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Abstract 

Online reviews are becoming increasingly important for decision-making. Consumers often refer to online reviews for 

opinions before making a purchase; marketers acknowledge the importance of online reviews and use them to improve product 

success. However, the massive amount of online review data, as well as its unstructured nature, is a challenge for anyone wanting 

to derive a conclusion quickly. In this paper, we propose a novel framework for gauging the ratings of online reviews using 

machine learning techniques which uses a combination of text pre-processing and feature extraction methods. We investigate four 

different aspects of this new framework. First, we assess the performance of single and ensemble classifiers in predicting 

sentiment (initially positive or negative) on a specific dataset (Yelp), confirming they behave just as well when applied to 

different datasets. Second, using the best identified classifiers, we improve the accuracy with which neutral polarity can be 

predicted, an ability largely overlooked in the literature. Third, we further improve the performance of these classifiers by testing 

different pre-processing and feature extraction methods. Finally, we measure how well our deep learning approach performs on 

the same task compared to the best previously identified classifiers.   

Our extensive testing with high powered computing shows that the linear kernel Support Vector Machine, Logistic 

Regression, and Multilayer Perceptron are probably the three-best single classifiers in terms of accuracy, precision, recall, and F-

measure. Their performance could be further improved if they were used as base classifiers for ensemble models. We also observe 

that several text pre-processing techniques – negation word identification, word elongation correction, and part of speech 

lemmatisation (combined with Terms Frequency N-grams) – can increase accuracy. In addition, we demonstrate that the general 

sentiment of lexicons such as SentiWordNet3 and SenticNet 4 can be used to generate features with good results, although deep 

learning models can perform equally well.  

Experiments with different datasets  further confirm that our framework gives consistent outcomes, including with the 

Amazon and movie reviews datasets. We have focused on improving the accuracy of neutral sentiment, and we conclude by 

showing how this can be achieved without sacrificing the accuracy of positive or negative ratings.    

Keywords: Online reviews and ratings, classification, machine learning, feature extraction, text mining. 

 

1.  INTRODUCTION 

Online reviews of products and services play an important role for both buyers and sellers. On the one hand, 

consumers are paying more attention to the opinions of others on products they are interested in, in order  to gauge a 

product’s reliability and usefulness prior to making a purchase [1-3]. On the other hand, online reviews provide a 

tremendous wealth of feedback for marketers to understand the factors driving sales and trends, as well as to gauge 

the satisfaction level of consumers [4, 5]. The ability to find relevant content accurately and timely therefore helps 

both consumers and sellers make business decisions quickly [4, 6-8].  

The rapid proliferation of web and social media sites provide various ways by which users can provide 
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reviews about a product or seller. This creates an unprecedented volume of data from which insights can be 

discovered [9], yet it is extremely challenging for anyone to read and assimilate it [10]. Thus, an automated system 

capable of analysing and finding relevant reviews easily and efficiently is of value in today’s online environment 

[11, 12]. Automated review analysis involves training machines to capture and discriminate text polarity (positive or 

negative) from user reviews. The quality of this training process determines how accurately the review texts can be 

analysed, and how well they can be classified into rating categories [13].  

The majority of existing studies, however, have only considered user opinions on products and/or services 

based on two polarities, namely positive and negative [6, 9, 14-30]. In other words, these studies overlook the middle 

ground or neutral polarity. Only a small number of studies have taken three polarities (or more) into account (e.g., 

see [3, 31, 32]). It has been shown here that ignoring neutral opinions incurs a loss of valuable information for 

decision making, and can even lead to wrong decisions [3, 33]. Omitting neutral opinion leads to either 

underestimating or overestimating negative or positive reviews [34]. The information contained within reviews with 

neutral polarity can impact product sales, and their existence can affect readers’ perception about negative and 

positive reviews on products [34, 35]. Customers give a neutral rating because of an indifferent opinion about a 

product or service; the reviewer feels truly neutral or ambivalent since they find both positive and negative aspects of 

the product [33]. It also show that neutral opinions can help distinguish negative and positive ratings [36]. To 

reiterate, although neutral opinions are important, datasets that give three or more polarities are rare, with the 

majority just focusing on binary categories.  

The above problems pose several questions that need to be answered. These are: (i) Is it possible to use raw, 

real-world datasets (such as the Yelp reviews dataset) to train classifiers for sentiment polarity detection, especially 

with more than two polarities? (ii) Which kind of classifiers, including deep learning models, are suitable for 

sentiment polarity detection? (iii) Can improvement be achieved by refining text pre-processing and feature 

extraction techniques? (iv) Can the best classifiers be applied to other datasets and provide similar results? To answer 

these questions, a comparison framework is established to examine various types of polarities, from 2-, 3-, to 5-

polarity. Importantly, we pay special attention to neutral polarity detection. Several text pre-processing methods, 

such as negation word identification, word elongation correction, and part of speech (POS) lemmatisation, are 

applied. We also implement a number of Bag-of-Words (BoW) feature extraction methods, such as Terms Frequency 

(TF), Terms Frequency–Inverse Document Frequency (TF-IDF), and N-gram words. In addition to the BoW 

features, we investigate the option of using sentiment lexicons such as SentiWordNet 3.0 [37] and SenticNet 4 [38]. 

Varying sizes of input features and training samples are also considered to reduce the dimensionality of the review 

data. A range of single [39-45] and ensemble [46-50] classifiers, including Deep Learning (DL) models [51, 52], are 

evaluated using the following four metrics: accuracy, precision, recall, and F-measure. These classifiers are used to 

experiment on real word datasets obtained from Yelp [53], Amazon [54], and Large Movie Reviews (LMRs) [55]. 

The outcomes of these experiments may contribute to future research in this area and also be of value to online 

commerce websites where sentiment polarity prediction might be particularly useful.    

The rest of this paper is organised as follows. In Section 2, we review work on polarity classification. In 

Section 3 we describe the methodology used, including system design, data, output targets, and classifiers. Section 4 

discusses the experimental results, text pre-processing, classifiers, ensembles, deep learning, N-gram terms, and 

sentiment lexicons; it also sets out our investigations into neutral polarity. Finally, Section 5 concludes the work and 

highlights future research directions. 

 

2.  RELATED WORK 

Studies related to polarity classification or prediction of online reviews have been on the rise in recent years. 

Previous work has used either product or service reviews. Some studies have focused on specific review datasets for 

more accurate and tuned results, while others have attempted to generalise their proposed methods by using wider 

datasets, including data from Twitter, debates, news, and of course product or service reviews. The majority of these 

studies have considered 2-polarity classification, using either manually labelled or unlabelled raw review datasets. 

Table 1 provides an overview of such studies. 

Here, we first discuss studies based on labelled review data, and then look at unlabelled review data. Labelled 
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review datasets include Twitter’s movie reviews, Cornel movie reviews, LMRs, restaurant reviews, and the like. 

These datasets have been manually labelled by experts based on sentiment polarity of the texts.  

Basari et al. [14] used a Support Vector Machine (SVM) to detect the polarity of Twitter’s movie reviews, 

with its parameters optimised by a particle swarm optimisation algorithm. Rong et al. [21] presented a method 

inspired by Bagging Predictors to recognise the negative or positive polarity of Cornel movie reviews and LMRs. 

