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Abstract 

Software testing as an integral part of software development leads to the question of when the 
software (or application/dashboard) can be released and how confident that most 
defects/bugs/faults have been discovered. This paper discussed a relatively new but simple and 
practical proposal that can be used to build confidence for releasing software (or 
applications/dashboards). Instead of contrasting various software reliability growth models (SRGM) 
and choosing which one is the best, we use them to collaborate to help make decisions. We 
demonstrate our proposal with 18 real-life datasets that are publicly available in the literature. We 
use three widely used SRGMs, namely: Bass, Gompertz, and Logistic in our proposal to identify when 
we can stop testing. It turns out that when the testing has found most defects, most (if not all) of the 
SRGMs will converge to similar value for the maximum potential defects in the system. 
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INTRODUCTION 

Recently, software testing becomes an integral part of software development process and software 
engineering. While commercial company usually does not follow a rigid “defense and aerospace” 
software development process, all usually have their own software development life cycle, together 
with functional (as well as non-functional) requirements, specification, design and code review 
process, etc. Regardless the organization, the ultimate questions that executive wants to answer are 
usually: when a dashboard (or an application/software) can be released and how confident that 
most defects/bugs have been discovered during testing/development, i.e., some kind of metrics for 
the decision maker to make a good and informed decision. Please note that often times an executive 
can decide to release a software with known bugs (for various reasons, including: no more time to 
develop or no more defect in the system). Regardless, the above two questions are very hard to 
answer since there is no a priori knowledge about how many defects are in the system (software). 

Even though there is no a priori knowledge about the number of defects in the software and the 
number of defects can vary from few hundreds to thousands, almost all researchers believed that 
the total defects in a software is finite. Given the rise of software reliability concept that have been 
developed in the past 50+ years, Cusick (2019) give an overview of Software Reliability Engineering 
(SRE) history. 

According to Wood (1996) there are two types of software reliability models: 

1. Defect density model – those that attempt to predict software reliability from the design 
parameters; 

2. Software reliability growth model (SRGM) – those attempt to predict software reliability from 
test data. 
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These models attempt to statistically correlate defects detection data over time with known 
functions such as: Gompertz, Logistics, Bass, etc. The focus in this paper is the second type.  

To predict how many potential defects that exist in a software, we used 3 known functions, namely: 
Bass Diffusion – Innovation (Bass for short), Gompertz, and Logistics. We use empirical data to 
demonstrate how decision maker can gain confidence in making decision to declare the general 
availability of the software (or product/application) that is being tested. We propose very simple 
rules, yet practical, usable, and very intuitive – in particular, for high level executive for decision - 
making. 

LITERATURE REVIEW 

The use of Bass, Gompertz, and/or Logistics in SRGM is not new. Many researchers have used them 
previously, e.g., Kapur et.al. (2006), Chakravarty (2007), Shaik and Akthar (2011), Gandhi et.al. 
(2019), and very recently Yaghoobi (2021) as well as Haque & Ahmad (2021).  
Most (if not all) research we found focused on how good a model can fit in predicting the growth of 
the software reliability. They compared various models to see which model provide the best fit. 
Surprisingly, many still use R-square (or Adjusted R-square) as a possible criterion in evaluating 
models even though Spiess and Neumeyer (2010) have demonstrated some problems with R-
squared for non-linear least square via Monte Carlo simulation. We don’t intend to compare various 
models. In fact, we recommend for practical reason that several models being used together to 
illustrate several possible scenarios for the future. 
 

Bass Diffusion Model 

Ohba (1984) was perhaps the first that proposed what many researchers call a flexible SRGM. This 
model has been developed under the assumption that the more that errors are detected, the more 
undetected errors become detectable (notice the similarity with Bass model assumption). The 
model has the following differential equation: 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑏(𝑡)[𝑚 − 𝑁(𝑡)], where: 𝑏(𝑡) = 𝑏 × 𝐾(𝑡) and 𝐾(𝑡) = 𝑟 + (1 − 𝑟)

𝑁(𝑡)

𝑚
   (1) 

initial condition  𝑁(0) = 0. 
Bittanti et.al. (1988) proposed very similar model with slight twist. Their differential equation is:  
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑏(𝑚)[𝑚 −𝑁(𝑡)], where: 𝑏(𝑚) = 𝑘𝑖 + (𝑘𝑓 − 𝑘𝑖)

𝑁(𝑡)

𝑚
  (2) 

Here, 𝑘𝑖 and 𝑘𝑓 are initial and final values of the defect exposure coefficient. If 𝑘𝑖 = 𝑘𝑓, then it 

reduces to the exponential model. If 𝑘𝑓 ≫ 𝑘𝑖, the defect growth curve become an S-shape function.  

