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a b s t r a c t

Increasing energy shortages and environmental pollution have made energy efficiency an urgent
concern in manufacturing plants. Most studies looking into sustainable production in general and
energy-efficient production scheduling in particular, however, have not paid much attention to
logistical factors (e.g., transport and setup). This study integrates multiple automated guided vehicles
(AGVs) into a job-shop environment. We propose a multiobjective scheduling model that considers
machine processing, sequence-dependent setup and AGV transport, aiming to simultaneously minimize
the makespan, total idle time of machines and total energy consumption of both machines and
AGVs. To solve this problem, an effective multiobjective evolutionary algorithm (EMOEA) is developed.
Within the EMOEA, an efficient encoding/decoding method is designed to represent and decode each
solution. A new crossover operator is proposed for AGV assignment and AGV speed sequences. To
balance the exploration and exploitation ability of the EMOEA, an opposition-based learning strategy
is incorporated. A total of 75 benchmark instances and a real-world case are used for our experimental
study. Taguchi analysis is applied to determine the best combination of key parameters for the
EMOEA. Extensive computational experiments show that properly increasing the number of AGVs can
shorten the waiting time of machines and achieve a balance between economic and environmental
objectives for production systems. The experimental results confirm that the proposed EMOEA is
significantly better at solving the problem than three other well-known algorithms. Our findings here
have significant managerial implications for real-world manufacturing environments integrated with
AGVs.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Production scheduling is an important decision-making pro-
ess in manufacturing. It aims to arrive at a scheduling solution
hat can effectively help manufacturers improve production effi-
iency and reduce production costs [1]. Global energy shortages
nd environmental pollution mean that energy efficiency issues
re receiving increased attention in various research fields. Ac-
ording to a survey by the International Energy Agency [2], the
otal energy demand worldwide will increase by 37% by 2040.
nergy consumed by the manufacturing sector accounts for a
arge proportion of this demand (e.g., energy consumption from
he industrial sector is approximately 50% of total consump-
ion [3]). Excessive energy consumption will lead to a sharp

∗ Corresponding author.
E-mail address: liwf@whut.edu.cn (W. Li).
ttps://doi.org/10.1016/j.knosys.2022.108315
950-7051/© 2022 Elsevier B.V. All rights reserved.
deterioration of the environment through means such as the
rapid exhaustion of fuel resources and global warming [4]. There-
fore, manufacturing enterprises should make efforts to reduce
energy consumption from both economic and environmental per-
spectives. Researchers have realized that production scheduling
can reduce energy consumption in manufacturing processes with
less financial cost than expensive energy-saving hardware [5–
7]. Consequently, there is a growing interest in energy-efficient
production scheduling-related research [5–10]. To the best of
our knowledge, however, existing studies mainly focus on the
energy consumption of processing machines. Almost all of them
have overlooked the influence of logistical factors (e.g., job trans-
port and machine setup) on production efficiency and energy
consumption.

Since the industrial revolution that initiated the proposal of
Industry 4.0 strategic plans and other advanced information tech-
nologies [11,12], manufacturing operations have been changing

https://doi.org/10.1016/j.knosys.2022.108315
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rom mass standardized production to mass customized pro-
uction. This means that a workshop in a manufacturing en-
ironment should have a flexible production capacity to meet
ustomer requirements for multiple types of products. Differ-
nt types of products have different processing paths, which
eans that many logistics conversion activities, such as transport,

oading and unloading, are needed to maintain the consistency
f operations. Nevertheless, these conversion activities generate
large conversion time, which greatly extends the production

ycle. In some long-distance and discrete production workshops,
he conversion time, especially the logistic transport time, ac-
ounts for a large proportion of the total production time [13].
herefore, it is necessary to consider the logistic transport time of
obs when conducting production scheduling research. However,
ost of the relevant studies have overlooked the transport time
r the effect of transport time on scheduling solutions. This means
hat the scheduling solutions cannot effectively match the actual
roduction situation—resulting in a huge gap between theoret-
cal production scheduling research and real-world production
cheduling.
In a real-world production environment, various types of ve-

icles (e.g., trucks, conveyors and cranes) are commonly used to
onvey jobs with selected speeds between different machines. In
ecent years, automated guided vehicles (AGVs) [14,15], among
arious other vehicles, have been gradually introduced in ad-
anced intelligent manufacturing systems to shorten the trans-
ort time of jobs and improve productivity. AGVs differ from
raditional transport equipment in that they are integrated with
merging technologies (e.g., high-precision sensors and the In-
ernet of Things), can acquire real-time information data, and
ake possible the interconnections between different produc-

ion equipment [16,17]. These intelligent AGVs can avoid colli-
ions through installed sensors and travel on guided paths [18].
hese features allow them to greatly improve the robustness and
lexibility of manufacturing systems. In complex, customization-
riented manufacturing environments involving products of
ultiple varieties and small batches, AGVs have become key
quipment for achieving intelligent production [19]. However,
hen integrated in production systems, AGVs not only affect
roduction efficiency, but also consume considerable energy.
herefore, studying energy-efficient production scheduling inte-
rated with AGVs has both theoretical and practical significance.
ome researchers have begun to integrate AGVs in production
cheduling to solve scheduling problems associated with ma-
hines and AGVs [13,18–20]. However, the relevant studies only
ocus on single-objective scheduling that aims to minimize the
akespan. In addition, the effect of AGV configuration on the
erformance improvement of production systems has not been
tudied.
In other words, no energy-efficient production scheduling

tudies that consider the transport of AGVs have been reported.
any new logistics constraints directly related to AGVs will have

o be inserted into the production scheduling systems when
hey are integrated with AGVs—in addition to constraints related
o production. We need to conduct a cooperative scheduling
f operations, machines and AGVs. The problem is much more
omplex than common energy-efficient production scheduling.
ence, an effective optimization approach is necessary to handle
his problem.

The job-shop scheduling problem (JSP) is one of the most gen-
ral classical production scheduling problems [1,21–25]. Many
eal-world manufacturing problems can be formulated as JSP-
ased models. Therefore, it is of great practical significance to in-
egrate AGVs into a JSP environment and conduct energy-efficient
cheduling research. In recent years, various evolutionary al-

orithms have been used to solve the JSP. For example, Wu

2

and Wu [26] developed an elitist quantum-inspired evolutionary
algorithm for flexible job-shop scheduling, aiming to minimize
the makespan. Chiang and Lin [27] proposed a multiobjective
evolutionary algorithm (MOEA) to address a flexible JSP, with
the makespan, total workload and maximum workload in mind.
Shen and Yao [28] studied a dynamic multiobjective flexible JSP
and developed an MOEA-based proactive-reactive method. The
novelty of their method lies in its ability to handle multiple objec-
tives simultaneously, including efficiency and stability, and adapt
to a new environment quickly by incorporating heuristic-based
dynamic optimization strategies. Sarker et al. [29] presented a
hybrid evolutionary algorithm for solving the JSP, taking the
effect of machine maintenance into account. Abedi et al. [30]
designed an MOEA incorporated with disjunctive graph-based
local search for energy-efficient job-shop scheduling with deteri-
orating machines. These existing studies showed that MOEAs are
very promising in solving production scheduling problems.

In this paper, we focus on a specific JSP environment inte-
grated with multiple AGVs. The main innovations and contribu-
tions of this work are summarized as follows:

(1) This is the first study in which an energy-efficient JSP con-
sidering multiple AGVs (EJSP-AGVs) is addressed. We formulate a
new multiobjective model to minimize the makespan, total idle
time of the machines and total energy consumption of both the
machines and AGVs.

(2) An effective MOEA (EMOEA) is then proposed to tackle the
problem. An efficient problem-based encoding/decoding operator
is proposed. Novel crossover and mutation operators are adopted
for the problem. An opposition-based learning (OBL) strategy is
utilized to improve the local search ability.

(3) The model is validated with a CPLEX solver. The effect
of AGV configuration on production system performance is dis-
cussed. The comparison results on benchmark instances and a
real-world case show that the proposed EMOEA outperforms
three well-known algorithms in solving the problem.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review the related work. In Section 3, we describe
and formulate the problem at hand in detail. In Section 4, we
present the proposed algorithm. In Section 5, we study the impact
of AGV configuration on the overall production performance and
evaluate the performance of the proposed algorithm. Finally, we
conclude the paper and outline several future research directions
in Section 6.

2. Related work

2.1. Energy-efficient production scheduling

There has been a growing interest in studies related to energy-
efficient production scheduling, with He et al. [31] and Subai
et al. [32] among the first to do so. A review of energy-efficient
production scheduling was provided by Gahm et al. [33]. Mouzon
et al. [8] observed that overall production energy consumption
can be reduced by a machine turn-on/off mechanism. Many
energy efficiency production scheduling studies with turn-on/off
mechanisms, inspired by the work of Mouzon et al. [8], have
emerged in recent years. Che et al. [9] addressed single-machine
scheduling with a power-down mechanism to simultaneously
minimize maximum tardiness and energy consumption. Shrouf
et al. [10] discussed an energy efficiency single-machine schedul-
ing problem with a turn-on/off mechanism and proposed a
genetic algorithm (GA) to minimize the energy costs. Using a
turn-on/off mechanism, Dai et al. [5] proposed an energy-efficient
model for flexible flow shop scheduling. To address the mul-
tiobjective model, an improved genetic-simulated annealing al-
gorithm was adopted to minimize the makespan and the total



L. He, R. Chiong, W. Li et al. Knowledge-Based Systems 243 (2022) 108315

e
n
s
a
e
m
t
t
o

t
i
i
e
T
d
j
p
d
a
T
c
s
m
s
e
w
t
e
s
g
t
e
a
n

c
t
p
w
a
t
i
p
u
m
i
p
m
g
i
p
e
r
o
t
m
e
a
m
m
t

nergy consumption. Wu and Sun [34] presented a nondomi-
ated sorting GA (NSGA) to solve flexible JSPs, with the aim of
imultaneously minimizing the makespan, energy consumption
nd number of times that machines were turned on and off. Gong
t al. [35] designed four rules to set the machine on/off criteria,
aintenance periods and predefined maintenance windows, and

hree heuristics to insert maintenance activities into their solu-
ions and move the maintenance-operation blocks to optimize the
bjectives.
Contrary to the aforementioned studies, Fang et al. [36] no-

iced that the turn-on/off mechanism was not always applicable
n real-world manufacturing systems because frequently restart-
ng the machines required a considerable amount of additional
nergy and could potentially cause damage to the machines.
herefore, they proposed an energy-efficient mechanism called
ynamic speed scaling, which meant that machines could process
obs at different speeds. A higher processing speed led to less
rocessing time and more energy consumption [4,36]. The study
emonstrated that selecting reasonable operation assignments
nd machine speeds can lead to large reductions in energy use.
he speed-scaling mechanism has been widely adopted in re-
ent energy-efficient scheduling studies. For example, in a speed-
caling job-shop scheduling environment, Zhang and Chiong [7]
inimized the total weighted tardiness and total energy con-
umption by a multiobjective GA with local search. Mansouri
t al. [37] discussed a two-machine flow shop scheduling problem
ith a speed-scaling mechanism to minimize the makespan and
otal energy consumption. Ding et al. [38] minimized total carbon
missions and the makespan in a speed-scaling permutation flow
hop scheduling problem. They proposed a multiobjective NEH al-
orithm and a modified multiobjective iterated greedy algorithm
o solve this multiobjective problem. Yin et al. [39] studied an
nergy efficiency JSP with flexible spindle speed and proposed
novel GA to minimize the makespan, energy consumption and
oise emissions.
In addition to the two aforementioned types of energy effi-

iency scheduling studies, a third type, based on the policy of
ime-of-use (TOU) electricity price, is also a hot topic. In TOU,
ower suppliers offer electricity with a dynamic price scheme, in
hich higher electricity prices are generated during peak hours
nd lower prices during off-peak hours. It is therefore feasible
o reduce production costs by shortening the processing time
n peak periods and prolonging the processing time in off-peak
eriods. Using the TOU scheme, Ding et al. [40] studied the
nrelated parallel machine scheduling problem, with the aim of
inimizing the total electricity cost by appropriately schedul-

ng jobs and the overall completion time. Che et al. [41] pro-
osed a new continuous-time mixed-integer linear programming
odel for energy-conscious single-machine scheduling, and a
reedy insertion heuristic was developed to minimize electric-
ty costs. Luo et al. [42] studied a hybrid flow shop scheduling
roblem with machine electricity consumption costs. To reduce
lectricity consumption during peak and off-peak hours, they
ecommended combining fast and slow processing machines to
btain higher energy efficiency using constant power/speed ra-
ios. Zeng et al. [43] constructed a multiobjective optimization
odel in a flexible flow shop system, where a hybrid NSGA-II was
mployed to minimize the makespan, electricity consumption
nd material wastage. Zeng et al. [44] formulated a biobjective
ixed-integer linear programming model for a uniform parallel
achine scheduling problem, considering electricity cost under
ime-dependent or TOU electricity tariffs.