Agarwal et al. [18] proposed a combination of ontology (ConceptNet), WordNet, and polarity lexicons (SenticNet, 

SentiWordNet, General Inquirer) to identify the polarity (negative/positive) of product and service reviews, including 

restaurant, movie, and software reviews manually labelled by experts. A framework for enhanced sentiment analysis 

and polarity classification (eSAP) was developed by Khan, Qamar, and Bashir [15]. This eSAP framework combines 

the SentiWordNet polarity lexicon and SVM to detect polarities of text and online movie reviews [15]. Khan et al. 

later extended their work and developed a sentiment dictionary named Senti-MI [16]. Tripathy et al. grouped text 

polarities into negative and positive using an N-gram model with classifiers such as Naïve Bayes and Maximum 

Entropy on IMDb movie review data [9]. Araque et al. attempted to improve the accuracy of deep learning by 

combining it with classical classifiers for predicting the 2-polarity of several text datasets, including IMDb movie 

reviews [19]. 

Besides manually labelled datasets, previous studies have also used raw datasets like Amazon’s product 

reviews and TripAdvisor’s hotel reviews for polarity detection. These studies relied on ratings given by users as the 

base of their 2-polarity prediction. Feature-based clustering was investigated by Bafna and Toshniwal to detect 

negative and positive polarities of Amazon’s product reviews [20]. Fattah [23] extracted the polarities of Amazon’s 

product reviews as well as Cornel movie reviews based on a new term-weighting scheme and a combination of some 

single classifiers. A method to evaluate the polarities of Amazon’s cross-lingual reviews was proposed by 

Hajmohammadi et al. [24]. Around the same time, Katz, Ofek, and Shapira [17] proposed a context-based method 

named Consent which generates 3-gram key terms based on probability, and these key terms are used as features to 

detect polarity (negative/positive) using a Rotation Forest classifier. Katz et al. tested this method using manually 

labelled text datasets, including movie reviews, and also unlabelled raw data from TripAdvisor’s hotel reviews [17]. 

Wang et al. [22] proposed a pipeline method based on a combination of random subspace for feature selection and an 

SVM-based ensemble of classifiers for text polarity classification. They tested their method on different review 

datasets, including movie reviews, Amazon’s product reviews, and several service reviews [22]. Hung and Chen [25] 

proposed a word sense disambiguation technique to extract features from movie and hotel reviews, and built several 

classifiers to detect polarity (negative or positive). Ikram et al. [26] focused on detecting two polarities of Twitter’s 

open source software products using classifiers such as AdaBoost and Apriori. Onan et al. proposed a multi-objective 

weighted voting ensemble classifier to classify sentiment polarities of online product and service reviews [27]. 

Vechtomova proposed several methods to detect negative and positive polarities of Amazon’s product reviews at the 

word level without relying on training datasets and lexicons [28]. A combination of machine learning classifiers and 

sampling methods was proposed by Vinodhini and Chandrasekaran for 2-polarity sentiment classification of 

Amazon’s product reviews having an unbalanced data distribution [30]. A feature extraction method, using 

document frequency, chi-square, information gain, standard deviations, and weighted log-likelihood ratios, was 

proposed by Yousefpour, Ibrahim, and Hamed [29] to classify the polarities of movie reviews and Amazon’s product 

reviews.  

While less common, several researchers have considered three or more polarities, which include neutral 

opinions, in their work. Fernández-Gavilanes et al. [32] proposed an unsupervised text classification method based 

on dependency parsing to classify texts from two (negative/positive) and three (negative/neutral/positive) polarities. 

They tested their proposed method using text datasets from Twitter and movie reviews [32]. Chen et al. [31] 

proposed a deep learning approach by combining Bidirectional Long Short-Term Memory with conditional random 

fields and a one-dimensional Convolution Neural Network (CNN). This approach works well for 2-polarity detection 

using data from movie reviews and Amazon’s product reviews, but is less successful with 5-polarity prediction when 

tested with Stanford’s sentiment treebank and its neutral sentiment [31]. An intuitional fuzzy-weighted averaging 

operator and preference-ranking organisation methods were developed by Liu et al. for 3-polarity detection 

(positive/neutral/negative) using automobile reviews [3]. Budhi et al. [56] investigated the use of supervised machine 

learning methods for 2- and 3-polarity prediction on Yelp 2017 review data. A system named SHAN (Syntax-

directed Hybrid Attention Network) was built using a combination of several Bi-LSTM to detect the three polarities 

of sentiment in text (negative, neutral, and positive) [57]. López et al. [58] proposed E2SAM (Evolutionary Ensemble 

of Sentiment Analysis Methods), which is a set of sentiment analysis methods to detect 3-polarity sentiment in texts. 
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Table 1. An overview of related work 
Two polarities Three or more 

polarities 

Polarity detection as part of 

other application Manually classified datasets Raw datasets 

Basari et al. [14] Bafna & Toshniwal [20] Gavilanes et al. [32] Bagheri, Saraee & de Jong [11] 

Rong et al. [21] Fattah [23] Chen, et al. [31] Hur, Kang & Cho [59] 

Agarwal, et al. [18] Hajmohammadi  et al. [24] Liu, Bi & Fan [3] Zhang et al. [60] 
Fattah [23] Katz, Ofek & Shapira [17] Budhi, et al. [56] Gui et al. [61] 

Katz, Ofek & Shapira [17] Wang et al. [22] Wang et al. [57] Zhang et al. [62] 

Wang et al. [22] Hung & Chen [25] López et al. [58] 
 

Hung & Chen [25] Ikram et al. [26]  
 

Khan, Qamar & Bashir [6, 15, 16] Khan, Qamar & Bashir [6, 15, 16]  
 

Tripathy et al. [9] Onan et al. [27]  
 

Araque, et al. [19] Vechtomova [28]   

Yousefpour, Ibrahim & Hamed [29] Vinodhini & Chandrasekaran [30]    
Yousefpour, Ibrahim & Hamed [29]   

 

Other researchers have used text polarity detection as part of their applications. For example, Bagheri, Saraee, 

and de Jong proposed an unsupervised model using heuristic rules for an iterative bootstrapping algorithm and aspect 

pruning. They used this method to extract and detect explicit and implicit aspects of Amazon’s product reviews [11]. 

Text mining of movie reviews and factors such as nationalities, ratings, and other qualitative variables were 

considered by Hur et al. [59] for box-office forecasting based on a Korean movie review dataset. Zhang et al. [60] 

used sentiment orientation as one of the verbal features to detect fake reviews from the Yelp dataset using verbal and 

non-verbal features. Gui et al. [61] proposed a method to classify product reviews based on heterogeneous network 

representations, which included users (opinion holders), words, products (opinion targets), and polarities (positive 

and negative). They processed these network representations using different classifiers, and found that CNNs had the 

best results for the datasets tested, which included IMDb movie reviews, Yelp 2013, and Yelp 2014 [61]. Zhang et 

al. [62] proposed MOCA – Multi-Objective, Collaborative, and Attentive sentiment analysis – to predict the overall 

ratings of texts such as customer reviews from IMDb and Yelp 2013 and Yelp 2014. 

Our work differs from all these studies in that its comparisons are made by considering a number of well-

known machine learning models, including both single and ensemble classifiers and other classifiers from the deep 

learning family. In terms of datasets, we have used the unlabelled Yelp 2017 and Amazon product reviews, as well 

as the labelled Large Movie Review (LMR) dataset. Our focus is on improving the accuracy of 3-polarity 

classification, given that only a few related studies have considered it and that the results to date are far from 

satisfactory. 