Later, Kapur & Garg (1992) assumed that the detection of errors also results in detection of some 
of the remaining errors without these errors causing any failure. This leads to the following 
differential equation (which is exactly the Bass Diffusion model): 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑝[𝑚 − 𝑁(𝑡)] +

𝑞

𝑚
𝑁(𝑡)[𝑚 −𝑁(𝑡)] = [𝑝 +

𝑞

𝑚
𝑁(𝑡)] [𝑚 − 𝑁(𝑡)]  (3) 

With 𝑁(0) = 0, the solution to the above differential equation in (3) is given by the following 
equation: 

𝑁(𝑡) = 𝑚
1−𝑒−(𝑝+𝑞)𝑡

1+
𝑞

𝑝
𝑒−(𝑝+𝑞)𝑡

     (4) 

We use the term Bass model from (4) as one of our models in this study. 

Gompertz Diffusion Model in SRGM 

It seems that Gompertz diffusion model is very popular in Japan – Satoh (2000) stated that many 
Japanese computer manufacturers and software houses have applied the Gompertz curve model. 
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He also provided a discrete Gompertz equation and argued that it is more stabled than the 
continuous one. Several other papers we found, e.g., Ohishi et.al. (2005), Ohishi et.al. (2009), Prasad 
et.al. (2016), and Yahoobi (2021) seem to support the popularity of Gompertz diffusion model, not 
just in Japan, but also worldwide.  
There are a number of parameterization of Gompertz. Some of those are more useful compared to 
others, due to how easy the parameters to be interpreted. This paper will use this 
reparameterization: 
𝑁(𝑡) = 𝑚 × 𝑒𝑥𝑝(−𝑏 × 𝑐𝑡)        (5) 
where: 
𝑁(𝑡) = the expected value of total defect as a function of time  
m = upper asymptote (in SRGM, m will be the total number of potential defects in the system) 
b = integration constant 
c = growth-rate coefficient. 
 

Logistic Diffusion Model in SRGM 

The Logistic diffusion model is an extended version of Malthus’ simple population growth model, 
which stated that the rate of population growth is proportional to the population at time t. The 
newly extended function added a carrying capacity m, which results in a bounded population. In 
the case of software testing, N(t) is the number of defects found in regards to time t. The Logistics 
Equation can be written as the following, 

𝑁(𝑡) =
𝑚

1+(
𝑚−𝑁0
𝑁0

)𝑒−𝑟𝑡
     (6) 

where N0 is the number of defects found at the theoretical time t = 0, with m being the carrying 
capacity, or in other words the maximum possible defect found at a given time t. The value r 
represents the growth rate of the defects that would occur, assuming that the population size of the 
defect within the system can grow up to an infinite size. 
Ohishi (2009) stated that Sakata (1974) is perhaps the first that applies both Gompertz and Logistic 
diffusion models in SRGM in Japan. Several other papers related to Logistic Diffusion model such 
as: Huang et.al. (1997), Satoh & Yamada (2002), Pham (2005), Rafi et.al. (2010), Zang & Pi (2018), 
and finally Haque & Ahmad (2021) clearly demonstrate that this model is widely researched and 
used. 
 

Stopping Rule in Testing 

Dalal & Mallows (1988) is perhaps one of the most cited articles when it comes to stopping rule in 
software testing. They presented a very elegant mathematical model as a sequential decision 
problem, where an optimal stopping rule has to be found minimizing expected loss. However, Höhle 
(2016) wrote a blog and discuss the criticisms to Dalal & Mallows’ proposal. In addition, having a 

ratio 
𝑐

𝑓
 (where c = the cost of fixing a bug and f = the cost of testing plus the opportunity cost of not 

releasing the software up to time t) is actually not that easy in practice. In this paper, we propose a 
much simpler approach that does not depend on any cost estimation. 
 