3

2.2. Production scheduling integrated with AGVs

Few studies on production scheduling integrated with AGVs
have been reported. In the work of Chaudhry et al. [45], a prob-
lem concerning the scheduling of machines and two AGVs in a
flexible manufacturing system (FMS) was solved using a GA. They
compared the results of the proposed GA with four GA variants
from the existing literature. In their experiments, the AGVs fol-
lowed the rule of finding the shortest path to other machines.
Nageswararao et al. [46] employed a sheep flock optimization
algorithm to schedule both the machines and AGVs’ processes
with makespan and mean tardiness minimization. They tested
their algorithm on four basic layouts and ten job sets, but did not
present the mathematical model of the problem. Saidi-Mehrabad
et al. [13] studied a basic JSP concerning the transport processes
of AGVs. In this problem, a conflict-free routing problem to avoid
the collision of AGVs was considered. A two-stage ant colony
algorithm was proposed to minimize the makespan. Lin et al. [18]
focused on the dispatching of AGVs in an FMS. They modeled
the AGV system by using a network structure and postulated
that collisions for AGVs were avoided by hardware. A priority-
based GA was proposed for solving this problem, in which the
objective was to minimize the makespan without considering
the mathematical model. Liu et al. [19] proposed an improved
flower pollination algorithm to handle the integrated scheduling
problem of machines and AGVs in a basic JSP environment to
minimize the makespan and utilization of AGVs. They assumed
that AGVs could navigate autonomously to avoid obstacles and
replan their path. Lacomme et al. [20] addressed the JSP of simul-
taneous scheduling of machines and identical AGVs to minimize
the makespan. They introduced a framework-based on a disjunc-
tive graph to model the joint scheduling problem and a memetic
algorithm for machine and AGV scheduling. Caumond et al. [47]
considered a scheduling problem in a small and medium-sized
FMS with only one AGV. A heuristic approach based on a branch-
and-bound procedure was used to handle this problem. Zheng
et al. [48] studied a scheduling problem of machines and AGVs in
an FMS environment. A heuristic algorithm based on tabu search
was proposed to minimize the makespan. Abdelmaguid et al. [49]
proposed a hybrid GA to handle a production scheduling problem
integrated with only two AGVs with the objective of makespan
minimization. They also did not detail the mathematical model of
the scheduling problem. Babu et al. [50] developed a differential
evolution algorithm for the simultaneous scheduling of machines
and two identical AGVs in an FMS. Reddy and Rao [51] addressed
a multiobjective scheduling problem in an FMS with two AGVs,
in which both machine and AGV scheduling were considered. The
problem was handled by an NSGA in the absence of a mathe-
matical model. Udhayakumar and Kumanan [52] investigated an
integrated scheduling problem in an FMS with only one AGV.
Without considering the mathematical model of the problem,
they minimized the total travel distance of AGVs and the total
number of backtracking movements.

2.3. Research gaps

Our literature review reveals that both energy-efficient pro-
duction scheduling and scheduling integrated with AGVs have re-
ceived increased attention. However, there are still some research
gaps to be filled. The existing research gaps can be summarized
as follows.

• The existing mathematical models for energy-efficient pro-
duction scheduling problems, such as models developed by
Dai et al. [5], Fang et al. [36] and Ding et al. [38], only focus
on processing time and overlook logistics time, such as AGV
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transport time and sequence-dependent setup time (SDST).
Many logistics activities are related to machines or jobs and
cannot be simply overlooked or simplified. It would not be
conducive to the optimization of production efficiency to do
so and could not effectively guide actual production.

• Almost all existing studies on energy-efficient production
scheduling considered only energy consumption in the ma-
chine processing stage and the machine idle stage. No stud-
ies on energy efficiency production scheduling integrated
with AGVs have been reported. This means that the existing
energy-efficient models cannot accurately describe energy
consumption in the actual production process.

• Most previous studies on production scheduling integrated
with AGVs, such as Chaudhry et al. [45] and Abdelmaguid
et al. [49], focused on a single-objective problem – aiming to
minimize the makespan – and did not present a correspond-
ing mathematical model. No relevant studies have taken
the environmental objective into account. Most studies only
considered one or two AGVs and did not study how many
AGVs should be configured to achieve the best produc-
tion system performance, which is an important aspect to
balance production costs and efficiency.

Based on the above gaps identified, this work focuses on energy-
efficient production scheduling by taking AGV transport and
sequence-dependent setup activities into account, which better
meets the requirements of practical production. We took the
classic JSP as the scheduling environment and integrated mul-
tiple AGVs into the JSP environment to simultaneously improve
economic and environmental objectives.

3. Problem definition and mathematical modeling

The EJSP-AGVs can be described as follows.

1. There are n different jobs to be processed on m machines.
Each job consists of oi (i = 1, 2, . . . , n) operations and
should be processed through the machines in a predefined
order. There are ag AGVs in the workshop. Each AGV has a
discrete and finite multilevel transport speed. An AGV first
transports the material of a job from a material warehouse
(MW) to one machine for the first process of the job, then
transports the job to other machines for the other opera-
tions and, finally, transports the finished job to a product
warehouse (PW). Each AGV has three statuses: nonloading,
loading and idle waiting. Each job i has oi + 1 transport
tasks. Each transport task in a job includes a ‘no-load’ and
a ‘load’ transport process. In the no-load transport process,
an AGV runs in the nonloading status from its current po-
sition to the machine position of the current job to prepare
for loading the job. In the load transport process, an AGV
loads the job and transports it from the current machine
to another machine for the next process. To simplify the
transport process, we defined the pickup position of MW
as 0, the pickup/delivery (P/D) positions from machine 1
to machine m as 1, 2, . . . ,m, and the D position of the PW
as m + 1. For all transport tasks in a job, the selected AGVs
and their speeds are different. The transport time of an AGV
is related to the transport distance and the AGV’s speed.
A higher AGV speed leads to more energy consumption
but contributes to shortening the transport time. AGVs and
machines have sensing abilities, and the interconnection
between AGVs and machines is achieved through a wireless
sensor network arranged in the workshop. AGVs can nav-
igate autonomously and choose an appropriate transport

route.

4

2. When the job is transported to a machine position, the
AGV immediately unloads the job to perform the next
transport task. Before the job is processed on the current
machine, setup operations such as clamping, cleaning and
tool-changing will be executed. These setup operations are
related to the machine and the adjacent jobs processed
on the same machine [53–55]. They will generate SDSTs
and consume a certain amount of energy. Only when the
job is transported to the machine, the corresponding setup
operations can be started, which means that there is no
overlap between transport and setup operations.

3. After the AGV’s transport task and setup operations are
complete, job processing will start on the machine. Each
machine uses the speed-scaling mechanism and has a dis-
crete and finite multilevel processing speed to handle an
operation. A higher machine speed will shorten the pro-
cessing time of jobs but increase energy consumption. Each
machine cannot be turned off completely unless all of the
operations on it have been completed. The basic processing
time of each job on each machine is known in advance.
There is a certain amount of stand-by energy consumption
during the idle period of each machine.

he aim of the problem was to find a reasonable schedule that si-
ultaneously optimized economic and environmental objectives.
o reach this goal, four subproblems needed to be addressed:
1) sequencing all operations on the machines; (2) assigning a
achine processing speed to each operation; (3) assigning an
GV to each transport task of jobs and (4) assigning an AGV speed
o each transport task of jobs. Fig. 1 presents an example of the
JSP-AGVs. The assumptions are as follows.

1. All the machines, jobs and AGVs are simultaneously avail-
able at time zero.

2. All the jobs and AGVs are initially at the material ware-
house.

3. Each machine can perform only one operation at a time and
each operation can be processed only once on one machine.

4. There are no precedence constraints among the operations
of different jobs.

5. Once an operation has begun on a machine, it cannot be
interrupted.

6. An operation of any job cannot be performed until all pre-
ceding operations of the relevant job have been completed.

7. The speed of a machine cannot be changed once it begins
to process an operation.

8. The buffer of each machine is infinite.
9. Each job can be transported by only one AGV at a time and

each AGV can transport only one job at a time.
10. Nonloading and loading status will not affect the speed of

an AGV in a transport task.
11. The transport of each AGV cannot be interrupted once it

has begun. Preemption is not considered.
12. AGVs can eliminate collision automatically through the

sensor network. The time required for collision elimination
is ignored.

13. Charging and failure of AGVs are not considered.

otations
: the total number of jobs
: the total number of machines
g: the total number of AGVs
ij: the jth operation of job i
i: the total number of operations of job i
ijk: the processing time of operation Oij on machine k
: the starting time of operation O
ij ij
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Fig. 1. An example of the EJSP-AGVs scenario.
ij: the completion time of operation Oij

i: the completion time of job i
Ck: the completion time of machine k
if : the f th transport task of job i, f = 1, 2, . . . , oi, oi + 1
′: starting position of the no-load transport task Tif
: ending position of the no-load transport task Tif
′: starting position of the load transport task Tif
: ending position of the load transport task Tif
STif : starting time of the no-load transport task Tif
ETif : ending time of the no-load transport task Tif
STif : starting time of the load transport task Tif
ETif : ending time of the load transport task Tif
pq: the transport distance between two positions p and q; Dpq =

, if p = q.
EAh: the end time of AGV h
L: the total number of speed levels of each machine
R: the total number of speed levels of each AGV
vl: the lth speed of a machine, l = 1, 2, . . . , L
Vr : the rth speed of an AGV, r = 1, 2, . . . , R
Si′ ik: the SDST of machine k for processing job i immediately after
job i′
S0ik: the setup time of machine k when job i is the first job
processed on machine k
Pkl: the processing power of machine k when its processing speed
is set to vl
PSk: the stand-by power of machine k
PSTk: the setup power of machine k
PAhr : the transport power of AGV h when its transport speed is
set to Vr
PASh: the stand-by power of AGV h
LP: a very large positive integer

Variables:

xijk =

{
1, if operation Oij is processed on machine k
0, otherwise

yi′j′ ijk =

⎧⎨⎩
1, if operation Oi′j′ is processed before operation Oij

on the same machine k
0, otherwise

zik′k =

{
1, if machine k′ processes job i before machine k

0, otherwise

5

ui′ ik =

⎧⎨⎩
1, if job i is processed immediately after job i′

on machine k
0, otherwise

αifh =

{
1, if transport task Tif is processed on AGV h
0, otherwise

ωP ′P =

⎧⎨⎩
1, if the nonloading starting and ending positions

of Tif are P ′ and P, respectively
0, otherwise

ϕQ ′Q =

⎧⎨⎩
1, if the loading starting and ending positions for

loading of Tif are Q ′ and Q , respectively
0, otherwise

βi′f ′ ifh =

⎧⎨⎩
1, if transport task Ti′f ′ is processed before

transport task Tif on the same AGV h
0, otherwise

γijkl =

⎧⎨⎩
1, if the speed of machine k for

operation Oij is set to vl

0, otherwise

σifhr =

⎧⎨⎩
1, if the transport speed of AGV h for transport task

Tif is set to Vr

0, otherwise

Objective functions:

1. Maximum ending time of AGVs:

f1 = max{EAh
|h = 1, 2, · · · , ag} (1)

f1 is the makespan. In this work, makespan is defined as the
maximum ending time of all AGVs for transporting all jobs to the
PW.