 

3.  METHODS 

To evaluate the use of machine learning techniques to successfully rate polarity from review texts, we propose 

the comparison framework shown in Fig. 1. Here, the loaded reviews are first processed by removing punctuation, 

numbers, and common words. Features are then extracted from the texts using bag-of-words combined with TF or 

TF-IDF. Targets related to polarities are extracted based on different settings. Single and ensemble machine learning 

techniques are applied to build the prediction models. Finally, comparisons of different models are made based on 

four metrics, and statistical tests are used to gauge the differences between them. 
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Fig. 1. A comparison framework for rating polarity  

 

3.1. Experimental Data and Labels 

Consumer review data from the Yelp Dataset Challenge Round 9 in 2017 is the primary dataset used in our 

study. Yelp is a leader in consumer ratings, and has grown rapidly since 2005. Yelp’s users can review local 

businesses like restaurants, hair salons, bars, pubs, and many others. Users write their reviews and give star ratings 

from 1 to 5 to any business listed with Yelp [63]. The dataset used in this work contains 4.1 million review texts. 

Processing and experimenting on a massive dataset is a big challenge, and we relied on the high-performance 

computing facilities at the University of Newcastle, Australia. We used distributed servers having a total of 2560 

cores, 66 CPUs, and 4 GPU nodes, where each node could be assigned up to 256 GB RAM. 

To predict the polarity of Yelp 2017 review data, we made use of the 1–5 star ratings given on each review as 

our target label. Based on the star ratings, three main experimental output target types were created by categorising 

the review texts as follows. 

Type A: negative reviews were reviews with 1-star and 2-star ratings, while positive reviews were those with 3-, 4-, 

and 5-star ratings;  

Type B: negative reviews were reviews with 1-, 2-, and 3-star ratings, while positive reviews were those with 4- and 

5-star ratings;  

Type C: negative reviews were reviews with 1- and 2-star ratings, neutral reviews were those with 3-star ratings 

only, and positive reviews were those with 4- and 5-star ratings. 

Later, for more detailed analysis we created another five types of experimental output targets (see 4.2 below). 

Other review datasets used in our experiments included Amazon’s product reviews and LMRs. The Amazon 

dataset [54] is a large dataset containing more than 100 million product reviews. It is much larger in comparison with 

the Yelp 2017 dataset. Like the Yelp 2017 review data, the dataset is unlabelled, and products are ranked from 1–5. 

For our experiments, we made use of the 1–5 ratings given on each review as our target label, and three output 

targets were considered: Types A and B for 2-polarity classification, and Type C for 3-polarity classification. The 

LMR dataset [55] is a prepared and manually tagged dataset for research purposes. It is quite different to Yelp 2017 

and Amazon’s product reviews in that it has 50,000 records where each record is manually labelled as either a 

positive or negative review. For this dataset we therefore have to restrict the target output to just two polarities. 

 

3.2. Pre-processing Steps 

Prior to generating features for machine learning, we have to pre-process the review texts. Fig. 2 shows the 

pre-processing steps we have applied to the three review datasets. These pre-processing steps involve removal of 

punctuation, numbers, and English stop words, tokenisation of words, and token lemmatisation. We used NLTK 
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modules [64] to clean the review texts of punctuation and numbers as well as tokenise and lemmatise each word. Our 

lemmatisation approach has three steps: first, each word is lemmatised as a noun; then a verb; and finally an adverb. 

This is to reduce the words to their basic form. Subsequently, the words are joined based on their original order and 

saved. To improve the results, we later implement negative word processing, word elongation correction, and POS 

lemmatisation. 

 

Word
tokenisation

Stopword 
removal 

Punctuation 
& number 
removal

3-step 
lemmatisation

Load review 
texts

Save processed 
review texts

Start

End
Join words to 

a string

 

Fig. 2. Pre-processing steps 

 

3.3. Feature Extraction  

Feature extraction determines how features are selected and is important in influencing the accuracy of 

automated review analysis [65]. After pre-processing, we extract machine learning features from the processed 

review texts. We used Terms Frequency (TF) to generate features for each pre-processed word token. The process to 

create features is as follows. First, a bag of words (BoW) from all samples is created and then their TF values are 

calculated. Next, they are sorted based on their TF values. Features for each review text are extracted by checking for 

the existence of each feature word. If a feature word does not exist in the review text, then 0 is assigned. Otherwise, 

the feature word’s TF value is calculated and assigned to the matrix of features. A feature set can be created from all 

unique words found in the review texts, or a subset of them above a certain threshold value. To increase prediction 

accuracy, we later replace TF with TF-IDF. 

The Yelp 2017 review dataset has more than 4.1 million review records. The total number of unique words in 

this dataset after pre-processing is more than 240K. A problem arises when all unique words are used as features. 

This creates more than 984 billion values and so requires a huge memory allocation for model training, even with our 

high-performance grid computers. To find manageable sizes of features and samples, we performed experiments 

with various settings to reduce the number of features and samples used in training. 

 

3.4. Classifiers 

In our work we considered not only standard single classifiers but also ensemble models, and compared their 

performances against each other. In total, 13 single and 5 ensemble classifiers commonly used for classification and 

text mining tasks were examined. In the following, we first describe the single classifiers, followed by the ensemble 

models. All classifiers used in this study were built using the Scikit-Learn module for machine learning and the 

Keras module for deep learning which are commonly used for these purposes [66-68]. 

 

3.4.1 Single models 

 

Naïve Bayes is often used in classification problems [69, 70], including text classification [60, 71, 72]. It is 

the simplest form of Bayesian network classifiers if each feature is independent. Many applications have successfully 
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implemented Naïve Bayes, and it is considered to be one of the top 10 data mining algorithms [73]. In this study, we 

investigated three types of Naïve Bayes classifiers: Multinomial and Bernoulli Naïve Bayes [39] and Gaussian Naïve 

Bayes [74]. 

The idea of Nearest Neighbour classifiers is to cluster instances into groups based on their closest distance 

[40]. First introduced by Fix and Hodges in 1951 [75], Nearest Neighbour classifiers are widely used in different 

studies [72, 76-79]. In this work, we investigated two types of Nearest Neighbour classifiers, namely the K-Nearest 

Neighbour [40] and Nearest Centroid [80]. 

The Generalised Linear Model (GLM) was firstly proposed by Nelder and Wedderburn in 1972 [81], and 

subsequently improved by Hastie and Tibshirani in 1990 [82]. It is a generalisation of the linear regression model 

and attempts to overcome several limitations that the former has. The GLM was developed with non-normal 

dependent variables [83, 84]. There are many variants of this model, and they have been used to solve a wide range 

of classifications problems [85-89]. In this work, we investigated four types of GLM: Logistic Regression [41], 

Ridge Regression [90], Passive Aggressive [42], and Stochastic Gradient Descent [91]. 

The Decision Tree classifier was developed by Quinlan [92] based on Hunt’s algorithm [93]. As the name 

suggests, it is a tree-like model, creating decision trees for classification and prediction purposes. The classifier is a 

useful explanatory tool for expressing a cause-and-effect chain [43]. It has been used for text classification [94, 95] 

as well as many other applications [96, 97]. This algorithm is typically used as a base classifier for ensemble 

methods (e.g., Bagging, Random Forest, and AdaBoost).  

The SVM learns from a training dataset and generalises to make correct predictions on unseen data. It works 

by separating a hyperplane into classes and then maximising the separation distance. The larger the margin, the lower 

the error generated by the classifier [44]. The excellent generalisation performance of SVM makes it very popular in 

many research areas [72, 98-103]. In this study, we investigated SVMs with Linear and (Gaussian) Radial Basis 

Function kernels [104].   