METHODOLOGY 

As we have stated, our research objective is to help decision makers to make decision on when to 

stop testing, and to have a good level of confidence by understanding the testing effort. 

We make the following basic assumptions for our analysis: 

1. The number of defects in any (software) system is finite and unknown. 
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2. Perfect debugging – when a defect is discovered, it can be fix without introducing another defect.  

This is usually true for dashboard development (or relatively small software development). This 

assumption also implies that we only have one Sigmoid (or concave) curve. 

Generally speaking, even though all researchers believe that the number of defects in a software 

system is finite, it is still very difficult to know how many defects are there. If the software is a 

newer version, there could be some idea from the previous system. However, this is not necessarily 

true for a complex system. Even for a minor release, a small modification for a code can result into 

a good number of defects introduced into the system. Therefore, it is very intuitive to accept that 

when there are only minimal amounts of testing data, the prediction of the maximum number of 

defects in the software system would be a wild guess at the beginning. So, we have our first 

hypothesis: 

H1: Regardless the method (for all methods), early prediction of the estimated number of defects 

in the system (m) will never be good. 

As corollary, since there is no easy way to know the estimated number of defects in the system at 

the early period of testing, we can also have the following two additional hypotheses: 

H2: The estimated number of defects in the system will therefore have a high variability for all 

methods. 

H3: The variation of estimated number of defects in the system will be high across all methods. 

 

As the testing progresses, it will become clearer how many defects will be in the software. 
Therefore, it is imperative to have the following additional hypothesis (that later can be utilized as 
our proposal for stopping criteria): 
H4: When most defects are discovered, the estimated number of defects (for all methods) will be 

stable over time. 
H5: The variation of estimated number of defects across all methods will also become less, i.e., all 

(good) SRGM will converge to similar “true” numbers of maximum defects toward the end. 
We decided to present and illustrate our proposal using publicly available datasets. Some of these 
datasets are from open-source software projects such as: Apache and Gnome. Some are commercial 
software (Tandem from HP, PL/I from IBM, Stratus from Cisco, etc.), while others are 
government/military in the US & China. Some have multiple versions, etc. (see Table 1). 
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Table 1. Public datasets, their statistics, and sources 

 
 

Data Sets (DS) Test Freq. Length of Tests Range of Defect/Test Avg. of Defect/Time Known Defects Notes/References

DS01 Daily 111 0 - 49 4.33 481
Real-Time (Tohma 

et.al 1991)

DS02a Release 1 Weekly 20 0 - 16 5 100

Tandem, HP, 

commercial (Wood 

1996)

DS02b Release 2 Weekly 19 14-Jan 6 120

Tandem, HP, 

commercial (Wood 

1996)

DS02c Release 3 Weekly 12 12-Jan 5.08 61

Tandem, HP, 

commercial (Wood 

1996)

DS02d Release 4 Weekly 19 0 - 6 2.25 42

Tandem, HP, 

commercial (Wood 

1996)

DS03 Weekly 19 Feb-37 17.26 328

PL/I, IBM, 

commercial (Ohba 

1984)

DS04a Release 1 Weekly 73 0 - 15 4.93 360

Stratus, Cisco, 

commercial (Mullen 

1998)

DS04b Release 2 Weekly 120 0 - 9 1.67 200

Stratus, Cisco, 

commercial (Mullen 

1998)

DS05 Weekly 21 0 - 18 6.48 136

Government/Military 

(Musa 1985, Musa 

et.al.  1987, Kapur 

& Younes 1995)

DS06 Weekly 17 21-Jan 8.47 144
Mid-size (Xie et.al. 

