. 38 - 60.

Forman, E.H. and Gass, S.I., 2001. The analytic hierarchy process—an exposition. Operations
research,49(4), pp.469-486.

Teknomo, K., 2006. Analytic hierarchy process (AHP) tutorial. Revoledu. com, 6(4), pp.1-20.

Martello, S. and Toth, P., 1990. Knapsack problems: algorithms and computer implementations. John
Wiley & Sons, Inc..

Barzilai, J., 1998. On the decomposition of value functions. Operations Research Letters, 22(4-5), pp.159-
170.

Saari, D.G. and Sieberg, K.K.. 2004. Are partwise comparisons reliable?. Research in Engineering
Design, 15(1), pp.62-71.
Rezaei, J., 2015. Best-worst multi-criteria decision-making method. Omega, 53, pp.49-57.

Whitaker, R., 2007. Criticisms of the Analytic Hierarchy Process: Why they often make no
sense. Mathematical and Computer Modelling, 46(7-8), pp.948-961.

McCaftrey, J.D., 2009, April. Using the Multi-Attribute Global Inference of Quality (MAGIQ) technique
for software testing. In 2009 Sixth International Conference on Information Technology: New
Generations (pp. 738-742). IEEE.

Two-Stage Memory Allocation using AHP & Knapsack at PT
Berca Hardayaperkasa

ORIGINALITY REPORT

0. 5y, 5y, 3

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

www.hindawi.com 1
Internet Source %

www.tutorialspoint.com 1
Internet Source %

glazerconstruction.com 1
Internet Source %
en.wikipedia.org

Internet Source 1%
www.ijsht-journals.org

Internet Source 1%

H Lin, C.M.. "Multi-criteria human resource 1 o

0

allocation for solving multistage combinatorial
optimization problems using multiobjective
hybrid genetic algorithm", Expert Systems
With Applications, 200805

Publication

Submitted to University of Bedfordshire 1
%

Student Paper

Exclude quotes On Exclude matches <1%

Exclude bibliography On