The Multilayer Perceptron is a feedforward Artificial Neural Network normally used as a supervised model 

for pattern recognition and classification [59]. The model works by minimising error through computing weights in 

its network. The algorithm continually updates the weights to achieve the best configuration. It consists of two 

phases, feed-forward and backpropagation. In the feed-forward phase, training data is forwarded to produce an 

output, and then the difference between the real output and desired target is calculated to produce an error. This error 

is then used to update the weights [45]. The algorithm has been used and improved by many researchers in different 

areas [72, 105-110]. 

 

3.4.2 Ensemble models 

 

Bagging Predictors use several single predictors to build a cluster of predictors. The predictors are trained 

through a bootstrapping process that replicates the training set. Bagging uses plurality votes to predict a class [46] 

and is commonly used in many areas [27, 72, 111, 112]. In this study, we investigated Bagging Predictors with 

different single classifiers, including the Decision Tree, Logistic Regression, Linear-Kernel SVM, and Multilayer 

Perceptron.   

The Random Forest is an ensemble of decision tree predictors, in which each tree is trained using a random 

vector that is sampled independently. Error generalisation of Random Forest depends on the strength of each 

individual tree and the correlation between them. This ensemble model is relatively robust to outliers and noise [47], 

and is used in many areas including text classification [4, 72, 89, 113]. In addition to the standard Random Forest, in 

this study we also investigated the Randomised Decision Trees, another variant of decision tree ensemble classifiers 

[49]. 

AdaBoost is short for Adaptive Boosting. This algorithm iteratively combines multiple weak classifiers over 

several rounds, starting with equal weights for all training data. If training data points are misclassified, their weights 

are boosted, and then a new classifier is created using the new unequal weights. This process is repeated for the set of 
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classifiers [50]. AdaBoost has been successfully used for identifying malicious web domains, predicting financial 

distress dynamically, speaker verification, and imbalanced data classification [72, 100, 114, 115]. 

Gradient Boosting is an ensemble of gradient-boosted regression trees for classifying dirty data. It produces a 

robust competitive and interpretable algorithm for classification and regression. However, it uses only a single 

regression tree for binary classification [48]. This algorithm has been applied to many classification and regression 

problems [72, 116, 117]. 

 

3.4.3 Deep learning 

 

The term ‘deep’ in Deep Learning (DL) refers to the concept of numerous abstract layers created when data is 

transformed or converted from input to output [118]. DL techniques offer the capability of learning features in both 

supervised and unsupervised ways. DL architectures are mainly based on Artificial Neural Networks (ANNs) with 

multiple hidden layers between the input and output. They have been shown to learn features accurately [119]. In our 

experiments, we implemented several types of DL for detecting sentiment polarity as explained in the remainder of 

this section. 

Convolutional neural network (CNN) has been successfully used in pattern recognition, computer vision, and 

sentiment analysis [31, 52, 120-122]. In general, CNN consists of convolutional layers that create features for the 

network to learn. These convolution layers can be complemented with normalisation layers and pooling layers. 

Normally, the convolution layers are flattened with fully connected layers and followed by a softmax layer for 

performing classification or pattern recognition [52, 120, 122]. By varying the number of layers and nodes/neurons 

in each layer, CNN has fewer connections and parameters and is easy to train. Theoretically, its training performance 

is slightly worse than the standard feedforward neural network [120].  

Long short-term memory (LSTM) was proposed by Hochreiter and Schmidhuber in 1997 [51]. It is a special 

type of Recurrent Neural Network and is capable of learning long term dependencies. Modules in LSTM include 

four interacting layers: input, output, cell state, and forget gate. Every memory cell contains a node with a fixed 

weight of 1 and with a self-connected recurrent edge to avoid gradients vanishing or exploding [123]. 

 

4.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.1. Experiments on Classifiers 

These experiments were intended to investigate what are the best single classifiers, and also the best 

ensembles to use for gauging sentiment polarity. In these experiments, we investigated several well known classifiers 

and ensembles. We mainly used the Yelp review dataset for our initial experiments. However, we also used other 

datasets, such as Amazon reviews and movie reviews, to test whether each classifier’s performance was consistent 

across the datasets.  

 

4.1.1 Experiments on single classifiers 

 

We investigated the performance of single classifiers in identifying review polarity, first using the Yelp 2017 

dataset. A total of 13 classifiers, as shown in Table 2, were tested using three types of experiment (i.e., Types A, B, 

and C) as defined in section 3.1.  

We performed 10-fold cross-validation based on 10,000 randomly selected review texts using each of the 13 

classifiers. In these experiments, we ran the classifiers with varying numbers of features ranging from 250 to the 

maximum (245,071). The features were selected based on their TF values. The accuracies of the classifiers with 
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different feature sets in the three experiment types are shown in Fig. 3.  

As shown in Fig. 3, classifiers such as BNB, GNB, DT, KNN, NC, and RSVM did not perform well 

compared to the others. MNB can perform well with limited features, but the accuracy deteriorates when the number 

of features increases. The results also show that the accuracy of all classifiers, except RR, does not increase any 

further when the number of features is beyond 5,000. RR reaches its peak accuracy at around 10,000 features. These 

results indicate that increasing the number of features, which increases training complexity, does not necessarily 

increase the accuracy of the training models.  

Table 2. Single classifiers and their settings 

No. Classifier Name Parameter 

1 Multinomial Naïve Bayes (MNB) alpha = 1.0 
2 Bernoulli Naïve Bayes (BNB) alpha = 1.0 

3 Gaussian Naïve Bayes (GNB) – 

4 K-Nearest Neighbour (KNN) K = 5, Euclidean 
5 Nearest Centroid (NC) Euclidean 

6 Decision Tree (DT) Gini index 

7 Logistic Regression (LR) max iterations: 100 
8 Ridge Regression (RR) alpha = 1.0 

9 Passive Aggressive (PA) Epochs = 5, PA-I formula 

10 
Stochastic Gradient Descent (SGD) 

estim: Linear SVM,  
learning  rate = 1.0 / (alpha * (t + t0)) 

11 RBF-kernel SVM (RSVM) gamma = 1/n features 

12 Linear-kernel SVM (LSVM) max iterations = 1000 
13 

Multilayer Perceptron (MLP) 
1 hidden layer - 100 neurons, 

rectified linear unit, α = 0.001 

 

Next, we performed cross-validation using 500 features sorted by their TF values, on various review texts 

ranging from 10,000 records to the maximum of 4,133,088 records (i.e., the entire Yelp review dataset). Fig. 4 shows 

the accuracies of these classifiers with an increasing number of records on the three experiment types. From Fig. 4, 

we see that the accuracies of these classifiers increase quite substantially as the number of records increases until it 

reaches about 500K. Beyond this point, the increase in accuracy is marginal. 

From Fig. 3 and Fig. 4, we can see that the MLP, LR, and LSVM are the best performers in most cases. 

Additionally, we observe that experiment Type A has the highest accuracy, followed by Types B and C. 

To test the robustness of the three best classifiers, we performed further experiments with varying features 

(i.e., 1,000 to 10K feature sets) and training samples (i.e., 100K to 1M training samples) based on 10-fold cross-

validation. The results for each of the classifiers are shown in Table 3. 