2006)

DS07 Monthly 60 0 - 16 2.43 146

webERP, open 

source (Li & Pham 

2019)

DS08 Daily 73 0 - 13 5 367
Government/Military 

(Bao et.al.  2000)

DS09a Apache 

2.0.35
Daily 43 0 - 8 1.72 74

Apache, open 

source (Li & Yi 

2016)

DS09b Apache 

2.0.36
Daily 103 0 - 5 0.49 50

Apache, open 

source (Li & Yi 

2016)

DS09c Apache 

2.0.39
Daily 164 0 - 3 0.36 58

Apache, open 

source (Li & Yi 

2016)

DS10a Gnome 2.0 Monthly 19 8-Jan 3.94 78
Gnome, open source 

(Gandhi et.al.  2018)

DS10b Gnome 2.2 Monthly 24 0 - 9 2.35 54
Gnome, open source 

(Gandhi et.al.  2018)

DS10c Gnome 2.4 Monthly 46 0 - 7 1.17 54
Gnome, open source 

(Gandhi et.al.  2018)
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Early Period 

Table 1 indicates that there are 3 types of test frequencies, namely: daily, weekly, & monthly. Given 
that we need to estimate 3 parameters for each model, we decided to define our methodology as 
follows: 
• For daily DS, early prediction is defined as the first 21, 22, …, 25 days respectively, i.e., we will 

use defects from days 1 – 21, days 1 – 22, days 1 – 23, days 1 – 24, & days 1 – 25 to estimate the 
maximum number of estimated defects in the system (m); 

• For weekly DS, early prediction of m is obtained using the first 5, 6, …, 9 weeks respectively, 
and 

• For monthly DS, we use the months 1 – 6, 1 – 7, …, 1 –10 to get the early prediction of m. 

Stabilization Period 

Similarly, what we define as stabilization periods are as the last 3 data points, e.g., 
• For DS01 – it means we use days 1 – 109, 1 – 110, and 1 – 111 respectively. 
• For DS06 (weekly) – we will use weeks 1 – 15, 1 – 16, and 1 – 17 respectively. 
• For DS10a – we use months 1 – 17, 1 – 18, and 1 – 19 respectively. 

It is important to explain that we purposely pick only 3 sets of data points since we believe that 
some systems (out of 18 that we consider) may not have too many data points, and they may not 
reach stability yet. Therefore, we did not pick 5 sets of data points like in the Early period. 
 

R-Packages to Use 

To obtain the parameters m, p, and q for Bass model, we use R packages: diffusion (Schaer and 
Kourentzes (2018)) and also DIMORA (Federico (2021)). We choose these R packages to estimate 
the Bass parameters since the first one (diffusion) is simply using the traditional OLS (ordinary 
least square) with linear approximation suggested by Bass (1969) while the second one (DIMORA) 
is using NLS (non-linear least square). Similarly, we use nls with SSGompertz (self-starter 
Gompertz) and growthrates library (Petzoldt, 2020) to calculate Gompertz’ parameters: m, b, and 
c. Finally, to obtain the parameters m, 𝑁0, and r for the Logistics Equation in (12), we use packages: 
growthcurver by Sprouffske (2020) and growthrates by Petzoldt (2020) that are available in R.  
 
FINDINGS AND DISCUSSION 
 
To prove our hypothesis, we run R-packages to our 18 datasets as we have described in above and 
we summarize the result in Figure 1.  
 
Figure 1 shows boxplot of CVs of m (maximum potential defect) values from five early predictions 
(as outline in the previous section) and three stable predictions using three SRGMs (Bass, 
Gompertz, and Logistic). It is very easy to see that almost all values for m’s are way off from the 
actual known defects (with few exceptions). Similarly, almost all coefficient of variations (CVs) is 
more than 5%, with median 32.5%, 31%, 18.5% for Bass, Gompertz and Logistic respectively. the 
Therefore, this demonstrates the correctness of H1 and H2. Meanwhile for stable period 
predictions, practically almost all CVs for m (maximum potential defects) is now less than 5% (with 
very few exceptions). Notice also how close the 𝜇𝑚 (mean of m) to the known defects. This 
concludes our proof for hypothesis H4 and H5. 
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Table 2 shows the average and CVs of m 
value from three SRGMs (Bass, Gompertz, & 
Logistic) for the first 3 sets of early 
prediction data points. Again, we can easily 
see that most CVs tend to be more than 5% 
(with few exceptions). Even those few 
exceptions, the average value of m is clearly 
far from the known defect of the system. 
Therefore, we can conclude that this result 
demonstrates the correctness of hypothesis 
H3. 