2. Total idle time of all machines:

f2 =

m∑
k=1

[Ck
−

n∑
i=1

oi∑
j=1

L∑
l=1

xijkγijkl
tijk
vl

−

n∑
i′=0,i=1

ui′ ikSi′ ik] (2)

3. Total energy consumption of all machines and AGVs:

f = E1 + E2 + E3 + E4 + E5 (3)
3
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∑
1 =

m∑
k=1

n∑
i=1

oi∑
j=1

L∑
l=1

xijkγijkl
tijk
vl

Pkl (4)

E2 =

m∑
k=1

n∑
i′=0,i=1

ui′ ikSi′ ikPSTk (5)

3 =

m∑
k=1

PSk[Ck
−

n∑
i=1

oi∑
j=1

L∑
l=1

xijkγijkl
tijk
vl

−

n∑
i′=0,i=1

ui′ ikSi′ ik] (6)

E4 =

ag∑
h=1

R∑
r=1

n∑
i=1

oi+1∑
f=1

(
m+1∑
P ′=0

m+1∑
P=0

ωP ′P
DP ′P

Vr

+

m+1∑
Q ′=0

m+1∑
Q=0

ϕQ ′Q
DQ ′Q

Vr
)αifhσifhrPAhr (7)

E5 =

ag∑
h=1

PASh[EAh
−

R∑
r=1

n∑
i=1

oi+1∑
f=1

(
m+1∑
P ′=0

m+1∑
P=0

ωP ′P
DP ′P

Vr

+

m+1∑
Q ′=0

m+1∑
Q=0

ϕQ ′Q
DQ ′Q

Vr
)αifhσifhr ] (8)

In Eq. (3), f3 is the total energy consumption of all machines
and AGVs. Eqs. (4)–(6) refer to the processing, setup and stand-
by energy consumption of machines, respectively. Eqs. (7)–(8)
are the transport and stand-by energy consumption of AGVs,
respectively.

Constraints:

Ci′j′ + xijkγijkl
tijk
vl

+ ui′ ikSi′ ik ≤ Cij + (1 − yi′j′ ijk)LP (9)

where ∀i, i′ = 1, 2, . . . , n; j = 1, 2, . . . , oi; j′ = 1, 2, . . . , oi′ ;
k = 1, 2, . . . ,m; l = 1, 2, . . . , L

Ci(j−1) + xijkγijkl
tijk
vl

+ ui′ ikSi′ ik ≤ Cij + (1 − zik′k)LP (10)

here ∀i, i′ = 1, 2, . . . , n; j = 2, . . . , oi; k, k′
= 1, 2, . . . ,m;

= 1, 2, . . . , L

STif + (1 − βi′f ′ ifh)LP ≥ LETi′f ′ (11)

here ∀i, i′ = 1, 2, . . . , n; f = 1, 2, . . . , oi; f ′
= 1, 2, . . . , oi′ ;

= 1, 2, . . . , ag

ETif ≥ NSTif +

m+1∑
P ′=0

m+1∑
P=0

ωP ′P
DP ′P

Vr
αifhσifhr (12)

here ∀i = 1, 2, . . . , n; f = 1, 2, . . . , oi + 1; h = 1, 2, . . . , ag;
= 1, 2, . . . , R

ETif ≥ LSTif +

m+1∑
Q ′=0

m+1∑
Q=0

ωQ ′Q
DQ ′Q

Vr
αifhσifhr (13)

here ∀i = 1, 2, . . . , n; f = 1, 2, . . . , oi + 1; h = 1, 2, . . . , ag;
= 1, 2, . . . , R

STif ≥ max(NETif , Ci(j−1)) (14)

here ∀i = 1, 2, . . . , n; f = 2, . . . , oi + 1; j = 2, . . . , oi

ij ≥ max{max
(
LETif , Ci′j′

)
+ Si′ ik} (15)

here ∀i, i′ = 1, 2, . . . , n; i ̸= i′; f = 1, 2, . . . , oi + 1; j′ =

, 2, . . . , oi′ ; k = 1, 2, . . . ,m
m

xijk = 1, ∀i = 1, 2, . . . , n; j = 1, 2, . . . , oi (16)

k=1

6

n

i=1

oi∑
j=1

xijk = 1, ∀k = 1, 2, . . . ,m (17)

n∑
i′=0

ui′ ik = 1, ∀i = 1, 2, . . . , n; i ̸= i′; k = 1, 2, . . . ,m (18)

n∑
i=1

ui′ ik = 1, ∀i′ = 0, 1, 2, . . . , n; i ̸= i′; k = 1, 2, . . . ,m (19)

ag∑
h=1

αifh = 1, ∀i = 1, 2, . . . , n; f = 1, 2, . . . , oi + 1 (20)

n∑
i=1

oi+1∑
f=1

αifh = 1, ∀h = 1, 2, . . . , ag (21)

L∑
l=1

γijkl = 1, ∀i = 1, 2, . . . , n; j = 1, 2, . . . , oi; k = 1, 2, . . . ,m

(22)

R∑
r=1

σifhr = 1, ∀i = 1, 2, . . . , n; f = 1, 2, . . . ,

oi + 1; h = 1, 2, . . . , ag (23)

m+1∑
P ′=0

ωP ′P = 1, ∀P = 0, 1, 2, . . . ,m + 1 (24)

m+1∑
P=0

ωP ′P = 1, ∀P ′
= 0, 1, 2, . . . ,m + 1 (25)

m+1∑
Q ′=0

ϕQ ′Q = 1, ∀Q = 0, 1, 2, . . . ,m + 1 (26)

m+1∑
Q=0

ϕQ ′Q = 1, ∀Q ′
= 0, 1, 2, . . . ,m + 1 (27)

Eqs. (9)–(10) are the operation precedence process constraints.
Eq. (11) means that the AGV can start the next transport task
only after it completes the previous transport task. Eq. (12) means
that the nonloading ending time of one transport task must
be greater than or equal to its nonloading starting time plus
the nonloading duration time. Eq. (13) implies that the end-
ing time of loading a transport task must be greater than or
equal to its loading starting time plus the loading duration time.
Eqs. (14)–(15) are the constraints between the production op-
eration and transport task. Eq. (14) ensures that a job can be
transported to the next machine for processing the next operation
only after the current operation is completed and the AGV arrives
can the job be transported to the next machine for processing
the next operation. Eq. (15) ensures that the operation of the
current job can be started only after job is transported to the
corresponding machine position and the previous operation and
setup operation on the same machine are completed. Eq. (16)
ensures that each operation can only be processed on one ma-
chine at a time, and Eq. (17) ensures that each machine can only
process one operation at a time. Eq. (18) indicates that a job
must follow exactly one predecessor except when it is the first
job of the machine. Eq. (19) means that when a job has finished
the processing on one machine, exactly one different job can be
selected for processing afterward, except when the job is the last
job of the machine. Eq. (20) implies that each transport task can
be performed by only one AGV at a time, and Eq. (21) means

that each AGV can perform only one transport task at a time.
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Eq. (22) ensures that only one machine speed can be selected for
each operation. Eq. (23) ensures that only one AGV speed can be
selected for each transport task. Eqs. (24)–(25) mean that each
transport task has only one no-load starting position and only one
no-load ending position, respectively. Eqs. (26)–(27) mean that
each transport task has only one load starting position and only
one load ending position, respectively.

4. Proposed methods

In the EJSP-AGVs, logistics activities, including the AGV trans-
ort and sequence-dependent setup, are considered, which means
e need to cooperatively schedule jobs, machines and AGVs. In
his section, we describe the proposed EMOEA and its compo-
ents, which include an efficient encoding approach to encode
he jobs, machines and AGVs; three different crossover operators;
nd a mutation operator. An OBL strategy is also introduced
o achieve the balance between exploration (global search) and
xploitation (local search). Furthermore, an external archive tech-
ique is utilized to store elite solutions found by the EMOEA.
lgorithm 1 below summarizes each process of the proposed
ethods.

.1. Encoding

For the EJSP-AGVs, a feasible candidate solution π should
consist of four parts, namely, the operation sequence (O), the
machine speed sequence (v), the AGV sequence (A) and the AGV
speed sequence (V ). That is, π = [O, v, A, V ]. To obtain the
feasible solution, a four-layer encoding method was designed.

For O and v, the encoding method is described as follows.
Step 1: Randomly generate a series of real numbers composed

of n×m dimensions. The real number in each dimension is in the
range (0, 10).

Step 2: Rank the n×m real numbers in descending order and
obtain an integer series from 1 to n × m. The integer series is
denoted as X = [X (1) , X (2) , . . . , X (s) , . . . , X (n × m)].

Step 3: For integer X(s) on each dimension, use 1+X (s)mod n
o obtain a job index. Scanning all the job indices from left to
ight, each job index has m occurrences, which correspond to
he number of operations for a job. Each job index represents an
peration Oik, i = 1, 2, . . . , n; k = 1, 2, . . . ,m. With this method,
feasible O is always obtained.
Step 4: For each operation Oik in O, a corresponding integer

in the range [1, L] is obtained randomly. A machine speed v
l

7

Fig. 2. An encoding example for operation and machine speed sequences.

is assigned to operation Oik. These integers in the range [1, L]
construct a feasible v.

For A and V , the encoding method is described as follows.
Step 1: Randomly generate a series of integers consisting of

n × (m + 1) dimensions. In each dimension, the integer is in the
range [1, ag], and ag is the number of AGVs.

Step 2: This string of integers is divided into n segments from
left to right. Each segment represents the assignment of AGVs to
one job’s transport tasks. Each segment consists of m+ 1 dimen-
sions since there are m + 1 transport tasks for each job. The first
integer in a segment refers to the AGV index corresponding to
the transport tasks from the material warehouse to the machine
for the first operation of the job and so on. The last integer in the
segment is the AGV index corresponding to the last transport task
from the machine for the last operation of the job to the PW. A
feasible A can always be obtained via this encoding process.

Step 3: For each AGV index A(g) in A, g = 1, 2, . . . , n×(m+1),
randomly generate a corresponding integer r from the interval
[1, R] and assign a speed Vr to the corresponding AGV. Finally, a
feasible V is always obtained.

An example case of the EJSP-AGVs case with three jobs, three
machines and two AGVs is used to demonstrate the encoding
process in Figs. 2–3. In this example, the machine speed is set
as v = {v1, v2, v3} and AGV’s speed is set as V = {V1, V2, V3}.

4.2. Decoding

An active decoding method was used to decode each encoded
individual. Details of this decoding method are presented as
follows.
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Fig. 3. An encoding example for AGV and AGV speed sequences.

Step 1: Identify the set of operations processed on each ma-
hine and the set of machines used to process each job. Determine
he set of machine speeds for the operations of each job.

Step 2: Determine the set of AGV indices and the set of AGV
speeds for each transport task of each job. Identify the start-
ing and ending position sets of no-load/load processes of each
transport task.