 

Table 3. Results of the three best single classifiers on Yelp 2017 review data 

Classifier 

Name 

Experiment 

Type 

Training 
Time 

(*) 

Maximum 
Accuracy 

(%) 

Average (%) 

Accuracy Precision Recall F-measure 

LSVM 
A 0.07 90.57 89.26 89.13 89.26 89.14 
B 0.08 86.94 85.40 85.34 85.40 85.32 

C 0.10 82.25 80.83 79.09 80.83 79.37 

LR 
A 0.06 90.90 90.17 89.94 90.17 90.00 
B 0.05 87.23 86.46 86.34 86.46 86.37 

C 0.06 82.82 82.04 79.92 82.04 80.41 

MLP 
A 1.84 91.23 90.38 90.33 90.38 90.35 
B 0.87 87.54 86.12 86.13 86.12 86.12 

C 0.68 82.65 81.47 80.82 81.47 81.09 

(*) Average training time per sample training record in millisecond 
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Fig. 3. Accuracy (y-axis) vs the number of features (x-axis) for single classifiers based on the Yelp 2017 review dataset. Top, 

Experiment type A; middle, type B; bottom, type C 
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Fig. 4. Accuracy (y-axis) vs the number of training records (x-axis) for single classifiers based on the Yelp 2017 review dataset. 

Experiment Type A (top); B (middle); and C (bottom) 
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From the results, we observe that the combination of optimal features and the optimal amount of training data 

increases the accuracy, precision, recall, and F-measure of the three best classifiers. MLP has best results for Type A 

and LR for Type B. As for the Type C target output, the best accuracy and recall results are obtained by LR. The 

MLP has the best results in terms of precision and F-measure. Although MLP is the best classifier for Type A 

experiments, it required the longest training time. Having said that, the training time of MLP on average is only 

around one millisecond per record, which is acceptable. 

 

4.1.2 Experiments on ensemble classifiers 

 

Besides single classifiers, we also investigated the performance of five ensemble classifiers and their variants 

as listed in Table 4. We used Yelp 2017 dataset for these investigations. Results of these experiments can be seen in 

Table 5. The experiments were conducted in the same manner as those in Table 3. 

 

Table 4. Ensemble classifiers and their settings 

No. Classifier Name Parameter 

1 Randomized Decision Trees 10 estimators (DT), Gini index 
2 Random Forest 10 estimators (DT), Gini index 

3 Gradient Boosting 
loss function: LR, 100 estimators 

(LR), mean squared error 
4 Bagging Predictors 10 estimators (DT), bootstrap: true 

5 Bagging (LSVM) 10 estimators (LSVM), bootstrap: true 

6 Bagging (LR) 10 estimators (LR), bootstrap: true 
7 Bagging (MLP) 10 estimators (MLP), bootstrap: true 

8 AdaBoost 50 estimators (DT) 

9 AdaBoost (LSVM) 50 estimators (LSVM) 
10 AdaBoost (LR) 50 estimators (LR) 
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Table 5. Results of the ensemble classifiers on Yelp 2017 review data 

Classifier Name 
Experiment  

Type 

Training 

Time 
(*) 

Maximum 

Accuracy 
(%) 

Average (%) 

Accuracy Precision Recall F-measure 

Rand. Decision Trees 
A 0.06 80.43 79.64 80.13 79.64 79.86 
B 0.05 74.57 73.74 74.08 73.74 73.89 

C 0.05 69.19 68.04 68.20 68.04 68.09 

Gradient Boosting 
A 5.38 86.98 86.64 86.42 86.64 85.15 
B 4.53 82.57 82.28 82.46 82.28 81.39 

C 9.50 78.52 78.23 75.85 78.23 74.55 

Random Forest 
A 0.11 87.95 87.19 86.73 87.19 86.86 
B 0.06 83.04 82.20 82.36 82.20 82.26 

C 0.09 79.27 78.52 76.48 78.52 76.19 

Bagging 
A 2.12 87.15 86.38 86.38 86.38 86.37 
B 1.66 82.16 81.35 81.71 81.35 81.48 

C 2.47 78.29 77.45 75.62 77.45 76.05 

AdaBoost 
A 0.62 87.26 86.75 86.07 86.75 85.99 
B 1.06 82.79 82.31 82.02 82.31 81.94 

C 0.70 77.88 77.59 74.30 77.59 74.55 

Bagging (LSVM) 
A 0.50 90.58 89.26 89.14 89.26 89.14 
B 0.32 86.96 85.40 85.34 85.40 85.33 

C 1.10 82.26 80.83 79.10 80.83 79.37 

AdaBoost (LSVM) 
A 0.15 90.57 89.26 89.14 89.26 89.14 
B 0.11 86.95 85.40 85.34 85.40 85.33 

C 0.38 82.25 80.83 79.10 80.83 79.36 

Bagging (LR) 
A 0.70 91.16 90.36 90.12 90.36 90.18 
B 0.23 87.54 86.65 86.53 86.65 86.55 

C 0.64 83.19 82.27 80.11 82.27 80.60 

AdaBoost (LR) 
A 0.49 89.51 88.78 88.80 88.78 88.78 
B 0.58 85.69 84.78 84.81 84.78 84.79 

C 0.79 80.56 79.44 78.49 79.44 78.89 

Bagging (MLP) 
A 7.18 92.11 91.21 91.08 91.21 91.13 
B 6.59 88.81 87.47 87.42 87.47 87.44 

C 8.01 84.27 83.39 82.00 83.39 82.45 

 (*) Average training time per sample training record in millisecond. 

By default, both Bagging and AdaBoost have Decision Tree as their base classifier. However, it is possible to 

change the base classifier. In this study, we further investigated the performance of Bagging and AdaBoost by 

replacing their base classifier with each of the aforementioned three best single classifiers. However, we did not use 

MLP as the base classifier for AdaBoost since it can only combine classifiers that support sample weighting.  

By comparing results in Table 3 and the first 15 rows of Table 5, we observe that, on all metrics, the three 

best single classifiers in Table 3 are better than all these five ensemble classifiers. However, as can be read in sub 

section 4.1.1., the performance of DT, which is the default base classifier for these five ensemble models, is not as 

good as those classifiers listed in Table 3. This might explain why the ensemble models’ results are the worst of all 

those listed in Table 3. Looking at the second part of Table 5 (on the results for Bagging and AdaBoost with the three 

best single classifiers as base classifiers), we note that the performance of Bagging is improved but not for 

AdaBoost. Direct comparisons for the three best classifiers as stand-alone classifiers vs. as base classifiers can be 

found in Table 6. 

Table 6. Results of using the best single classifiers as base classifiers for the ensemble models 

Classifier 
Name 

Experiment  
Type 

Average Accuracy (%) (*) 

Single In Bagging In AdaBoost 

LSVM 

A 89.26 89.26 89.26 

B 85.40 85.40 85.40 

C 80.83 80.83 80.83 

LR 

A 90.17 90.36  88.78  

B 86.46 86.65  84.78  

C 82.04 82.27  79.44  

MLP 

A 90.38 91.21  - 

B 86.12 87.47  - 

C 81.47 83.39  - 

               (*)  /  = increase/decrease 



14 

 

4.1.3 Verification  

 

For verification purposes, we conducted non-parametric statistical analysis based on a Wilcoxon signed-rank 

test to see if results between the three best single classifiers and ensemble models are significantly different. Due to 

space constraints, we present only the statistical test results based on F-measure. These results can be seen in Table 

7, Table 8, and Table 9. In these tables, p-values that are greater than the significance level (i.e., > 0.05) are 

highlighted in bold. Almost all the pairwise comparisons are significantly different except for LSVM, Bagging 

(LSVM), and AdaBoost (LSVM). We can conclude that using LSVM as the base classifier for these ensemble 

models is less useful. 

