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EDITOR: Erik Cambria, Nanyang Technological University, 639798, Singapore

DEPARTMENT: AFFECTIVE COMPUTING AND SENTIMENT ANALYSIS

Combining Sentiment Lexicons and
Content-Based Features for Depression
Detection
Raymond Chiong , Gregorious Satia Budhi, and Sandeep Dhakal, The University of Newcastle, Callaghan, NSW,
2308, Australia

Numerous studies on mental depression have found that tweets posted by users
with major depressive disorder could be utilized for depression detection. The
potential of sentiment analysis for detecting depression through an analysis of
social media messages has brought increasing attention to this field. In this article,
we propose 90 unique features as input to a machine learning classifier framework
for detecting depression using social media texts. Derived from a combination of
feature extraction approaches using sentiment lexicons and textual contents, these
features are able to provide impressive results in terms of depression detection.
While the performance of different feature groups varied, the combination of all
features resulted in accuracies greater than 96% for all standard single classifiers,
and the best accuracy of over 98% with Gradient Boosting, an ensemble classifier.

There is a general agreement in the relevant liter-
ature that social media platforms, by allowing
people to express their feelings or share their

ideas and thoughts more freely, have become a vital
source for monitoring health issues and trends.1,2

Posts on platforms, such as Twitter and Facebook,
enable researchers to investigate multiple patterns of
human behavior and their psychology.3

Several studies on mental depression—a medical ill-
ness with symptoms such as persistent sadness, loss of
interest, and an inability to carry out normal activities4—
have found that tweets posted by users with major
depressive disorder could be utilized to predict the possi-
bility of future episodes of depression in those users.5–9

Sentiment analysis, which is an automatic and system-
atic process of detecting the sentiment or emotional
tone of a given text, has been identified by various stud-
ies as a potential mechanism for detecting signs of
depressive disorder.10–12 Sentiment analysis has previ-
ously been successfully applied to predict the sentiment
or emotional tone behind social media messages, online

reviews or any other types of text messages.13–16 In addi-
tion to the detection algorithm applied, the performance
of sentiment analysis is also significantly influenced by
the features selected.17–19

Therefore, in this study, we propose 90 unique fea-
tures, through a combination of feature extraction using
sentiment lexicons and content-based features from the
social media messages themselves. Two sentiment lexi-
cons, namely SentiWordNet20 and SenticNet,21 are used
for feature extraction. Similarly, the content-based fea-
tures utilized for depression detection are formulated
from the characteristics of the Twitter message content
(e.g., the number of words, sentences, questions, excla-
mations), part-of-speech (POS) tags, linguistic traits, and
readability scores. The combined features are then used
as input for several machine learning models trained
using publicly labeled depression/nondepression data-
sets comprising of tweets.6 Results of our extensive
experiments confirm the effectiveness of these features
for depression detection.

The rest of this article is organized as follows. The
following two sections discuss the datasets used and
the design of the input features; next, we provide
details about our framework and the measurements
used; then, experimental results and discussions are
presented; finally, we conclude the article and high-
light future research directions.
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DATASETS
Two depression datasets, comprising of Twitter posts
that have been labeled as either “Depression” or “Non-
depression,” were used for all the experiments in this
study (see Table 1). These datasets were used to train
and test the proposed featuring approach for several
machine learning models using tenfold cross-valida-
tion. The first dataset, by Shen et al.,6 was constructed
with the restriction that a record would be labeled as
“Depression” only if its anchor tweets satisfied the
strict pattern “(I’m/I was/I am/I’ve been) diagnosed
with depression”; the record would be labeled as “Non-
depression” if the user had never posted any tweet
containing the character string “depress.” Eye’s data-
set,a on the other hand, is less restrictive and was built
by seeking the word “depression” in the tweets. Any
tweet containing the word “depression” was labeled
as “Depression,” and “Nondepression” otherwise. Eye’s
dataset is highly imbalanced; depression class records
account for only 22% of the total records.

DESIGN OF INPUT FEATURES
The input features in this study have been defined
based on two sentiment lexicons: SentiWordNet20 and
SenticNet.21 These input features are categorized into
three groups, namely Groups A, B, and C (see Table 2).
Group A consists of nine features created using Senti-
WordNet, whereas Group B consists of the same fea-
tures extracted using SenticNet. Group C includes
four features that were directly extracted using some
sentiment values in SenticNet and represent the total
introspection, temper, attitude, and sensitivity values
of the terms in the text. The features from SenticNet
have been split into Groups B and C to facilitate a
fairer comparison of the effectiveness of the two lexi-
cons for depression detection. Since SenticNet has
four additional features, the initial comparison is first
conducted using Groups A and B (same nine features),
following which the effect of the additional features in
SenticNet (Group C) is investigated.