Step 3: Calculate the ending time of each transport task Tif that
ransports job i to one machine position for processing operation
ij. Let LETif = max[Ci(j−1),NSTif + DP ′P/Vr ] + DQ ′Q /Vr .
Step 4: Determine the completion time of operation Oi′j′ before

peration Oij on machine k. Let Ci′j′ be the completion time of
peration Oi′j′ on machine k.
Step 5: Determine the starting time of operation Oij on ma-

chine k. If Ci′j′ ≤ LETif , the starting time of operation Oij is Sij =

ETif + Si′ ik; otherwise, Sij = Ci′j′ + Si′ ik.
Step 6: The completion time of operation Oij on machine k can

e Cij = Sij + tijk/vl, in which tijk is the basic processing time of
ob i on machine k and vl is the processing speed of machine k
or operation Oij.

Step 7: Calculate the ending time of the last transport task of
ob i. Let LETi(Oi+1) = max[CiOi ,NSTi(Oi+1) + DP ′P/Vr ] + DQ ′Q /Vr , in
hich CiOi is the completion time of the last operation of job i
nd LETi(Oi+1) and NSTi(Oi+1) are the load ending time and no-load
ime of the last transport task Ti(Oi+1) of job i, respectively.

Fig. 4 shows a Gantt chart obtained by the active decoding
ethod based on the example in Section 4.1. In Fig. 4, with

egards to the AGV area, the white box indicates the no-load
ransport task of AGVs, while the magenta box indicates the load
ransport task of AGVs. ‘Tif − Vr ’ indicates the transport task Tif
ith AGV speed Vr . For the machine area, the yellow box indicates
he sequence-dependent setup and ‘Si′ ik’ indicates the SDST of
achine k for processing two adjacent jobs i′ and i. ‘Oij − vl’

mplies the operation Oij with machine processing speed vl.

.3. Crossover

The crossover operation started with randomly selecting two
ndividuals from current population P. The crossover operation
as repeated N/2 times, and its crossover probability was set

as CR. Since the solution for EJSP-AGVs has four different parts,
only one kind of crossover strategy may not be effective for the
four parts or may even inevitably generate infeasible offspring
solutions. In this case, a repair operation should be designed to
repair the infeasible solutions, which will greatly increase the
computation time. In this work, three types of crossover operators
were performed on the four different parts of the selected indi-
viduals. The order crossover (OX) [56] was used for the operation
sequence, the partial-mapped crossover (PMX) [57] was adopted
for the machine speed sequence, and a novel crossover proposed
in this paper was used for the AGV and AGV speed sequences.

With these three types of crossover operators, we can always A

8

obtain feasible offspring solutions. Some preliminary experiments
also showed that the performance of the algorithm was better
for the EJSP-AGVs by combining the three types of crossover
operators. On the other hand, it is very important to maintain
the population diversity for evolutionary algorithms. Therefore, in
evolutionary algorithms, the positions of crossover are generally
determined in a random way to obtain a variety of offspring
individuals. With this in mind, we also randomly determined the
positions of crossover for the three types of crossover operators
to guarantee population diversity in this work.

For operation sequence O, the OX crossover was conducted,
and an example is presented in Fig. 5. The details of the OX
crossover for O are as follows.

Step 1: Randomly select two operation sequence parents PO1
and PO2. To maintain population diversity, randomly generate
two integers s1 and s2 that meet the inequality 0 < s1 < s2 < LS
to determine the positions of order crossover. LS is the length of
the operation sequence O.

Step 2: For parent PO1, find the operations that fall between
s1 and s2 to obtain a partial operation set PP1. Likewise, find the
operations that fall between s1 and s2 in PO2 to obtain a partial
operation set PP2. Assuming that s1 = 3 and s2 = 6, as shown in
Fig. 5, PP1 = [O21,O12,O32,O22] and PP2 = [O12,O13,O21,O22].

Step 3: Identify the PP1 operations in PO2 and determine
their positions in PO2 to obtain a position matrix PM2. Likewise,
identify the PP2 operations in PO1 and determine their positions
in PO1 to obtain a position matrix PM1. Based on the example in
Fig. 5, PM1 = [3, 5, 6, 7] and PM2 = [3, 4, 6, 7].

Step 4: The genes between s1 and s2 in PO1 ([2, 1, 3, 2]) are
inserted into offspring O1 at the same positions. All genes in PO2
are inserted into O1 except those in the corresponding positions
of PM2.

Step 5: The genes between s1 and s2 in PO2 ([1, 1, 2, 2]) are
inserted into offspring O2 at the same positions. All genes in PO1
re inserted into O2 except those in the corresponding positions
f PM1.
For machine speed sequence v, the PMX crossover is per-

ormed as shown in Fig. 6. Details of PMX crossover for v are as
ollows.

Step 1: Randomly generate two integers l1 and l2 that meet
he inequality 0 < l1 < l2 < LS, where LS is the length of the
achine speed sequence v. Based on the example in Fig. 6, l1 = 3
nd l2 = 6, respectively.
Step 2: Insert the genes between l1 and l2 in parent Pv2

[1, 3, 1, 2]) into offspring v1 at the same positions. All genes in
v1 are copied to v1 except those that fall between l1 and l2.
Step 3: Insert the genes between l1 and l2 in parent Pv1

[2, 1, 2, 3]) into offspring v2 at the same positions. All genes in
v2 are copied to v2 except those that fall between l1 and l2.
For AGV sequence A and AGV speed sequence V, we propose a

crossover operator. The new crossover operator is shown in Fig. 7.
Detailed steps of the proposed crossover are as follows.

Step 1: Divide both the AGV sequence and the AGV speed
sequence into n (equal to the number of jobs) segments. Ran-
domly generate two integers h1 and h2 that meet the inequality
0 < h1 < h2 ≤ n.

Step 2: Insert segment gene h1 in parent PA1 into offspring A2
at the position of segment h2. Insert segment gene h2 in parent
PA1 into offspring A2 at the position of segment h1. All genes
in PA2 are copied to A2 at the same positions except those in
segments h1 and h2. Likewise, insert segment gene h1 in parent
PV1 into the offspring V2 at the position of h2. Insert segment
ene h2 in parent PV1 into the offspring V2 at the position of h1.
ll genes in PV2 are copied to V2 at the same positions except for
hose in segments h1 and h2.

Step 3: Insert segment gene h1 in parent PA2 into offspring

1 at the position of segment h2. Insert the segment gene h2 in
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Fig. 5. A crossover example for the operation sequence.
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Fig. 6. A crossover example for the machine speed sequence.

parent PA2 into the offspring A1 at the position of segment h1.
ll genes in PA1 are copied to A1 at the same positions except
hose in segments h1 and h2. Likewise, insert the segment genes
1 in parent PV2 into offspring V1 at the position of segment h2.
nsert the segment gene h2 in parent PV2 into offspring V1 at the
osition of segment h1. All genes in PV1 are copied to V1 at the
ame positions except for those in segments h1 and h2.

.4. Mutation

For each individual obtained via the crossover operators, mu-
ation is executed for the four parts with a pre-defined probability
R. There are many kinds of mutation operators in the literature,
uch as uniform and nonuniform mutation [58], Gaussian muta-
ion [59], and polynomial mutation [60]. Some infeasible offspring
olutions may be generated when these mutation strategies are
pplied to integer-encoded scheduling problems. Repair oper-
tions are therefore needed to make these offspring solutions
9

feasible. As a result, these repair operations inevitably increase
the computation time.

In contrast, point mutation strategies [61], such as single-point
mutation, two-point mutation and multipoint mutation, can be
applied directly to integer-encoded scheduling problems. When
these point mutation strategies are applied in our EJSP-AGVs, the
offspring solutions are always feasible. Through some preliminary
experiments, we found that the performance of EMOEA with two-
point mutation was better than that of EMOEA with other point
mutation strategies. Therefore, considering both calculation time
and performance, we chose two-point mutation in this work. The
mutation points were generated randomly to maintain the diver-
sity of the offspring population. Detailed steps of the mutation
operator are as follows.

Step 1: Randomly generate two integers g1 and g2 that meet
he inequality 0 < g1 < g2 < LS, where LS is the length of
he operation sequence or machine speed sequence. Randomly
enerate two integers j1 and j2 that meet the inequality 0 < j1 <

2 ≤ n, where n is the number of jobs.
Step 2: For a parent operation sequence, swap the genes at po-

itions g1 and g2. Likewise, in a parent machine speed sequence,
wap the genes at positions g1 and g2.
Step 3: For a parent AGV sequence, swap the segment gene

1 and the segment gene j2. Likewise, for a parent AGV speed
equence, swap the segment gene j1 and the segment gene j2.
ig. 8 shows an example of mutation for AGV and AGV speed
equences.
After the crossover and mutation operators, a new population
was obtained. To obtain an elitist population, population Q was
erged with population P and evaluated by nondominated sort-

ng. N best solutions were selected from the evaluated population
o generate a population H.
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Fig. 8. An example of mutation for the AGV and AGV speed sequences.
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.5. Opposition-based learning

We adopted OBL in the EMOEA to improve its search ability.
his was helpful because OBL can learn from the opposite direc-
ion of the current search space and obtain opposite solutions
n an unknown search space [62]. Many studies have reported
hat OBL helps algorithms achieve a balance between exploration
global search) and exploitation (local search)
63–65]. The basic definition of OBL-based optimization is as
ollows.

efinition 1 (Opposite Solution). Assuming that there is an Le-
imensional solution π = [π (1) , π (2) , . . . , π (s) , . . . , π (Le)]
n search space Ω, each dimension variable of π is updated
y Eq. (28) to obtain the opposite solution π ′.
′ (s) = θ (ls + us) − π (s) (28)

here θ is a generalization coefficient and obeys the uniform
istribution of [0,1]; ls and us are the lower and upper limits of
he sth dimension variable, respectively.

efinition 2 (OBL-based Optimization). Solution π and its opposite
olution π ′ are evaluated by a specified evaluation approach. The
ollowing three cases should be considered to obtain a better
olution:

• If π is better than π ′, π will be retained, and π ′ will be
discarded from the current population.

• If π ′ is worse than π , π ′ will be retained, and π will be
discarded from the current population.

• If π and π ′ have the same evaluation performance, one of π
and one of π ′ will be retained.

new population, which contains several better solutions, can
e obtained via the OBL strategy. In this work, each solution
ontained four different parts. The four parts in one solution had
ifferent lower and upper limits for each variable. Therefore, we
eeded to conduct OBL on the four parts separately. Since OBL
ould increase computing time, we only performed OBL on the
est r × N individuals, where r is the rate of solutions executing
10
BL. Details of the OBL strategy for the EJSP-AGVs are shown in
lgorithm 2.

.6. External archive technique

External archiving is a common technique in many multiob-
ective algorithms [55]. This mechanism stores the elite solutions
ound in each generation of population NP. It involves the con-
truction of the initial external archive (E1) and the update of the
xternal archive (E).

.6.1. Construction of the initial external archive
In the first generation, the initial external archive was con-

tructed as follows.
Step 1: Create an empty external archive E1

= ∅ and set Emax
s the maximum number of solutions it can accommodate.
Step 2: Evaluate and rank all the solutions in the current

opulation NP by the nondominated sorting method. If Emax ≥ N ,
ll the solutions in population NP are added to the empty external
rchive and construct an initial external archive E1; otherwise,
he first Emax solutions in population NP are added to the empty
xternal archive and form a full number of initial external archive
1.