Table 7. Wilcoxon signed-rank test results for each pair of classifiers on Type A experiments (F-measure)  

 Linear 

SVM 
MLP RDT GB RF 

Bagging 

(DT) 

Bagging 

(LR) 

Bagging 

(LSVM) 

Baging 

(MLP) 

AdaBoost 

(DT) 

AdaBoost 

(LR) 

AdaBoost 

(LSVM) 

LR 7.85E-15 8.44E-08 7.85E-15 7.85E-15 7.85E-15 7.85E-15 1.51E-13 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

Linear 

SVM 
 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 0.016803 7.85E-15 7.85E-15 9.09E-05 0.521972 

MLP   7.85E-15 7.85E-15 7.85E-15 7.85E-15 0.011641 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

RDT    7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

GB     8.47E-15 1.26E-13 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

RF      7.48E-13 7.85E-15 7.85E-15 7.85E-15 2.51E-14 7.85E-15 7.85E-15 

Bagging (DT)       7.85E-15 7.85E-15 7.85E-15 3.57E-08 7.85E-15 7.85E-15 

Bagging (LR)        7.85E-15 8.15E-15 7.85E-15 7.85E-15 7.85E-15 

Bagging 

(LSVM) 
        7.85E-15 7.85E-15 7.29E-05 0.288914 

Bagging 

(MLP) 
         7.85E-15 7.85E-15 7.85E-15 

AdaBoost 

(DT) 
          7.85E-15 7.85E-15 

AdaBoost 

(LR) 
           5.84E-05 

 

 

Table 8. Wilcoxon signed-rank test results for each pair of classifiers on Type B experiments (F-measure) 

 Linear 

SVM 
MLP RDT GB RF 

Bagging 

(DT) 

Bagging 

(LR) 

Bagging 

(LSVM) 

Bagging 

(MLP) 

AdaBoos

t (DT) 

AdaBoos

t (LR) 

AdaBoo

st 

(LSVM) 

LR 7.85E-15 
0.08083

7 
7.85E-15 7.85E-15 7.85E-15 7.85E-15 2.43E-10 7.85E-15 1.09E-13 7.85E-15 7.85E-15 7.85E-15 

Linear 

SVM 
 5.33E-11 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

0.02145

6 
7.85E-15 7.85E-15 4.43E-06 

0.62808

2 

MLP   7.85E-15 7.85E-15 7.85E-15 7.85E-15 0.003599 6.68E-11 7.85E-15 7.85E-15 6.31E-14 4.84E-11 

RDT    7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

GB     1.56E-08 0.68703 7.85E-15 7.85E-15 7.85E-15 8.79E-15 7.85E-15 7.85E-15 

RF      8.79E-15 7.85E-15 7.85E-15 7.85E-15 0.002249 7.85E-15 7.85E-15 

Bagging 

(DT) 
      7.85E-15 7.85E-15 7.85E-15 2.48E-06 7.85E-15 7.85E-15 

Bagging 

(LR) 
       7.85E-15 2.45E-11 7.85E-15 7.85E-15 7.85E-15 

Bagging 

(LSVM) 
        7.85E-15 7.85E-15 4.33E-06 

0.03560

1 

Bagging 

(MLP) 
         7.85E-15 7.85E-15 7.85E-15 

AdaBoos

t (DT) 
          7.85E-15 7.85E-15 

AdaBoos

t (LR) 
           5.20E-06 
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Table 9. Wilcoxon signed-rank test results for each pair of classifiers on Type C experiments (F-measure) 

 Linear 

SVM 
MLP RDT GB RF 

Bagging 

(DT) 

Bagging 

(LR) 

Bagging 

(LSVM) 

Bagging 

(MLP) 

AdaBoost 

(DT) 

AdaBoost 

(LR) 

AdaBoost 

(LSVM) 

LR 7.85E-15 2.45E-11 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

Linear 

SVM 
 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 0.088628 7.85E-15 7.85E-15 4.18E-13 0.988302 

MLP   7.85E-15 7.85E-15 7.85E-15 7.85E-15 1.36E-08 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

RDT    7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

GB     7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 0.007551 7.85E-15 7.85E-15 

RF      0.00349 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

Bagging 

(DT) 
      7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

Bagging 

(LR) 
       7.85E-15 7.85E-15 7.85E-15 7.85E-15 7.85E-15 

Bagging 

(LSVM) 
        7.85E-15 7.85E-15 9.89E-13 0.040558 

Bagging 

(MLP) 
         7.85E-15 7.85E-15 7.85E-15 

AdaBoost 

(DT) 
          7.85E-15 7.85E-15 

AdaBoost 

(LR) 
           1.55E-12 

 

4.1.4 Predicting with other datasets 

 

To investigate whether our comparison framework performs well on other datasets, we performed similar 

experiments with two additional datasets: Amazon’s product reviews [54] and LMR [55, 124]. 

The Amazon dataset [54] contains more than 100 million product reviews. In our experiments, we used only a 

subset of its review dataset, particularly reviews on clothes, shoes, and jewellery products. This subset has about 5 

million records, which is of similar size to Yelp 2017 dataset. We conducted experiments in a similar fashion to 

those in Table 3 and Table 5. Classification results can be found in Table 10. Similar to Yelp results, MLP has the 

best accuracy, precision, recall, and F-measure scores compared to LSVM and LR. However, their differences are 

marginal. When using these three best single classifiers as the base classifiers in Bagging, their accuracy increases. 

Similar to Yelp case, the Type A experiments has higher accuracy compared to Type B where the 3-star rating is 

negative. We can conclude that, in Amazon dataset, users who gave 3-star rating tend to provide more positive 

comments than negative ones. Type C has the worst results but the scores are still higher than 80%. 3-polarity 

detection is normally more difficult than 2-polarity detection. 

Table 10. Results based on the Amazon review dataset 

Classifier  

Name 

Experiment 

Type 

Training 

Time(*) 

Maximum 

Accuracy (%) 

Average (%) 

Accuracy Precision Recall F-measure 

LSVM A 0.08 91.15 90.12 89.49 90.12 89.60 
B 0.20 86.87 85.65 85.16 85.65 85.21 

C 0.11 83.80 82.33 79.57 82.33 80.20 

LR A 0.09 91.41 90.89 90.12 90.89 90.26 
B 0.12 87.58 86.57 86.00 86.57 86.07 

C 0.08 83.65 83.21 80.06 83.21 80.83 

MLP A 1.77 91.67 91.02 90.59 91.02 90.75 
B 2.92 87.88 86.57 86.30 86.57 86.40 

C 1.89 83.66 82.65 81.48 82.65 81.99 

Bagging 
(LSVM) 

A 0.43 91.12 90.19 89.58 90.19 89.69 
B 0.62 86.92 85.68 85.21 85.68 85.27 

C 0.58 83.81 82.27 79.52 82.27 80.06 

Bagging 
(LR) 

A 0.40 91.48 90.96 90.18 90.96 90.29 
B 0.42 87.61 86.70 86.14 86.70 86.20 

C 0.44 84.09 83.24 80.05 83.24 80.79 

Bagging 
(MLP) 

A 15.39 92.14 91.39 90.78 91.39 90.93 
B 23.22 88.75 87.16 86.73 87.16 86.84 
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C 23.81 85.76 84.27 82.25 84.27 82.89 

               (*) Average training time per sample training record in the millisecond. 