To improve detection, another 68 features have
been defined based on our previous study22 (see

Table 2). These features were extracted based on the
characteristics of the tweets and are categorized into
four groups (D, E, F, and G) as follows. The features in
Group D are related to basic information that can be
extracted from the text; Group E consists of 36 POS
tags based on Penn POS;23 Group F captures the lin-
guistic traits of the text; and Group G is related to the
readability of the text. Groups D–F were extracted
using the Natural Language Toolkit24 and additional
custom functions and formulas written in Python,
whereas the features in Group G, representing the
readability scores, were extracted using functions
from the TextStat project.b

FRAMEWORK
Our framework, as depicted in Figure 1, is straightfor-
ward. Once the dataset(s) and settings have been
loaded, the input features are extracted based on the
group settings. All input features are subsequently
normalized to a scale of 0 to 1 using min–max normali-
zation. Since all attributes have differing ranges, nor-
malization ensures that all features have equal
contribution toward the detection. Following the crea-
tion of training targets, the n-fold cross-validation pro-
cess is run according to the assigned classifiers.
Finally, the best classifier for detecting depression is
determined, and all information and the detailed
results are written to a file.

In this study, we implemented and tested four
standard single classifiers—Logistic Regression (LR),
Support Vector Machine (SVM), Decision Tree (DT),
and Multilayer Perceptron (MLP)—and four ensemble
models—Bagging Predictors (BP), Random Forest
(RF), Adaptive Boosting (AB), and Gradient Boosting
(GB)—for detecting depression from Twitter posts.
These classifiers are often used in text analysis and
have produced excellent performance in previous
studies on textual-based sentiment analysis19 and
malicious web domain identification.25

The performance of the featuring approach with
the above classifiers was assessed using four common
measurements for prediction or classification (see
Table 3): accuracy, precision, recall, and F-measure
(also known as F1 score). All machine learning classi-
fiers, ensemble models, and measurements were built
using scikit-learn components.26 Default parameters
were used for all classification models to ensure that
the results can only be affected by the implementa-
tion of our approach and not by the modification of
classifier parameters.

TABLE 1. Datasets used in this study.

Dataset Records

Total Depression Nondepression

Shen et al. 11,877 54.67% 45.33%

Eye 10,314 22.44% 77.56%

Both are labeled and comprised of Twitter posts.

ahttp://kaggle.com/bababullseye/depression-analysis bhttp://pypi.org/project/textstat
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EFFECTS OF SENTIMENT LEXICON
FEATURES

In this section, we present the results of our investiga-
tion into the effects of sentiment lexicon feature
groups on prediction performance. The tenfold cross-
validation experiments were run on the LR classifier,
which was identified as one of the best classifiers in
previous experiments,19 using the two datasets
described above (see Table 1).

The results in Table 4 clearly indicate that, when
similar sentiment features were compared (Group A
versus Group B), the features extracted using Sentic-
Net (Group B) outperformed the features extracted
using SentiWordNet (Group A) for both the datasets.
Thus, we can conclude that the sentiment terms in
SenticNet and their sentiment scores are more suitable
for depression detection in Twitter texts.

The performance of Group C, which consists of
additional features that could only be provided by Sen-
ticNet, was also satisfactory. The accuracy, precision,
recall, and F1 scores for Group C were above 50% for
Shen et al.’s dataset. In the case of Eye’s dataset, the
accuracy was even better (>81%), but the recall and
F1 scores were much worse. These results indicate
that the features in Group C are not suitable for
detecting the target class, i.e., the depression class (in
binary classification, recall and the accuracy of the
target class are the same). It should be noted, how-
ever, that the results from combining Group C with
other groups were marginally better than without
Group C.

Between the two datasets, the results show that
the accuracy was always higher for Eye’s dataset com-
pared to Shen et al.’s dataset. However, the recall and

TABLE 2. Features.
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F1 scores were always lower for Eye’s dataset. This
implies that the classifier trained using Eye’s samples
found it difficult to detect the target class (i.e., depres-
sion class) than the other class, and we suspect that
this is due to the imbalanced nature of Eye’s dataset
(see Table 1). This problem could be easily solved by
applying sampling methods25,27 to the dataset, but in
this study, we attempt to overcome the problem by
implementing ensemble models [see Figure 3(b)].