.6.2. Update of external archive
For the subsequent generation, it was necessary to update and

aintain E. Nondominated sorting and crowding distance [66]
ere used to maintain E. Each solution πi(i = 1, 2, . . . ,N) in
he current population NP was compared with each solution eh
(h = 1, 2, . . . , Emax) in current E to determine whether it could
be added to E. To update E, we considered the following cases:

1. If πi cannot dominate any eh, πi is not allowed to be added
into E.

2. If πi can dominate several eh, πi will be added to E and
these solutions eh dominated by πi are discarded from E.

3. If the number of solutions in E is larger than Emax, the most
crowded solutions are removed. This operation is repeated
until the number of solutions in E is equal to Emax. Then, a
new E is generated.
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4.7. Framework of the EMOEA

Based on the above main processes, the overall framework
f the EMOEA for the EJSP-AGVs can be summarized as follows.
ig. 9 shows the flowchart of the EMOEA.
Step 1: Initialize and encode the population P. Set relevant

lgorithm parameters and termination conditions. Set an empty
nitial external archive E1

= ∅.
Step 2: Decode the individuals in population P. Calculate the

three objective function values of each solution individual by
Formulas (2)–(4). Evaluate and rank all current individuals by the
nondominated sorting method.

Step 3: Randomly select two individuals from the current
population P and conduct the three types of crossover operators
with probability CR. Repeat the crossover operation N/2 times (N
is the size of population P) and obtain a crossover population.

Step 4: Execute the mutation operator for each individual in
the obtained crossover population with probability MR. A new
population Q is obtained after the application of this mutation
operator.

Step 5: Merge P and Q to obtain a combined population H.
valuate and rank all individuals in H by nondominated sorting.
elect the best r × N individuals from the evaluated H and then
erform the OBL strategy on them to obtain a population R.
Step 6: Merge H and R to obtain a combined population
. Evaluate and rank all individuals in W and select N best

ndividuals to obtain a new population NP.
Step 7: If it is the first generation, construct the initial external

archive E1; otherwise, perform the update the external archive E.
Step 8: If the termination condition (maximum iteration gen-

eration or maximum computation time) is met, output the solu-
tion individuals in an external archive; otherwise, return the new
population NP to Step 2.

5. Experiments and result analysis

We first constructed 75 benchmark instances for the exper-
iments in this study. In this section, the details of how these
instances were constructed are first provided, following which we
introduce the two performance metrics used in our study. Then,
we discuss the six sets of experiments that were conducted to
perform experimental evaluation. The first sets of experiments
was used to obtain the best combination of key parameters for
the EMOEA based on 6 selected instances with different scales.
The second sets of experiments was conducted to validate our
proposed model via 9 small-scale instances and 3 large-scale
11
Fig. 9. The framework of the EMOEA.

instances. The third sets of experiments was used to discuss
the effect of AGV quantity configuration on production system
performance based on all 75 instances. The fourth sets of exper-
iments was conducted to discuss the effect of the OBL strategy
based on 30 selected instances with different scales. The fifth
sets of experiments was executed on all 75 instances to assess
the performance of EMOEA in comparison with three other well-
known algorithms. Finally, the sixth sets of experiments was
carried out to test the proposed model and algorithm on a real-
world case. All the relevant algorithms were coded in MATLAB
R2014a and conducted on a computer with an Intel Core i7 CPU
of 4.00 GHz and 16.0 GB RAM. All algorithms were independently
repeated 30 times for each instance because of the stochastic
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Table 1
The maximum number of AGVs for each type of instance.
n×m 3 × 3 6 × 6 10 × 10 20 × 10 30 × 10

Maximum number of AGVs 10 10 10 20 25

nature of the algorithms. The mean of 30 runs was deemed the
final result.

5.1. Benchmark generation

We randomly constructed five types of benchmark instances
ased on different scales of jobs and machines. We used n×m

to represent the scale of each type of instance, where n is the
umber of jobs and m is the number of machines. In this work,
he five types of instances included 3× 3, 6× 6, 10× 10, 20× 10
nd 30 × 10. We configured each type of instance with a different
umber of AGVs. Table 1 shows the maximum number of AGV
onfigurations for each type of instance. In total, there were 75
nstances, including instances 01–10 based on 3 × 3, instances
1–20 based on 6 × 6, instances 21–30 based on 10 × 10,
nstances 31–50 based on 20 × 10 and instances 50–75 based on
0 × 10. We used n × m × a to denote each instance, in which
is the number of AGVs.
For each instance, the basic processing time of each oper-

tion was generated from the uniform distribution U[10, 100].
he machine processing speed for each operation was set to
ive levels, v = {v1, . . . , v5} = {1, 1.25, 1.5, 1.75, 2.0}. The
rocessing power consumption of machine k was obtained by
kl = ϕk × v2

l , in which l = 1, 2, . . . , 5 and ϕk, i.e., the power
onsumption coefficient of machine k, was generated from the
niform distribution U[5, 10]. The stand-by power consumption
or machine k was set as PSk = ϕk/4. The SDST of each machine
or processing two adjacent jobs was generated from the uniform
istribution U[10, 50]. The setup power consumption for machine
was PSTk = ϕk/2. For each AGV, the transport speed was

elected from V = {V1, V2, V3} = {0.5, 0.75, 1}. The transport
ower consumption of AGV h was calculated as PAhr = ϵh × V 2

r ,
here r = 1, 2, 3 and ϵh, i.e., the power consumption coefficient
f AGV h was generated from the uniform distribution U[3, 5].
he stand-by power consumption for AGV h was set as PASh =

h/2. The machines in the intelligent job shop were arranged in
‘U’ shape, in a clockwise direction, as shown in Fig. 10, where

he machines are regarded as particles. We assumed that AGVs
ould transport the jobs according to the shortest straight-line
istance between two positions. All the relevant distances can be
alculated by the layout in Fig. 10.
All benchmark instances constructed in this paper are avail-

ble from https://github.com/hlj290612/EJSP-AGVs.

.2. Performance metrics

To effectively evaluate the performance of different algo-
ithms, we adopted the Hypervolume (HV) [1,53,55] and C-metric
1,55] as performance metrics.

1. HV. The HV is a comprehensive indicator that calculates
the cumulative normalized volume covered by a solution
set in comparison with a given reference point. A greater
HV value represents a better convergence and diversity of
a solution set. The HV is defined as follows:

HV (A, q) = volume(UX∈A[f1 (X) , q1] × · · · × [fM (X) , qM ])
(29)

where A is an obtained solution set and q = (q1, q2, . . . , qM )
is the HV reference point. M is the number of objectives.
12
2. C-metric. The C-metric is an indicator that reflects the
dominance relationship between two solution sets: A and
B. C(A, B) represents the percentage of the solutions in B
that are dominated by at last one in A. C(A, B) is calculated
as follows:

C (A, B) =
|{X2 ∈ B|∃X1 ∈ A, X1 dominates X2}|

|B|
(30)

where C(A, B) = 0 means that no solution in B is dominated
by any solutions in A, while C(A, B) = 1 means that all
solutions in B are dominated by solutions in A.

5.3. Parameter tuning

The proposed EMOEA had four key parameters: the population
size N, the crossover rate CR, the mutation rate MR and the rate of
population individuals executing OBL r. Taguchi analysis [67] was
used to obtain the best combination of these parameters based on
six selected instances, i.e., instances 12, 15, 22, 25, 52 and 55. We
set each parameter to five levels, i.e., N = [30, 60, 90, 120, 150],
CR = [0.1, 0.3, 0.5, 0.7, 0.9], MR = [0.1, 0.3, 0.5, 0.7, 0.9] and
r = [0.2, 0.4, 0.6, 0.8, 1]. Given that the HV is a compressive
indicator, the mean values of the best HV results in ten indepen-
dent runs were used to choose the parameter combination. Fig. 11
presents the trend of each factor level.

As shown in Fig. 11, the EMOEA obtained the best HV results
when N was set to 60 or 90. Considering the computational time,
we selected N = 60 for the EMOEA. For CR, we observed that
the EMOEA achieved the best HV results on all instances except
instances 22 and 25, when CR = 0.8. We therefore chose CR = 0.8
for the EMOEA. For MR, the EMOEA obtained the best HV results
on all instances (except instance 55) when MR = 0.5. Therefore,
we set MR to 0.5 for the EMOEA. For r, we can observe that when
r = 0.2, the EMOEA obtained the best HV results on all selected
instances. Therefore, we chose r = 0.2 for the EMOEA.

5.4. Validation of the proposed model

To validate the proposed model, we used the IBM ILOG CPLEX
12.6.3 solver to obtain the optimal (three) objective values on
some selected instances. We did so using the method in [68].
We first optimized f 1 to obtain an optimal solution. Then, we
calculated the objective values for f 2 and f 3 based on the optimal
solution for f 1 from CPLEX using Eqs. (2)–(4). These three ob-
jective values were compared to those obtained by our proposed
EMOEA.

Table 2 reports the solution results and computation time
(CT) of CPLEX and EMOEA for these instances. We can observe
from Table 2 that CPLEX solved instances 01, 03, 05, 11, 13,
15, 21, 23 and 25 within 1 h. However, when the problem size
increased (e.g., instances 31, 33 and 35), CPLEX took much more
time (more than 2 h) to obtain the optimal results. Our EMOEA
was able to solve all of the selected instances. Furthermore, while
CPLEX outperformed the EMOEA in terms of f 1 on all 12 selected
instances, the latter was able to outperform CPLEX in regard to f 2
(except instance 03) and f 3. It should be noted that the solutions
of CPLEX and EMOEA did not dominate each other.

Additionally, we input the solutions obtained by CPLEX on
six small-sized instances into the EMOEA’s mathematical model
and compared the three objective function values obtained by
both the EMOEA and CPLEX. As shown in Table 3, the objective
function values obtained by the EMOEA were exactly the same as
those of CPLEX. Hence, the objective functions and constraints in

our mathematical model were validated.

https://github.com/hlj290612/EJSP-AGVs
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Fig. 10. The layout of an intelligent job shop.
Fig. 11. The trend of factor levels for key parameters.
Table 2
Solution results obtained by the CPLEX solver and EMOEA.
Inst. Size (n × m × a) CPLEX EMOEA

f 1 f 2 f 3 CT (s) f 1 f 2 f 3 CT (s)

01 3 × 3 × 1 531 515 7986 43 562 506 7666 110
03 3 × 3 × 3 380 208 7520 40 402 224 7485 124
05 3 × 3 × 5 358 198 7123 52 375 185 6968 118
11 6 × 6 × 1 1453 3137 27182 234 1542 3043 26195 440
13 6 × 6 × 3 856 1670 24565 257 902 1569 23454 398
15 6 × 6 × 5 812 1185 27892 235 845 1072 27009 462
21 10 × 10 × 1 3838 21182 112375 1705 4042 20023 103480 1688
23 10 × 10 × 3 2362 13772 82745 1824 2450 12034 81884 2015
25 10 × 10 × 5 1610 6012 94775 2076 1722 5851 92869 1942
31 20 × 10 × 1 5290 33355 221890 9565 5320 31461 207129 3458
33 20 × 10 × 3 3872 25467 217854 9762 3913 21088 195086 3604
35 20 × 10 × 5 3003 13245 202078 11016 3096 11674 176826 3887

Note: best results are marked in bold for each instance.
13
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Fig. 12. Curves of the mean objective values on five types of instances with different numbers of AGVs.
Table 3
Instances for which the CPLEX solver and EMOEA generated the same solutions.
Inst. Size (n × m × a) CPLEX EMOEA

f 1 f 2 f 3 f 1 f 2 f 3

01 3 × 3 × 1 531 515 7986 531 515 7986
03 3 × 3 × 3 380 208 7520 380 208 7520
05 3 × 3 × 5 358 198 7123 358 198 7123
11 6 × 6 × 1 1453 3137 27182 1453 3137 27182
13 6 × 6 × 3 856 1670 24565 856 1670 24565
15 6 × 6 × 5 812 1185 27892 812 1185 27892
14
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Fig. 13. Mean and standard deviation results of HV on five types of instances with different numbers of AGVs.
5.5. Effect of AGV quantity configuration on system performance