So far our investigation has focused on the raw datasets, i.e. Yelp 2017 and Amazon. To investigate whether 

our approach can be applied to a manually prepared dataset, we conducted experiments using the LMR dataset. 

Recall that, compared to Yelp 2017, the LMR dataset [55] is small, but it has been prepared and designed for 

research purposes. We conducted 10-fold cross-validation using all of its records (50,000) based on the previously 

obtained best single classifiers (Table 3) and Bagging ensembles (Table 5). We varied the number of features from 

250 to a maximum of 44,346. These features were selected based on their TF values. The accuracy of these 

classifiers and with different features are shown in Error! Reference source not found.. For a direct comparison, 

we also ran experiments using 50,000 records selected randomly from the Yelp 2017 dataset with features varying 

from 250 to 50,000, as shown in Error! Reference source not found..  

 

 

Fig. 5. Accuracy (y-axis) vs the number of features (x-axis) for different classifiers based on the LMR dataset 

 

From Error! Reference source not found., we can see that the performance of LSVM for the LMR dataset is 

the worst among all three single classifiers. Having this classifier in Bagging does not increase the accuracy either. 

Meanwhile, the best accuracy is acquired by Bagging with MLP. We also observe that the increase in accuracy is 

marginal after 5,000 features. This observation is consistent with results obtained from the Yelp 2017 dataset.  
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Fig. 6.  Accuracy (y-axis) vs the number of features (x-axis) for different classifiers based on the Yelp 2017 dataset 

4.2. Experiments on Neutral Polarity  

In this experiment, we focus on detecting neutral polarity. Here we have added five more experimental types 

as set out below. 

a. Type D: negative reviews are reviews with 1-star rating; neutral reviews are those with 2- and 3-star ratings; and 

positive reviews are those with 4- or 5-star ratings. 

b. Type E: negative reviews are reviews with 1- and 2-star ratings; neutral reviews are those with 3- and 4-star 

ratings; and positive reviews are those with a 5-star rating. 

c. Type F: negative reviews are reviews with a 1-star rating; neutral reviews are those with 2-, 3-, and 4-star 

ratings; and positive reviews are those with a 5-star rating. 

d. Type G: Split star ratings into five sentiment polarities.  

e. Type H: negative reviews are reviews with a 1-star rating; neutral reviews are those with a 3-star rating; and 

positive reviews are those with a 5-star rating. That is, we exclude 2- and 4-star reviews from the experiments. 

 These experiments were conducted using Bagging Predictors with the three best single classifiers as base 

classifiers. We used the Yelp 2017 dataset for these experiments with the same classifier parameters as in previous 

experiments. The result are set out in Error! Reference source not found.. 

Error! Reference source not found. shows that a neutral rating (3 stars) for Type C has the lowest accuracy. 

Type C is 1 or 2 stars for negative polarity, 3 stars for neutral, and 4 or 5 stars as positive. This indicates that the 

trained classifiers are not quite capable of recognising ‘neutral’ reviews. Predicting neutral ratings is always more 

challenging because neutral reviews may not have an equal make up of positive and negative comments. Most of the 

time, neutral rating comments tend to skew towards one target class (positive or negative). This can be seen from the 

results of Types A and B, where we assumed the 3-star rating to be either negative or positive.  

As can be seen in Type D experiments, when the 2- and 3-star ratings are considered as neutral, the accuracy 

of 3-star rating increases significantly compared to Type C experiments where only 3-star reviews are considered 

neutral. However, the classification accuracy for 1- and 2-star then decreases. This is because many of the 1-star 

reviews are very similar to 2-star reviews and thus they are misclassified as neutral. Similarly, when 3- and 4-star 

reviews are assumed to be neutral (Type E), the accuracy of 3-star classification increases. These results strengthen 

the findings from previous experiments (with Types A, B, and C) which suggest that users who give a 3-star rating 

tend to provide more positive comments than negative ones. 

From the experiment we know that middle-rating stars (2 and 4) can increase accuracy when added to the 
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extreme ratings, i.e. to 1 or 5 stars or the neutral rating (3 stars). In C, D, E, and F types, we found that 2 stars can 

contribute to negative or neutral with similar effect, while the 4 star is more useful when applied to positive polarity. 

From these, we can conclude that people who give 2 stars can have negative or neutral opinions, while the majority 

of reviewers think that 4 stars is positive. 

In Type F experiments, we see that the accuracy of neutral polarity is significantly increased when we 

consider 2- and 4-star reviews as neutral. However, the accuracy for both positive and negative polarities then 

decreases. The reason for this is that 1- and 5-star reviews normally have similar features (review texts) to 2- and 4-

star reviews respectively. Users who provide 5-star ratings normally write similar reviews to those who provide 4-

star ratings. This phenomenon also appears for those who provide 1- and 2-star ratings. 

 

 

 

Table 11. Accuracy comparison between target types based on the Yelp 2017 review dataset 

Classifier 

Name 

Experiment  

Type 

Average  

Accuracy 

(%) 

Average accuracy of targets (%) Average accuracy of stars (%) 

Negative Neutral Positive 1 2 3 4 5 

Bagging 
(LSVM) 

A (12-345) 89.26 72.45  - 93.96  81.78  57.78  79.84  95.31  97.26  
B (123-45) 85.40 76.56  - 89.94  89.21  82.44  58.51  82.63  94.23  

C (12-3-45) 80.83 76.65  25.90  92.30  84.81  63.79  25.90  86.60  95.64  

D (1-23-45) 79.87 68.72 48.82 91.81 68.72 51.88 46.68 85.35 95.59 
E (12-34-5) 70.74 75.86 60.99 76.60 85.32 61.00 65.84 58.60 76.60 

F (1-234-5) 71.80 65.87 70.44 75.12 65.87 70.40 83.06 64.25 75.12 

 G (1-2-3-4-5) 61.33 - - - 74.11 38.21 40.63 48.14 75.85 
 H (1-3-5) 79.33 84.41 61.06 92.51 84.41 - 61.06 - 92.51 

Bagging 

(LR) 

A (12-345) 90.36 73.40 - 95.09 83.39 57.69 81.12 96.65 98.24 

B (123-45) 86.65 77.52 - 91.33 90.84 83.85 58.37 84.02 95.63 
C (12-3-45) 82.27 78.16 25.35 94.05 86.86 64.48 25.35 88.76 97.15 

D (1-23-45) 81.33 69.35 50.30 93.41 69.35 54.16 47.59 87.06 97.14 

E (12-34-5) 72.39 76.82 63.59 77.76 87.08 60.70 68.98 60.94 77.76 
F (1-234-5) 73.74 67.26 73.39 76.16 67.26 73.74 86.77 66.66 76.16 

 G (1-2-3-4-5) 61.30 - - - 72.48 27.76 30.62 45.81 82.38 

 H (1-3-5) 80.69 85.53 63.34 93.19 85.53 - 63.34 - 93.19 
Bagging 

(MLP) 

A (12-345) 91.21 77.32 - 95.09 86.96 62.14 81.79 96.59 98.09 

B (123-45) 87.47 80.43 - 91.08 92.89 86.05 62.72 84.01 95.24 

C (12-3-45) 83.39 81.02 34.67 93.08 89.51 67.65 34.67 87.37 96.43 
D (1-23-45) 82.28 73.19 55.98 92.24 73.19 59.09 53.79 85.66 96.07 

E (12-34-5) 73.35 78.79 66.70 76.25 88.17 63.93 70.65 64.75 76.25 
F (1-234-5) 74.69 72.07 74.72 75.46 72.07 73.28 86.52 69.40 75.46 

 G (1-2-3-4-5) 61.28 - - - 72.19 29.23 34.39 47.63 79.97 

 H (1-3-5) 82.59 87.27 67.71 92.78 87.27 - 67.71 - 92.78 

 

Type G experiments confirm that the extreme ratings, i.e. 1 and 5 stars, can be easily identified from the 

reviews as these are on the extremely disappointed or satisfied scale. We can see that the accuracy for other stars, i.e. 