Stopping Rule Proposal 

Now, we are in a good position to outline our 
proposal for when we can release a software 
(or dashboard) after a period of testing. Let’s 
define couple more terminologies to be able 
to quantify our proposal clearly. Consider a 

distribution frequency of defects found per unit time. Based on previously stated assumption, we 
believe it is reasonable to assume a Bell 
curve. Therefore, we can have the following 
stable (software) system definitions as our 
stopping rule proposal. 
 
Table 2. Average & CVs of m for the first 3 

sets of Early Period Prediction 
 
Definition 1: (simple, classic, & equally crucial definition) 
A system under testing is called stable at time t if the moving average (MA) of defects (x) found for 
a certain period n, i.e., from time (t – n +1) to time t, is less than or equal to a factor (0 < α1 < 1, 

0.0

0.5

1.0

1.5

2.0

Early Stable

Period

v
a
lu

e

Model

Bass

Gompertz

Logistic

Figure 1. Coefficient of Variations from 

early and stable predictions using Bass, 

Gompertz and Logistic Models. 

μm CV(m ) μm CV(m ) μm CV(m )

DS01 252.09 12.72% 253.22 8.57% 250.33 6.90% 481

DS02a Release 1 109.97 51.45% 213.99 83.92% 106.3 33.65% 100

DS02b Release 2 83.73 45.17% 109.53 53.89% 159.43 52.00% 120

DS02c Release 3 5009.96 139.95% 31091.56 141.15% 118.49 59.95% 61

DS02d Release 4 11.82 5.03% 28.48 32.15% 38.62 37.93% 42

DS03 119.32 3.29% 122.79 8.66% 244.07 54.07% 328

DS04a Release 1 18.97 4.64% 25473.97 140.26% 906.01 126.66% 360

DS04b Release 2 10.84 4.58% 15.94 6.96% 21.39 7.85% 200

DS05 7.42 45.14% 13.6 38.19% 16.27 39.55% 136

DS06 135.66 20.81% 119.26 12.70% 125.16 6.64% 144

DS07 12.5 1.13% 7877722.85 141.42% 46.27 15.98% 146

DS08 151.03 8.97% 150.83 7.98% 149.4 7.00% 367

DS09a Apache 2.0.35 110.91 54.89% 110 54.27% 113.27 53.43% 74

DS09b Apache 2.0.36 37.56 32.27% 36.97 31.73% 36.15 30.85% 50

DS09c Apache 2.0.39 48.34 46.77% 48.36 39.07% 49.54 35.47% 58

DS10a Gnome 2.0 40.15 22.21% 68.44 43.36% 84.65 24.85% 78

DS10b Gnome 2.2 55.22 37.70% 58.27 31.80% 42.71 13.61% 54

DS10c Gnome 2.4 39.63 26.95% 25.07 8.72% 28.69 9.23% 54

Known 

Defect
Data Sets (DS)

1
st

 Early Time Period 2
nd

 Early Time Period 3
rd

 Early Time Period
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usually we set α = 5% – 20%) multiply by previously known maximum defect than can be found in 
a unit time, i.e., we can mathematically write as: 
𝑥𝑡−𝑛+1+⋯+𝑥𝑡

𝑛
 ≤ ⌈𝛼1max

𝑡
{𝑥𝑖}⌉          (10) 

Please note that the larger n is, the more confidence we can 
have. Similarly, the smaller α1 is, the more confidence we 
can have that our (software) system does not have any 
remaining defect. We put a ceiling on the rhs of eq (10) 
since the number of defects should be an integer (but this 
is not very crucial). 
Definition 2: (from H1 – H5) 
A system under testing is called stable at time t if the total 
cumulative defects found at time t is more than or equal to 
a factor (𝛽, e.g., we can set 𝛽 = 95%) multiply by the 
maximum potential defects (m) from our SRGM. 
Mathematically, we propose to represent this definition as: 
∑ 𝑥𝑖
𝑡
𝑖=1 ≥ 𝛽𝑓(𝑚𝐵𝑡 ,𝑚𝐺𝑡 ,𝑚𝐿𝑡

)          