To study how many AGVs should be configured to achieve
the best performance of the production system, we used the
EMOEA to solve each type of instance with different numbers
of AGVs. A total of 30 independent runs were conducted for
each instance. In each run, we calculated the mean values of the
three objectives for the obtained solution set. Then, the mean of
the mean values of the three objectives for the 30 independent
runs for each instance was obtained. Additionally, the mean and
standard deviation of the HV results were calculated for each
type of instance with different numbers of AGVs. By analyzing
the change in trends of the mean objective values and the means
and standard deviations of HV, we wanted to determine how
many AGVs can be configured to maximize the performance of
the production system. Fig. 12 shows the curves of the mean
objective values on five types of instances with different numbers
of AGVs. In Fig. 12, the y-axis on the left represents the makespan
and total idle time, and the y-axis on the right represents the
total energy consumption. Fig. 13 depicts the mean and standard
deviation results of HV on five types of instances with different
numbers of AGVs.
15
Fig. 12(a)–(f) show that, for each type of instance, the makespan
and total idle time generally decreased as the number of AGVs
increased, and finally remained at a relatively stable value. How-
ever, there were some small fluctuations. With the increase in
the number of AGVs, the total energy consumption was first
reduced to an extreme point and then increased slightly. The
reasons behind this result may be as follows. First, more AGVs
can transport more jobs, which can reduce the waiting time of
jobs and machines. Therefore, the makespan and total idle time
are significantly reduced with an appropriate number of AGVs.
Second, when the number of AGVs increases beyond a certain
level, the redundant AGVs cannot transport more jobs, which
means that the makespan and total idle time cannot be further
reduced. Third, redundant AGVs may result in some idle waiting
time for AGVs, which will consume a certain amount of energy.
Fig. 12(a)–(f) reveal that, to achieve better performance, more
AGVs need to be configured in the system as the size of instances
increases. In particular, the production system can achieve better
and more balanced performance when 5, 6, 8, 15 and 18 AGVs
are configured for the corresponding five types of instances.
Likewise, for each type of instance, we can observe from Fig. 13
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Fig. 14. Pareto fronts of the four algorithms on five selected instances.
hat the mean HV results increased with the increase in the
umber of AGVs. Then, there was a slight decrease after the HV
eached the maximum mean value. The results in Fig. 13 imply
hat properly increasing the number of AGVs can improve the
erformance of the production system, but after the number of
GVs increases beyond a certain extent, the system performance
s not significantly improved. As expected, the conclusion drawn
rom Fig. 13 was consistent with that from Fig. 12.

.6. Effect of the OBL strategy

To investigate the effect of the OBL strategy, we conducted
performance comparison between the proposed EMOEA with
nd without OBL. We denoted the proposed EMOEA without
BL as EMOEAno. The only difference between the EMOEA and

EMOEAno is the OBL strategy. Due to space constraints, for each
type of instance, six subinstances with a different number of AGVs
were selected to conduct this comparison experiment. For the
EMOEA and EMOEAno, the average of 30 independent runs on
each instance was used as the final result. The statistical metric
results of HV and C-metric for the EMOEA and EMOEAno can be
found in Table 4. Due to the stochastic nature of these MOEAs,
statistical tests should be carried out to ascertain the significance
of the results. To this end, a nonparameter statistical significance
test method, i.e., the Wilcoxon sign rank test at a significance
level of 0.05 was used to analyze the statistical significance of
the results obtained by the EMOEA and EMOEAno. The test results
are shown as ‘‘+’’, ‘‘−’’, or ‘‘=’’ in Table 4 to denote when the
EMOEA is significantly better than, significantly worse than, or
statistically equivalent to EMOEAno, respectively.

In terms of HV, we can observe from Table 4 that the EMOEA
performed significantly better than EMOEAno in 24 instances,
worse than EMOEAno in 2 instances, and equivalent to EMOEAno

in 2 instances. For the C-metric, we can see that the EMOEA
performed better than EMOEAno on all 28 instances. The results in
Table 4 clearly demonstrate that the OBL strategy was very use-
ful in improving the convergence and diversity of the proposed

EMOEA.

16
5.7. Comparison with existing algorithms

To evaluate the performance of the EMOEA, we compared
it with three well-known algorithms, namely, the SPEA-II [69],
NSGA-II [66] and MOEA/D [70]. The reasons for selecting these
three algorithms for comparisons were as follows. First, all four
algorithms have a similar structure, since they are based on a GA
framework. Second, the SPEA-II, NSGA-II and MOEA/D are popular
algorithms that are often used as baseline algorithms to verify the
performance of new algorithms. For each algorithm, the average
of 30 independent runs on each instance was used as the final
result.

The SPEA-II, NSGA-II and MOEA/D utilized the simulated bi-
nary crossover and polynomial mutation, and the population size
of MOEA/D was dependent on the number of reference points.
In our experiments, the Tchebycheff approach [70] was selected
as the scalarizing function for the MOEA/D. The parameters of
the three algorithms were calibrated using the method described
in Section 5.3. Due to space constraints, we report only the
parameter values of these three algorithms in Table 5. The same
encoding, decoding, computational time limit and HV reference
point that were applied to the EMOEA were applied to all three al-
gorithms. Furthermore, the OBL strategy and the external archive
were integrated in all four algorithms to output the final solution
set that was used for computing the performance measures.

Tables 6 and 7 show the mean and standard deviation val-
ues for the HV and C-metric obtained by the four algorithms.
Wilcoxon sign rank tests at a significance level of 0.05 were
used to analyze the statistical significance of the results obtained
by these algorithms. In Table 6, we observe that the EMOEA
performed significantly better than the other three algorithms on
all 75 instances in terms of HV. In Table 7, with respect to the
C-metric, we see that the EMOEA was significantly better than
the SPEA-II, NSGA-II and MOEA/D. On most large-sized instances,
the C-metric values for the EMOEA were equal to 1, which means

that the EMOEA had at least one solution that dominated all of the
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Fig. 15. Gantt charts obtained by the EMOEA on two selected instances.
(

olutions obtained by the other three algorithms (SPEA-II, NSGA-II
nd MOEA/D).
To visualize the Pareto fronts of the four algorithms, we chose

ive instances under different scales (i.e., instances 02, 12, 22, 32
nd 55) from the tested instances. Fig. 14 presents the Pareto
ronts of the four algorithms, in which we observe that the solu-
ions obtained by the EMOEA were closer to the coordinate origin.
his means that the EMOEA had better convergence performance
nd that the solution set of the EMOEA had a higher probability
f dominating those of SPEA-II, NSGA-II and MOEA/D.
Fig. 15 presents two Gantt charts obtained by the EMOEA

n two selected instances (i.e., instances 02 and 03) with the
ame number of jobs and the same number of machines. We can
bserve that the makespan of instance 03 was shorter than that
f instance 02—implying that properly increasing the number of
GVs can shorten the waiting time of machines and improve the
roduction efficiency.

.8. A real-world case study

.8.1. Case introduction
In this final series of experiments, a real-world intelligent

anufacturing workshop integrated with AGVs for producing the
omponents of security monitoring robots at a Chinese com-
any was used to test the proposed mathematical model and
17
algorithm. The layout of the intelligent manufacturing workshop
is shown in Fig. 16. The functional areas are divided into five
parts, namely, the central control room, manufacturing area, AGV
transportation area, AGV charging area and automatic warehouse
area. MW and PW are in the automatic warehouse. The dotted
line in Fig. 16 represents the AGV transport track. The area of
the intelligent manufacturing workshop is 33*14 (m2). In this
workshop, there are 6 manufacturing cells (MCs), each of which
contains a CNC machining machine and several setup devices,
such as robot arms for loading and unloading jobs. Several AGVs
are used to transport jobs in this workshop. Each CNC machine
has five processing speeds, and each AGV has three kinds of
transportation speeds. Some important parts of the security mon-
itoring robots, such as their shell, chassis and wheel, can be
processed in this intelligent manufacturing workshop.

Fig. 17 shows a real-world security monitoring robot and
its wheels. In a certain period, five robot wheels with differ-
ent sizes need to be processed. Each robot wheel has 6 opera-
tions, i.e., (1) cutting → (2) turning → (3) coarse grinding →

4) drilling → (5) tapping → (6) fine grinding. Due to the
differences in size and weight, the processing time for the op-
erations of different wheels is different. There is SDST when a
machine processes two different robot wheels. Two AGVs are
used to transport the raw materials of the robot wheels. The data
related to this real-world case can be found at https://github.com/

hlj290612/EJSP-AGVs.

https://github.com/hlj290612/EJSP-AGVs
https://github.com/hlj290612/EJSP-AGVs
https://github.com/hlj290612/EJSP-AGVs
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Table 4
Performance comparison between the EMOEA and EMOEAno .
Inst. Size (n × m × a) HV C-metric

EMOEA EMOEAno EMOEA EMOEAno

02 3 × 3 × 2 1.1293 (0.2077) 0.9174 (0.2557) + 0.4780 (0.0949) 0.1300 (0.0567) +

03 3 × 3 × 3 1.1109 (0.1618) 1.1214 (0.2612) − 0.3050 (0.0657) 0.3250 (0.0140) −

04 3 × 3 × 4 1.1927 (0.0666) 0.9977 (0.0844) + 0.5050 (0.0358) 0.0886 (0.0400) +

05 3 × 3 × 5 1.1190 (0.1215) 1.1401 (0.1465) − 0.1254 (0.0486) 0.2200 (0.0632) −

06 3 × 3 × 6 1.2003 (0.0468) 1.1960 (0.1233) = 0.3545 (0.0680) 0.1125 (0.0316) +

08 3 × 3 × 8 1.1818 (0.0684) 1.1844 (0.1247) = 0.2234 (0.0532) 0.1333 (0.0675) +

12 6 × 6 × 2 1.1582 (0.1065) 0.7572 (0.1530) + 0.5950 (0.0411) 0.1228 (0.0315) +

13 6 × 6 × 3 1.2229 (0.2346) 0.9873 (0.1984) + 0.6982 (0.0822) 0.0835 (0.0264) +

14 6 × 6 × 4 1.3013 (0.1988) 1.0236 (0.2225) + 0.7230 (0.0775) 0.1456 (0.0660) +

15 6 × 6 × 5 1.3128 (0.0985) 1.1075 (0.1452) + 0.7658 (0.0840) 0.1675 (0.0802) +

16 6 × 6 × 6 1.2007 (0.1234) 0.9877 (0.0980) + 0.6873 (0.0805) 0.0879 (0.0633) +

18 6 × 6 × 8 1.1973 (0.1560) 0.9552 (0.0766) + 0.7055 (0.0772) 0.1238 (0.0555) +

22 10 × 10 × 2 1.3337 (0.0850) 1.1286 (0.0965) + 0.5776 (0.6262) 0.1007 (0.0478) +

23 10 × 10 × 3 1.2095 (0.0777) 1.2100 (0.0734) = 0.3090 (0.0578) 0.2796 (0.0600) +

24 10 × 10 × 4 1.2456 (0.0986) 1.1875 (0.0589) + 0.4899 (0.0457) 0.1005 (0.0384) +

25 10 × 10 × 5 1.1987 (0.0685) 1.1942 (0.0600) = 0.3630 (0.0450) 0.2264 (0.0382) +

26 10 × 10 × 6 1.2021 (0.0778) 1.1456 (0.0686) + 0.5678 (0.0560) 0.0923 (0.0278) +

28 10 × 10 × 8 1.3168 (0.2437) 1.0133 (0.1686) + 0.7754 (0.0820) 0.2000 (0.1204) +

32 20 × 10 × 2 1.2871 (0.1345) 0.9890 (0.2003) + 0.7658 (0.0923) 0.0939 (0.0677) +

35 20 × 10 × 5 1.3332 (0.0768) 1.1248 (0.1034) + 0.6895 (0.0720) 0.1156 (0.0823) +