ADDITIONAL FEATURES BASED
ON THE CONTENT-BASED
APPROACH

The above results demonstrated that sentiment lexicon
features can perform well in terms of detecting depres-
sion from Twitter posts. Next, we explore whether con-
tent-based features (Groups D, E, F, and G) could
further improve performance. As above, we conducted
experiments on the LR classifier but, based on the

above results, used only Shen et al.’s dataset to train it.
The results in Table 5 show that each content-based
group improved the detection measurements when
combined with sentiment lexicon features. Group E
(POS) provided the best improvement, followed by
Group G (readability scores), Group D (basic text infor-
mation), and Group F (linguistic characteristics). How-
ever, the overall best improvement was achieved when
all sentiment lexicon and content-based features were
used at the same time; all measurements were higher
than 95%. It is also worth mentioning that the F1 scores
obtained with our approach are better than the base-
line results (85%) in Shen et al. 6

IDENTIFYING THE BEST
CLASSIFIER

The following set of experiments was conducted with
the best feature setting from the above experiments
(Groups A to G) on all single classifiers (LR, MLP, SVM,

FIGURE 1. Design of the proposed framework used for detecting depression in this study.

TABLE 3.Measurement functions and formulas.

Name Function Formula

Accuracy accuracy_score
()

Accuracyðy; ŷÞ ¼ 1
nsamples

Pnsamples�1

i¼0 1ðŷi ¼ yiÞ; where y is the set of predicted pairs, ŷ is the set

of true pairs, and nsamples is the total number of samples.

Precision precision_score
()

Precisionðyi; ŷiÞ ¼ TP
TPþFP ; where i is the set of classes, yi is the subset of y with class i, TP is

true positive, and FP is false positive.

Recall recall_score() Recallðyi; ŷiÞ ¼ TP
TPþFN ; where FN is false negative.

F-measure/
F1

f1_score() F1ðyi; ŷiÞ ¼ 2�Precisionðyi;ŷiÞ�Recallðyi;ŷiÞ
Precisionðyi;ŷiÞþRecallðyi;ŷiÞ :
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and DT) and both datasets to further investigate the
performance of the best feature setting. We can see in
Figure 2(a) and (b) that the features performed better
with other single classifiers than LR. The MLP was the
best single classifier for Shen et al.’s dataset, whereas
the DT was the best for Eye’s dataset.

It is important to note that both the MLP and DT
performed significantly better than other classifiers in
terms of recall; their recall scores were at least 90%
for Eye’s dataset. Similar experiments were also con-
ducted with the ensemble models (AB, BP, GB, and
RF) for both datasets, and the results can be seen in
Figure 3(a) and (b). The results show that all ensemble

models performed well on both datasets and GB
achieved the highest measurements for both data-
sets, with an accuracy of more than 98%. The results
in Figure 3(b) also show that all ensemble models pro-
vided recall values of around 95% despite Eye’s data-
set being heavily imbalanced, thus, obviating the need
for any further action to overcome the class imbal-
ance issue.

CONCLUSION AND FUTUREWORK
In this study, we proposed 90 different features that
can be used by machine learning classifiers for

TABLE 4. Effects of sentiment lexicon features on depression detection.

*: Acc = Accuracy; Pre = Precision; Rec = Recall; F1 = F-measure; Dep = Depression; Non-Dep = Nondepression.

TABLE 5. Effects of content-based features on depression detection when trained using Shen et al.’s dataset.

Sentiment lexicon group(s) Content-based group(s) Measurements (%) * Class accuracy
(%) *

Acc Pre Rec F1 Dep Non-Dep

A, B, C D 88.73 89.21 90.31 89.75 90.31 86.82

A, B, C E 94.62 94.51 95.72 95.11 95.72 93.31

A, B, C F 86.63 87.29 88.40 87.84 88.40 84.48

A, B, C G 91.30 90.58 93.85 92.18 93.85 88.23

A, B, C D, E 95.21 95.10 96.19 95.64 96.19 94.02

A, B, C D, F 88.99 89.55 90.42 89.97 90.42 87.27

A, B, C D, G 92.62 92.31 94.37 93.32 94.37 90.51

A, B, C D, E, F 95.32 95.19 96.30 95.74 96.30 94.14

A, B, C D, E, G 96.34 96.37 96.95 96.66 96.95 95.59

A, B, C D, F, G 92.71 92.50 94.32 93.40 94.32 90.77

A, B, C D, E, F, G 96.50 96.48 97.14 96.81 97.14 95.73

*: Acc = Accuracy; Pre = Precision; Rec = Recall; F1 = F-measure; Dep = Depression; Non-Dep = Nondepression.
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detecting depression by analyzing the social media
messages of users. These features were extracted
using the combination of sentiment lexicons and con-
tent-based approaches. While our experiments were
conducted using datasets comprising of Twitter posts,
these features can be used for any textual content.
Through extensive experiments, involving two data-
sets of Twitter posts, four single classifiers, and four
ensemble models, we were able to verify the effective-
ness of these features.