(11) 
In the equation (11) above, 𝑓(𝑚𝐵𝑡 , 𝑚𝐺𝑡 , 𝑚𝐿𝑡

) could be 

defined as 
𝑚𝐵𝑡

+𝑚𝐺𝑡
+𝑚𝐿𝑡

3
 (arithmetic mean) or √𝑚𝐵𝑚𝐺𝑚𝐿

3  

(geometric mean) or even 𝑚𝑖𝑛{𝑚𝐵𝑡 , 𝑚𝐺𝑡 ,𝑚𝐿𝑡
}. The most 

important point, though, is that: 
CV{𝑚𝐵𝑡 ,𝑚𝐺𝑡 ,𝑚𝐿𝑡

} ≤ 𝛼2    

 (12a) 
Again, usually α2 = 5% is considered good for coefficient of 
variation. Moreover, as we have demonstrated previously, 
if we want to be more robust, we could also add an 

additional condition that CV{𝑚𝐵𝑡−𝑛+1 , … ,𝑚𝐵𝑡
} ≤ α2, 

CV{𝑚𝐺𝑡−𝑛+1 , … , 𝑚𝐺𝑡
} ≤ α2, and CV{𝑚𝐿𝑡−𝑛+1 , … ,𝑚𝐿𝑡

} ≤ α2, or 

we can simply write mathematically as: 

𝑚𝑎𝑥 {

CV{𝑚𝐵𝑡−𝑛+1 , … ,𝑚𝐵𝑡
}, CV{𝑚𝐺𝑡−𝑛+1 , … ,𝑚𝐺𝑡

},

CV{𝑚𝐿𝑡−𝑛+1 , … ,𝑚𝐿𝑡
}

} ≤ 𝛼2   

                                                                                 (12b) 
With the above definitions, our stopping rule proposal can 
be illustrated by the following flowchart in Figure 2. 

Numerical Examples 

To illustrate our stopping rule proposal with DS10b, we carried out calculation as in Table 7 (using 
𝛼1 = 𝛼2 = 5%, n = 5, 𝛽 = 95%, and n = 4).  
Lastly and for completeness, the result of applying our proposed stopping criteria (using definition 
1 only, using definition 2 only, and using definition 1 ∩ definition 2) to all 18 datasets with test 
frequency, 𝛼1 , 𝛼2, 𝛽, and n as given here: 
• Daily: 𝛼1 = 𝛼2 = 5%, 𝛽 = 95%, and n = 5 
• Weekly/Monthly: 𝛼1 = 𝛼2 = 5%, 𝛽 = 95%, and n = 3 

Start

Count defect data according to unit 
time of choice (day, week, or month)

xₜ = number of defects at time t
Cₜ = cumulative defects at time t

Calculate Moving Average 
xₜ for n period, i.e., MA(xₜ, n)

Calculate mG, mL, and mB (or any 
other m according to the SRGM of 

choice)

Stop

Is MA(xₜ, n)   α 

max{x₁,...,xₜ} ?

Is mB, mG, and mL stable?

yes

yes

Is Cₜ   β f(mB ₜ , mG ₜ , 
mL ₜ )?

yes

no

no

no

Figure 2. Flowchart for 

Stopping Rule proposal 
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is summarized in Table 4. 
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CONCLUSION AND FURTHER RESEARCH 

When the testing had discovered most defects, most (if not all) SRGMs will converge to similar value 

for the maximum potential defects in the system (m). Therefore, rather than contrasting various SRG 

models, we can utilize this information to build our confidence using several SRG models at once in 

order to provide stopping rule without losing too many valuable times to release the 

software/application that is being tested. 

 

When the predicted values of maximum potential defects from various SRGM have small coefficient 

of variation, we know it very likely represents true maximum potential defects of the system. 

Furthermore, by requiring coefficient of variation for n consecutive periods of m to be less than 𝛼 

(say: 5%), we ensure that the prediction of maximum potential defects by any SRGM to be stable. 
Hence, increasing our confidence. 

 

Together with a simple, practical, and yet classic definition of stable system, we can develop a robust 

stopping criteria for software testing. Of course, it is up to individual organization on how to 

implement the stopping criteria. We provided various parameters that can be tuned to suit the need. 

Using publicly available datasets in various journals, we demonstrated that it is actually better to use 

multiple software reliability growth models (SRGMs) to build confidence, and we can identify which 

projects are released on a good state, and which ones are released by executive decision. 