36 20 × 10 × 6 1.2896 (0.1132) 1.0989 (0.1236) + 0.7347 (0.0688) 0.0899 (0.0674) +

38 20 × 10 × 8 1.3478 (0.1364) 1.1057 (0.0987) + 0.7256 (0.0934) 0.1237 (0.0845) +

42 20 × 10 × 12 1.2780 (0.1562) 1.1345 (0.1256) + 0.6917 (0.0856) 0.1073 (0.0766) +

45 20 × 10 × 15 1.3567 (0.0978) 1.0785 (0.1116) + 0.7451 (0.0923) 0.1366 (0.0688) +

53 30 × 10 × 3 1.2980 (0.0895) 1.1037 (0.0989) + 0.7377 (0.1010) 0.0944 (0.0457) +

55 30 × 10 × 5 1.3620 (0.1234) 1.1567 (0.1569) + 0.7878 (0.0976) 0.0867 (0.0440) +

58 30 × 10 × 8 1.2477 (0.1117) 1.1010 (0.0987) + 0.7670 (0.0854) 0.0888 (0.0388) +

60 30 × 10 × 10 1.3619 (0.1566) 1.1198 (0.1045) + 0.8700 (0.0678) 0.1023 (0.0582) +

62 30 × 10 × 12 1.3684 (0.1405) 1.0987 (0.1720) + 0.8234 (0.0701) 0.0912 (0.0455) +

65 30 × 10 × 15 1.3572 (0.1380) 1.1672 (0.1556) + 0.7893 (0.0688) 0.0845 (0.0387) +

Note: best results are marked in bold for each instance.
Table 5
Parameter values for the three competing algorithms.
Algorithm Parameter value

SPEA-II N = 60, CR = 0.8, MR = 0.3, ηc = 20, ηm = 20
NSGA-II N = 50, CR = 0.9, MR = 0.2, ηc = 20, ηm = 10
MOEA/D N = 91, CR = 0.7, MR = 0.3, ηc = 20, ηm = 20, T = 15

ηc : distribution index in simulated binary crossover; ηm: distribution index in polynomial mutation;
T : neighborhood size.
Fig. 16. The layout of an intelligent manufacturing workshop integrated with AGVs.
5.8.2. Result discussion
We used the SPEA-II, NSGA-II, MOEA/D and EMOEA to solve

this real-world case. Tables 8 and 9 present the mean and stan-
dard deviation values of HV and the C-metric for the four al-
gorithms on this real-world case. Wilcoxon sign rank tests at
a significance level of 0.05 were used to analyze the statistical
18
significance of the results obtained by these algorithms. We can
observe from the tables that the EMOEA performed significantly
better than the SPEA-II, NSGA-II and MOEA/D. From Fig. 18, it can
be seen that the solution set of the EMOEA was able to dominate
those of SPEA-II, NSGA-II and MOEA/D.
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Table 6
Mean and standard deviation values of HV with the SPEA-II, NSGA-II, MOEA/D and EMOEA.
Inst. Size (n × m × a) HV

SPEA-II NSGA-II MOEA/D EMOEA
Mean (std) Mean (std) Mean (std) Mean (std)

01 3 × 3 × 1 0.6814 (0.2020) + 0.7713 (0.1987) + 1.0855 (0.1579) + 1.6831 (0.0298)
02 3 × 3 × 2 1.1764 (0.0782) + 1.0757 (0.0934) + 1.4296 (0.0654) + 1.6452 (0.0370)
03 3 × 3 × 3 1.1548 (0.1122) + 1.0429 (0.0879) + 1.2357 (0.0920) + 1.6814 (0.0300)
04 3 × 3 × 4 1.2978 (0.1904) + 1.2681 (0.2021) + 1.2151 (0.1897) + 1.6525 (0.0425)
05 3 × 3 × 5 1.0762 (0.2345) + 1.1922 (0.1872) + 1.2368 (0.2675) + 1.4177 (0.1236)
06 3 × 3 × 6 1.2560 (0.2252) + 1.3148 (0.1655) + 1.4238 (0.1600) + 1.6410 (0.0660)
07 3 × 3 × 7 1.3328 (0.1277) + 1.3770 (0.1808) + 1.3815 (0.2004) + 1.6573 (0.0484)
08 3 × 3 × 8 1.4044 (0.1435) + 1.3975 (0.1560) + 1.4124 (0.1878) + 1.6086 (0.0782)
09 3 × 3 × 9 1.2821 (0.1876) + 1.3325 (0.1764) + 1.2442 (0.1872) + 1.4592 (0.1635)
10 3 × 3 × 10 1.1953 (0.2022) + 1.2023 (0.1846) + 1.2217 (0.2350) + 1.6250 (0.0765)
11 6 × 6 × 1 0.5148 (0.2567) + 0.4616 (0.3027) + 0.4468 (0.2650) + 1.6844 (0.0307)
12 6 × 6 × 2 0.5681 (0.0920) + 0.5426 (0.1034) + 0.6699 (0.0877) + 1.6200 (0.0771)
13 6 × 6 × 3 0.7475 (0.3023) + 0.7124 (0.2855) + 0.8796 (0.1843) + 1.6684 (0.0562)
14 6 × 6 × 4 0.6697 (0.3425) + 0.7984 (0.2873) + 0.8994 (0.2034) + 1.6806 (0.0387)
15 6 × 6 × 5 0.6790 (0.2568) + 0.6100 (0.3333) + 0.9073 (0.2452) + 1.6552 (0.0472)
16 6 × 6 × 6 0.9467 (0.1935) + 0.9186 (0.2456) + 0.8512 (0.3012) + 1.6235 (0.0733)
17 6 × 6 × 7 0.9173 (0.2436) + 0.8368 (0.2785) + 1.0194 (0.2020) + 1.6811 (0.0320)
18 6 × 6 × 8 0.9840 (0.2612) + 1.0233 (0.1763) + 1.1058 (0.1580) + 1.6662 (0.0455)
19 6 × 6 × 9 0.9519 (0.2318) + 0.8065 (0.2276) + 1.0961 (0.1670) + 1.6374 (0.0623)
20 6 × 6 × 10 0.9793 (0.1923) + 0.8842 (0.2450) + 1.2664 (0.1781) + 1.6646 (0.0500)
21 10 × 10 × 1 0.2766 (0.1555) + 0.3585 (0.1880) + 0.2480 (0.1345) + 1.7000 (0.0202)
22 10 × 10 × 2 0.5088 (0.1345) + 0.4897 (0.2002) + 0.5966 (0.2430) + 1.6553 (0.0844)
23 10 × 10 × 3 0.5640 (0.2020) + 0.6623 (0.1654) + 0.5095 (0.2114) + 1.6647 (0.0357)
24 10 × 10 × 4 0.6721 (0.1890) + 0.7345 (0.2300) + 0.7118 (0.1964) + 1.6271 (0.0723)
25 10 × 10 × 5 0.6884 (0.2345) + 0.9532 (0.1893) + 0.7930 (0.2416) + 1.6845 (0.0377)
26 10 × 10 × 6 0.8105 (0.2404) + 0.6497 (0.2020) + 0.7511 (0.3030) + 1.6211 (0.0416)
27 10 × 10 × 7 0.7560 (0.2121) + 0.6767 (0.1734) + 0.7272 (0.2842) + 1.6472 (0.0626)
28 10 × 10 × 8 0.6945 (0.3456) + 0.6820 (0.2034) + 0.7878 (0.1985) + 1.6565 (0.0512)
29 10 × 10 × 9 0.7546 (0.2567) + 0.6735 (0.1456) + 0.8856 (0.2455) + 1.6630 (0.0481)
30 10 × 10 × 10 0.8130 (0.2045) + 0.8278 (0.1987) + 0.7266 (0.1883) + 1.6845 (0.0233)
31 20 × 10 × 1 0.3619 (0.2278) + 0.4856 (0.1780) + 0.3759 (0.2455) + 1.7000 (0.0155)
32 20 × 10 × 2 0.3563 (0.2500) + 0.5074 (0.1578) + 0.3188 (0.2876) + 1.6480 (0.0622)
33 20 × 10 × 3 0.8294 (0.3205) + 0.8192 (0.2260) + 0.6785 (0.3651) + 1.6774 (0.0405)
34 20 × 10 × 4 0.6445 (0.2670) + 0.6170 (0.3345) + 0.5008 (0.2711) + 1.6822 (0.0277)
35 20 × 10 × 5 0.5267 (0.3033) + 0.6338 (0.2761) + 0.4293 (0.3730) + 1.6511 (0.0333)
36 20 × 10 × 6 0.5836 (0.2876) + 0.6124 (0.2520) + 0.5864 (0.3025) + 1.6464 (0.0555)
37 20 × 10 × 7 0.6730 (0.2871) + 0.6872 (0.1911) + 0.5587 (0.2238) + 1.6078 (0.0832)
38 20 × 10 × 8 0.5641 (0.2235) + 0.6552 (0.2048) + 0.5433 (0.3124) + 1.6712 (0.0357)
39 20 × 10 × 9 0.6875 (0.2416) + 0.7777 (0.2519) + 0.7218 (0.2760) + 1.6231 (0.0578)
40 20 × 10 × 10 0.6043 (0.2546) + 0.7245 (0.1897) + 0.6980 (0.3125) + 1.6574 (0.0613)
41 20 × 10 × 11 0.6672 (0.2603) + 0.7904 (0.2134) + 0.6502 (0.2561) + 1.6316 (0.0537)
42 20 × 10 × 12 0.7236 (0.2560) + 0.7022 (0.2367) + 0.6893 (0.3232) + 1.6467 (0.0623)
43 20 × 10 × 13 0.6794 (0.2325) + 0.6880 (0.1907) + 0.6023 (0.2768) + 1.6565 (0.0443)
44 20 × 10 × 14 0.7231 (0.2111) + 0.7015 (0.2236) + 0.6820 (0.3214) + 1.6613 (0.0382)
45 20 × 10 × 15 0.6554 (0.1893) + 0.6907 (0.1900) + 0.5823 (0.2630) + 1.6432 (0.0457)
46 20 × 10 × 16 0.5974 (0.2675) + 0.7680 (0.2572) + 0.6682 (0.3032) + 1.6017 (0.0725)
47 20 × 10 × 17 0.7688 (0.2013) + 0.6896 (0.3030) + 0.7231 (0.2317) + 1.6345 (0.0613)
48 20 × 10 × 18 0.6567 (0.1983) + 0.7562 (0.2784) + 0.5785 (0.3126) + 1.6234 (0.0576)
49 20 × 10 × 19 0.7643 (0.2134) + 0.6785 (0.1985) + 0.6876 (0.2025) + 1.6437 (0.0673)
50 20 × 10 × 20 0.6675 (0.1982) + 0.6680 (0.2345) + 0.5893 (0.1658) + 1.6195 (0.0344)
51 30 × 10 × 1 0.3856 (0.1030) + 0.3987 (0.0935) + 0.2905 (0.1004) + 1.6726 (0.0370)
52 30 × 10 × 2 0.5034 (0.2034) + 0.5567 (0.1456) + 0.3780 (0.1605) + 1.6308 (0.0465)
53 30 × 10 × 3 0.5560 (0.2564) + 0.6054 (0.2552) + 0.4832 (0.2030) + 1.6540 (0.0400)
54 30 × 10 × 4 0.5663 (0.2315) + 0.4975 (0.2316) + 0.4981 (0.1974) + 1.6433 (0.0565)
55 30 × 10 × 5 0.5785 (0.1980) + 0.6767 (0.3210) + 0.7822 (0.2375) + 1.6380 (0.0487)
56 30 × 10 × 6 0.4906 (0.2450) + 0.5785 (0.1985) + 0.6637 (0.2315) + 1.6565 (0.0642)
57 30 × 10 × 7 0.6065 (0.1945) + 0.5983 (0.2023) + 0.4748 (0.2122) + 1.6423 (0.0333)
58 30 × 10 × 8 0.5979 (0.1873) + 0.6545 (0.1783) + 0.7023 (0.1893) + 1.5968 (0.0456)
59 30 × 10 × 9 0.6767 (0.1920) + 0.7056 (0.2121) + 0.5985 (0.1356) + 1.6036 (0.0892)
60 30 × 10 × 10 0.5556 (0.1563) + 0.6784 (0.2035) + 0.5786 (0.2225) + 1.6162 (0.0685)
61 30 × 10 × 11 0.5875 (0.2013) + 0.6845 (0.1874) + 0.4476 (0.1893) + 1.6234 (0.0584)
62 30 × 10 × 12 0.6544 (0.1834) + 0.6756 (0.1935) + 0.8236 (0.2025) + 1.6346 (0.0678)
63 30 × 10 × 13 0.6756 (0.2014) + 0.5879 (0.1734) + 0.6798 (0.2365) + 1.5897 (0.0825)
64 30 × 10 × 14 0.5878 (0.1770) + 0.6568 (0.2121) + 0.5989 (0.2455) + 1.5943 (0.0793)
65 30 × 10 × 15 0.6565 (0.1897) + 0.5560 (0.2020) + 0.4894 (0.1972) + 1.6215 (0.0812)
66 30 × 10 × 16 0.6787 (0.2345) + 0.7834 (0.1876) + 0.5674 (0.2457) + 1.6543 (0.0480)
67 30 × 10 × 17 0.6463 (0.1794) + 0.6907 (0.2561) + 0.7829 (0.1926) + 1.6049 (0.0782)
68 30 × 10 × 18 0.5975 (0.2781) + 0.6819 (0.1189) + 0.6992 (0.3035) + 1.6237 (0.0781)
69 30 × 10 × 19 0.6982 (0.1987) + 0.7793 (0.1846) + 0.7250 (0.2634) + 1.5895 (0.1345)
70 30 × 10 × 20 0.7892 (0.2246) + 0.6892 (0.1937) + 0.6893 (0.2934) + 1.6238 (0.0785)
71 30 × 10 × 21 0.7504 (0.3402) + 0.7763 (0.2562) + 0.6987 (0.2825) + 1.6311 (0.0872)