The best results were obtained when all the pro-
posed features were utilized together for depression
detection; however, the effectiveness of different fea-
ture groups greatly varied. In particular, the content-
based features were able to improve the accuracy to
> 96% for both datasets. Whereas all single classifiers
and ensemble models provided excellent results, the
GB ensemble was able to provide accuracies >98%
for both datasets. Our analysis also revealed that the
ensemble models were able to overcome the data
imbalance issue, which the single classifiers were
unable to do.

As future work, we plan to investigate a novel idea
about the combination of multiple classifiers for
improving accuracy. We will also investigate the

possibility of using sentiment analysis datasets, which
can be easily constructed in larger sizes, for depres-
sion detection in social media texts.

REFERENCES
1. O. Edo-Osagie et al. “A scoping review of the use of

twitter for public health research,” Comput. Biol. Med.,

vol. 122, 2020, Art no. 103770.

2. S. Ji, S. Pan, X. Li, E. Cambria, G. Long, and Z. Huang,

“Suicidal ideation detection: A review of machine

learning methods and applications,” IEEE Trans.

Comput. Social Syst., vol. 8, no. 1, pp. 214–226, Feb.

2021.

3. J. Hussain et al. “Exploring the dominant features of

social media for depression detection,” J. Inf. Sci., vol.

46, no. 6, pp. 739–759, 2019.

4. S. A. Qureshi, S. Saha, M. Hasanuzzaman, and G. Dias,

“Multitask representation learning for multimodal

estimation of depression level,” IEEE Intell. Syst., vol. 34,

no. 5, pp. 45–52, Sep./Oct. 2019.

5. M. D. Choudhury et al. “Predicting depression via social

media,” in Proc. 7th Int. AAAI Conf. Weblogs Social

Media, 2013, pp. 128–137.

FIGURE 3. Results for feature groups A-G on ensemble models trained using two different datasets.

FIGURE 2. Results for feature groups A-G on four single classifiers trained using two different datasets.

104 IEEE Intelligent Systems November/December 2021

AFFECTIVE COMPUTING AND SENTIMENT ANALYSIS

Authorized licensed use limited to: University of Newcastle. Downloaded on January 12,2022 at 05:12:06 UTC from IEEE Xplore.  Restrictions apply. 



6. G. Shen et al. “Depression detection via harvesting

social media: A multimodal dictionary learning

solution,” in Proc. 26th Int. Joint Conf. Artif. Intell., 2017,

pp. 3838–3844.

7. H. S. Alsagri and M. Ykhlef, “Machine learning-based

approach for depression detection in twitter using

content and activity features,” IEICE Trans. Inf. Syst.,

vol. E103.D, no. 8, pp. 1825–1832, 2020.

8. S. Ji et al. “Suicidal ideation and mental disorder

detection with attentive relation networks,” Neural

Comput. Appl., 2021, doi: 10.1007/s00521-021-06208-y.

9. R. Chiong et al. “A textual-based featuring approach for

depression detection using machine learning classifiers

and social media texts,” Comput. Biol. Med., vol. 135,

2021, Art. no. 104499.

10. A. U. Hassan et al. “Sentiment analysis of social networking

sites (SNS) data usingmachine learning approach for the

measurement of depression,” inProc. Int. Conf. Inf.

Commun. Technol. Convergence, 2017, pp. 138–140.

11. M. R. Islam et al. “Depression detection from social

network data usingmachine learning techniques,”

Health Inf. Sci. Syst., vol. 6, 2018, Art. no. 8.

12. Y. Chen et al. “Sentiment analysis based on deep

learning and its application in screening for perinatal

depression,” in Proc. IEEE 3rd Int. Conf. Data Sci.

Cyberspace, 2018, pp. 451–456.

13. S. L. Lo et al. “Amultilingual semi-supervised approach in

deriving singlish sentic patterns for polarity detection,”

Knowl.-Based Syst., vol. 105, pp. 236–247, 2016.