 

Interestingly, from all public datasets that we have collected, there are some that exhibit 2nd wave 

phenomenon. In SRGM, this could mean that perfect debugging assumption is not always true (the 

other possibility is an introduction of new feature late in the cycle). This is an interesting subject that 

has application in various different aspects of life and extend beyond this research. 

Another area of further research is a more stable parameter prediction that do not change much with 

additional data. This is actually presented in Vincent et.al. (2022) already by applying similar 

technique as Levitt et.al. (2021), i.e., to linearize Sigmoid functions. 
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Table 3. Numerical Example for DS10b with α1 = α2 = 5%, β = 95%, and n = 4 

Table 4. When to Release Software 

 

  

α1 = 0.05 α2 = 0.05 β = 0.95

week defect cum defect MA(x , 4) RunMax def #1 mB CV(mB) mG CV(mG) mL CV(mL)
CV(mB, 

mG, mL)
def #2

1 5 5 5 5 0

2 4 9 4.5 5 0

3 5 14 4.67 5 0

4 5 19 4.75 5 0

5 9 28 5.75 9 0 46.2 84 35.46 37.70% 0

6 5 33 6 9 0 64.45 16.49% 77.22 4.20% 33.13 3.41% 31.80% 0

7 2 35 5.25 9 0 43.77 17.93% 49.24 21.44% 35.12 2.98% 13.61% 0

8 1 36 4.25 9 0 39.67 19.55% 42.93 27.74% 37.15 4.06% 5.93% 0

9 2 38 2.5 9 0 43.7 20.25% 41.84 27.22% 38.95 6.04% 4.71% 0

10 3 41 2 9 0 43.05 3.96% 43.05 6.58% 42.03 6.62% 1.13% 0

11 2 43 2 9 0 45.15 4.68% 45.15 2.77% 44.08 6.61% 1.13% 0

13 1 44 2 9 0 46.2 2.76% 46.2 3.88% 45.1 5.52% 1.13% 0

14 0 44 1.5 9 0 46.2 2.85% 46.2 2.85% 45.1 2.85% 1.13% 1

15 4 48 1.75 9 0 50.4 4.29% 50.4 4.29% 49.2 4.29% 1.13% 1

16 1 49 1.5 9 0 51.45 4.92% 51.45 4.92% 50.23 4.92% 1.13% 1

17 1 50 1.5 9 0 50.31 4.05% 52.5 4.77% 51.25 4.77% 1.75% 1

18 1 51 1.75 9 0 51.73 1.23% 53.55 2.26% 52.28 2.26% 1.46% 1

19 0 51 0.75 9 0 52.3 1.41% 53.55 1.65% 52.28 1.65% 1.13% 1

20 0 51 0.5 9 0 52.43 1.63% 53.55 0.85% 52.28 0.85% 1.08% 1

21 0 51 0.25 9 1 52.36 0.54% 53.55 0.00% 52.28 0.00% 1.10% 1

22 1 52 0.25 9 1 52.6 0.21% 54.6 0.84% 53.3 0.84% 1.55% 1

23 0 52 0.25 9 1 52.68 0.25% 54.6 0.97% 53.3 0.97% 1.49% 1

24 2 54 0.75 9 0 56.7 3.36% 56.7 2.09% 55.35 2.09% 1.13% 1

Gnome 2.2

Dataset
def #1 

only

def #2 

only

def #1 ∩ 

def #2
Dataset

def #1 

only

def #2 

only

def #1 ∩ 

def #2

DS01 64 26 75 DS06 N/A 11 N/A

DS02 Release 1 19 N/A N/A DS07 23 33 N/A

DS02 Release 2 N/A 19 N/A DS08 N/A N/A N/A

DS02 Release 3 N/A 12 N/A DS09 Apache 2.0.35 33 38 33

DS02 Release 4 N/A 17 N/A DS09 Apache 2.0.36 23 81 81

DS03 N/A N/A N/A DS09 Apache 2.0.39 48 72 75

DS04 Release 1 60 62 N/A DS10 Gnome 2.0 N/A N/A N/A

DS04 Release 2 50 39 50 DS10 Gnome 2.2 20 14 20

DS05 N/A N/A N/A DS10 Gnome 2.4 18 18 18

When to Release the Software When to Release the Software
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