(continued on next page)
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Table 6 (continued).
Inst. Size (n × m × a) HV

SPEA-II NSGA-II MOEA/D EMOEA
Mean (std) Mean (std) Mean (std) Mean (std)

72 30 × 10 × 22 0.6769 (0.2655) + 0.7500 (0.2432) + 0.7076 (0.1895) + 1.6464 (0.0716)
73 30 × 10 × 23 0.6980 (0.3132) + 0.7872 (0.2675) + 0.6879 (0.2435) + 1.5912 (0.0820)
74 30 × 10 × 24 0.5976 (0.2020) + 0.8345 (0.1936) + 0.7456 (0.3451) + 1.6065 (0.0725)
75 30 × 10 × 25 0.6583 (0.1745) + 0.7256 (0.2567) + 0.6868 (0.2120) + 1.5864 (0.0567)

Note: best results are marked in bold for each instance.
Table 7
Mean and standard deviation values of C-metric with the SPEA-II, NSGA-II, MOEA/D and EMOEA.
Inst. Size (n × m × a) C-metric

SPEA-II (S) v. EMOEA (E) NSGA-II (N) v. EMOEA (E) MOEA/D (M) v. EMOEA (E)

C(S, E) C(E, S) C(N, E) C(E, N) C(M, E) C(E, M)
Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)

01 3 × 3 × 1 0.0000 (0.0000) + 0.9565 (0.0370) 0.0000 (0.0000) + 0.7688 (0.1212) 0.0982 (0.0234) + 0.5896 (0.1290)
02 3 × 3 × 2 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 0.8236 (0.1544) 0.0888 (0.0456) + 0.7344 (0.1606)
03 3 × 3 × 3 0.0000 (0.0000) + 0.9344 (0.0355) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 0.8760 (0.1212)
04 3 × 3 × 4 0.0000 (0.0000) + 0.9022 (0.0425) 0.0000 (0.0000) + 0.9467 (0.0502) 0.1326 (0.0298) + 0.7878 (0.1400)
05 3 × 3 × 5 0.0000 (0.0000) + 0.7898 (0.1034) 0.0000 (0.0000) + 0.8345 (0.0987) 0.0000 (0.0000) + 0.8008 (0.1683)
06 3 × 3 × 6 0.0000 (0.0000) + 0.9480 (0.0467) 0.0000 (0.0000) + 0.8236 (0.1008) 0.1004 (0.0382) + 0.7553 (0.1456)
07 3 × 3 × 7 0.0000 (0.0000) + 0.8085 (0.1323) 0.0988 (0.0123) + 0.6834 (0.1978) 0.1230 (0.0456) + 0.6540 (0.1532)
08 3 × 3 × 8 0.0000 (0.0000) + 0.8652 (0.1034) 0.0000 (0.0000) + 0.8056 (0.1378) 0.1360 (0.1011) + 0.6825 (0.1755)
09 3 × 3 × 9 0.0000 (0.0000) + 0.8122 (0.1234) 0.0867 (0.0234) + 0.6012 (0.2222) 0.0900 (0.0183) + 0.6578 (0.1856)
10 3 × 3 × 10 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.1180 (0.0346) + 0.7875 (0.1647)
11 6 × 6 × 1 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
12 6 × 6 × 2 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
13 6 × 6 × 3 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
14 6 × 6 × 4 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
15 6 × 6 × 5 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
16 6 × 6 × 6 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
17 6 × 6 × 7 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
18 6 × 6 × 8 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
19 6 × 6 × 9 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
20 6 × 6 × 10 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
21 10 × 10 × 1 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
22 10 × 10 × 2 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
23 10 × 10 × 3 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
24 10 × 10 × 4 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
25 10 × 10 × 5 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
26 10 × 10 × 6 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
27 10 × 10 × 7 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
28 10 × 10 × 8 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
29 10 × 10 × 9 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
30 10 × 10 × 10 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
31 20 × 10 × 1 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
32 20 × 10 × 2 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
33 20 × 10 × 3 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
34 20 × 10 × 4 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
35 20 × 10 × 5 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
36 20 × 10 × 6 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
37 20 × 10 × 7 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
38 20 × 10 × 8 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
39 20 × 10 × 9 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
40 20 × 10 × 10 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
41 20 × 10 × 11 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
42 20 × 10 × 12 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
43 20 × 10 × 13 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
44 20 × 10 × 14 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
45 20 × 10 × 15 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
46 20 × 10 × 16 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
47 20 × 10 × 17 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
48 20 × 10 × 18 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
49 20 × 10 × 19 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
50 20 × 10 × 20 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
51 30 × 10 × 1 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
52 30 × 10 × 2 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
53 30 × 10 × 3 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
54 30 × 10 × 4 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
55 30 × 10 × 5 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
56 30 × 10 × 6 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
57 30 × 10 × 7 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
58 30 × 10 × 8 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)

(continued on next page)
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Table 7 (continued).
Inst. Size (n × m × a) C-metric

SPEA-II (S) v. EMOEA (E) NSGA-II (N) v. EMOEA (E) MOEA/D (M) v. EMOEA (E)

C(S, E) C(E, S) C(N, E) C(E, N) C(M, E) C(E, M)
Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)

59 30 × 10 × 9 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
60 30 × 10 × 10 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
61 30 × 10 × 11 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
62 30 × 10 × 12 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
63 30 × 10 × 13 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
64 30 × 10 × 14 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
65 30 × 10 × 15 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
66 30 × 10 × 16 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
67 30 × 10 × 17 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
68 30 × 10 × 18 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
69 30 × 10 × 19 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
70 30 × 10 × 20 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
71 30 × 10 × 21 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
72 30 × 10 × 22 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
73 30 × 10 × 23 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
74 30 × 10 × 24 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)
75 30 × 10 × 25 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)

Note: best results are marked in bold for each instance.
Fig. 17. A security monitoring robot and its wheels.
Fig. 18. Fronts of the four algorithms.

Fig. 19 presents the mean and standard deviations of the three
bjective values for the final solution sets obtained by the four
lgorithms. Fig. 19 shows that the EMOEA was able to obtain
etter mean values in terms of the three studied objectives. For
tandard deviation, the EMOEA achieved the smallest values on
he three studied objectives. Fig. 19 indicates that the EMOEA can
21
Fig. 19. Mean and standard deviations of the three objective values for the final
solution sets obtained by the four algorithms.

obtain high-quality and relatively reliable candidate solutions for
the real-world case.

Fig. 20 shows the Gantt chart of a candidate solution obtained
by the EMOEA for the real-world case. From Fig. 20, we can clearly
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Table 8
Mean and standard deviation values of HV with the SPEA-II, NSGA-II, MOEA/D and EMOEA on the real-world case.
SPEA-II NSGA-II MOEA/D EMOEA

Mean (std) Mean (std) Mean (std) Mean (std)
0.6413 (0.2507) + 0.4820 (0.1982) + 0.9222 (0.2134) + 1.6334 (0.0872)

Note: best results are marked in bold for the real-world case.
Table 9
Mean and standard deviation values of C-metric with the SPEA-II, NSGA-II, MOEA/D and EMOEA on the real-world case.
SPEA-II (S) v. EMOEA (E) NSGA-II (N) v. EMOEA (E) MOEA/D (M) v. EMOEA (E)

C(S, E) C(E, S) C(N, E) C(E, N) C(M, E) C(E, M)
Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)

0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000) 0.0000 (0.0000) + 1.0000 (0.0000)

Note: better results are marked in bold for each instance.
Fig. 20. The Gantt chart obtained by our proposed EMOEA on the real-world case.
see the operation sequence of the five types of robot wheels on
each machine and the machine processing speed for each wheel’s
operation. In addition, AGVs and their transportation speeds can
be effectively selected to cooperate with the processing opera-
tions of machines. With the cooperation of machines and AGVs,
all robot wheel operations can be closely arranged, and finally, a
shorter completion time can be obtained.

In summary, the above results clearly demonstrated that the
EMOEA can provide better scheduling plans for the energy-
efficient scheduling problem at hand integrated with multiple
AGVs.

6. Conclusion and future work

This paper studied an energy-efficient JSP integrated with
AGVs and formulated a new model for EJSP-AGVs. An EMOEA was
also proposed, with effective encoding and decoding approaches,
three types of crossover operators, and one mutation operator.
To improve the convergence and enhance the local search ability,
an effective OBL strategy was integrated into the EMOEA. In ad-
dition, a nondominated sorting-based external archive technique
was used to store elitist solutions. The experimental study was
conducted with generated benchmark instances and a real-world
case, and Taguchi analysis was carried out to obtain the best
combination of key parameters for the EMOEA. We used CPLEX
to validate our proposed model. The AGV quantity configuration
and system performance in a job shop were also studied and
analyzed. Additionally, extensive experiments were conducted
to assess the performance of the EMOEA by comparing it with
22
three well-known algorithms. Our experimental results showed
that (1) the overall performance of the production system can be
enhanced by properly increasing the number of AGVs, and (2) the
proposed EMOEA is able to outperform the other three algorithms
in solving the EJSP-AGVs.

For future work, several issues deserve further attention. First,
in this work, AGVs transported jobs by a predefined path without
collision conflicts. In practice, however, both the path and colli-
sion of AGVs can affect the production performance. Therefore,
it is important to consider path optimization and the collision of
AGVs. Second, since dynamic events such as machine breakdowns
often occur in real-world production systems, it is worthwhile to
consider dynamic events in the EJSP-AGVs.
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