14. L. Yang et al. “Sentiment analysis for e-commerce

product reviews in Chinese based on sentiment lexicon

and deep learning,” IEEE Access, vol. 8, pp. 23522–

23530, 2020.

15. Y. Susanto et al. “Ten years of sentic computing,” Cogn.

Comput., vol. 13, pp. 1–19, 2021.

16. F. Xing, F. Pallucchini, and E. Cambria, “Cognitive-inspired

domain adaptation of sentiment lexicons,” Inf. Process.

Manage., vol. 56, no. 3, pp. 554–564, 2019.

17. A. Yousefpour, R. Ibrahim, and H. N. A. Hamed, “Ordinal-

based and frequency-based integration of feature

selection methods for sentiment analysis,” Expert Syst.

Appl., vol. 75, pp. 80–93, 2017.

18. P. Bansal andR. Kaur, “Twitter sentiment analysis using

machine learning and optimization techniques,” Int. J.

Comput. Appl., vol. 179, no. 19, pp. 5–8, 2018.

19. G. S. Budhi et al. “Using machine learning to predict the

sentiment of online reviews: A new framework for

comparative analysis,” Arch. Comput. Methods Eng.,

vol. 28, pp. 2543–2566, 2021.

20. S. Baccianella, A. Esuli, and F. Sebastian, “SentiWordNet

3.0: An enhanced lexical resource for sentiment

analysis and opinion mining,” in Proc. Int. Conf. Lang.

Resour. Eval., vol. 10, 2010, pp. 2200–2204.

21. E. Cambria et al. “SenticNet 6: Ensemble application of

symbolic and subsymbolic AI for sentiment analysis,” in

Proc. 29th ACM Int. Conf. Inf. Knowl. Manage., 2020,

pp. 105–114.

22. G. S. Budhi et al. “Using a hybrid content-based

and behaviour-based featuring approach in a

parallel environment to detect fake reviews,” Electron.

Commerce Res. Appl., vol. 47, 2021, Art no. 101048.

23. S. Buchholz, “Memory-based grammatical relation

finding,” Thesis, Eigen Beheer, Tilburg, 2002.

24. S. Bird, E. Klein, and E. Loper, Natural Language

Processing With Python. Newton, MA, USA: O’Reilly

Media, Inc., 2009.

25. Z. Hu et al. “Malicious web domain identification using

online credibility and performance data by considering

the class imbalance issue,” Ind. Manage. Data Syst., vol.

119, no. 3, pp. 676–696, 2019.

26. F. Pedregosa et al. “Scikit-learn:Machine learning in

python,” J.Mach. Learn. Res., vol. 12, no. 85, pp. 2825–2830,

2011.

27. G. S. Budhi, R. Chiong, and Z.Wang, “Resampling

imbalanced data to detect fake reviews usingmachine

learning classifiers and textual-based features,”

Multimedia Tools Appl., vol. 80, no. 9, pp. 13079–13097,

2021.

RAYMOND CHIONG is an associate professor at the School of

Electrical Engineering andComputing, TheUniversity of Newcas-

tle, NSW, Australia. His research interests includemachine learn-

ing, data analytics, evolutionary optimization, and evolutionary

game theory. He is the editor-in-chief of the Journal of Systems

and Information Technology, an Editor of Engineering Applica-

tions of Artificial Intelligence, and an associate editor of Engineer-

ing Reports. He is the corresponding author. Contact him at

Raymond.Chiong@newcastle.edu.au.

GREGORIOUS SATIA BUDHI is working toward the PhD

degree at the School of Electrical Engineering and Comput-

ing, The University of Newcastle, NSW, Australia. He is also

an academic staff member with Petra Christian University in

Indonesia. His research interests include sentiment analysis,

machine learning, and data/text mining. Contact him at Gre-

gorious.Satiabudhi@uon.edu.au.

SANDEEP DHAKAL is working toward the PhD degree at the

School of Electrical Engineering and Computing, The Univer-

sity of Newcastle, NSW, Australia. His research interests

include modeling of complex adaptive systems, evolutionary

game theory, and sentiment analysis. Contact him at San-

deep.Dhakal@newcastle.edu.au.

November/December 2021 IEEE Intelligent Systems 105

AFFECTIVE COMPUTING AND SENTIMENT ANALYSIS

Authorized licensed use limited to: University of Newcastle. Downloaded on January 12,2022 at 05:12:06 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1007/s00521-021-06208-y