2, 3, and 4 stars, suffers much. The drop of accuracy is because the opinions of users in between these stars are 

similar. This is an important finding, as the distinction between 2, 3, and 4 stars does not matter much as they are all 

considered neutral. The experiments of Type G also prove that predicting sentiment polarities to more than 3 

polarities using the raw dataset are difficult since the review texts of the neutral polarities tend to look similar to each 

other. When the 2- and 4-star reviews are excluded in Type H, the classifier’s accuracy for other stars (1, 3, and 5 

stars) improves significantly. This is because without 2- and 4-star reviews, reviews for each rating class are very 

distinctive and hence easier to classify. 
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4.3. Techniques to Improve Existing Experimental Results 

Several improvements can be made to the previous experiments. In this section, we explain these refinements, 

mainly in text pre-processing and feature-extraction techniques, which improve the outcomes. 

 

4.3.1  Experiment on BoW TF-IDF featuring  

 

In the previous experiments, we used BoW TF to extract features from the review texts. To improve the 

experimental outcomes, we now investigate the BoW TF-IDF technique to extract features. We conduct the 

experiments in the same manner as in Table 3 and Table 5 and use the same dataset. By comparing the results in 

Table 12 with those in Table 3 and Table 5, we observe that models based on TF-IDF features have similar 

performance accuracy (about 1% difference) compared to TF-based modelsError! Reference source not found.. 

Furthermore, for most classifiers in the experiments the training time is not significantly different between the TF 

and TF-IDF methods. With the TF-IDF feature extraction technique, the training time of Bagging (LSVM) and 

Bagging (LR) decreases, although the decrease is insignificant. In terms of training performance, we observe that 

Bagging (MLP) needs more training time.  

Table 12. Results for TF-IDF featuring based on the Yelp 2017 review dataset 

Classifier 

Name 

Experiment 

Type 

Training 

Time  
(*) 

Maximum 

Accuracy 
(%) 

Average (%) 

Accuracy Precision Recall F-measure 

Bagging 

(LSVM) 

A 0.13 90.66  90.25   90.04  90.25  90.11  

B 0.15 86.70  86.29   86.20  86.29  86.23  
C 0.21 82.90  82.14   79.89  82.14  80.14  

Bagging 

(LR) 

A 0.28 90.44  89.98   89.71  89.98  89.57  

B 0.19 86.85  86.45   86.32  86.45  86.29  
C 0.43 82.27  81.83   79.39  81.83  78.83  

Bagging 
(MLP) 

A 17.89 91.45  90.56   90.41  90.56  90.47  

B 24.80 88.06  86.57   86.53  86.57  86.54  

C 26.10 83.81  82.59   81.18  82.59  81.65  

   (*) Average training time per sample training record in millisecond. 

 

Table 13. Comparison of training time and average accuracy between TF and TF-IDF featuring 

Classifier Name Experiment Type 
Training Time (*) Average Accuracy (%) 

TF TF-IDF TF TF-IDF 

Bagging 
(LSVM) 

A 0.50 0.13 89.26  90.25  

B 0.32 0.15 85.40  86.29  

C 1.10 0.21 80.83  82.14  

Bagging 
(LR) 

A 0.70 0.28 90.36  89.98  

B 0.23 0.19 86.65  86.45 

C 0.64 0.43 82.27  81.83  

Bagging 
(MLP) 

A 7.18 17.89 91.21  90.56  

B 6.59 24.80 87.47  86.57  

C 8.01 26.10 83.39  82.59  

(*) Average training time per sample training record in millisecond;  

    /  = increase/decrease 

 

4.3.2 Experiments on negation, word elongation, and part of speech lemmatisation 

 

Negation words can affect the polarity of a whole sentence [125]. Here we process negation words such as 

“don’t”, “doesn’t”, “shouldn’t”, etc., back to their basic words such as “do not”, “does not”, ‘should not’, etc. By 

returning them to their basic form, ‘not’, we reduce the diversity of the texts. Word elongation or word-stretchers 

such as “Yesss”, “Fiiine”, “Yoouu”, etc. add to the subjectivity value of a sentence since people who do so are trying 
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to show emotion in the text [126]. Word elongation can also increase the diversity of the words in data training, and 

make the classifiers harder to train. We therefore correct them back to their basic words using Peter Norvig’s code 

for spelling correction [127]. The code is based on probability theory in which the chosen word is compared to words 

from a large text source and the most likely candidate is chosen as the replacement. We use this same correction 

method to correct “n’t” to “not” after separating it from its basic word, e.g. “don’t” → “do n’t”.  

We also replaced 3-step lemmatisation using Part of Speech (POS) lemmatisation. The 3-step lemmatisation 

that we previously used forced all words to be one of their basic forms, disregarding the POS type of the words. Back 

then, we thought it would make the word more general and reduce diversification. However, POS tagging is 

implemented in some sentiment polarisation researches, since some parts of speech express polarity [125]. To 

implement POS lemmatisation, we first tag the POS type of the words, and after that the words are lemmatised to 

their basic forms based on their POS tags. For tagging and lemmatising, we used a component from NLTK [64]. The 

design of our new pre-processing can be seen in Fig. 7. The results of the additional pre-processing are set out in 

Table 14 (the BoW-Unigram column). When we compare these results to those of the previous pre-processing 

version (Error! Reference source not found.Error! Reference source not found.), the additional pre-processing 

step can increase accuracy and other measurements from 0.5% to 1% or more. However, when we look in more 

detail, there is no increase in accuracy and other measurements for Type H. In Type H experiments we used a special 

sub-dataset in which we isolated the negative (1-star), neutral (3-star), and positive (5-star) ratings by deleting 2- and 

4-star reviews. 

Word
tokenisation

Stopword 
removal 

Punctuation 
& number 
removal

Load review 
texts

Save 
processed 

review texts

Start

End

Join words 
to a string

Negative 
word 
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correction

 Noun  

Lemmatisation 

POS?

 Verb  

Lemmatisation 

 Adverb  

Lemmatisation 

 Adjective  

Lemmatisation 

 Adj. Satellite  

Lemmatisation 

POS Lemmatisation

 

 Fig. 7. Pre-processing step with negation word, word elongation, and POS lemmatisation 

 

4.3.3 Experiments on N-gram Bag of Words and sentiment lexicons 

 

In this section, we explore the possibility of using N-gram words as features. Compared to the unigram words 

from the previous experiments, here we use bigram and trigram words. We stop the N-gram experiments with 

trigrams because we could not find 4-gram word features when we processed the dataset for feature extraction. The 

results of these experiments are in Table 14, where we also show results of using sentiment lexicons as features. 

Here we used two sentiment lexicons, SentiWordNet 3.0 [37] and SenticNet 4 [38]. Sentiment lexicon is a bag of 

sentiment words which were prepared by experts and given sentiment scores. The scores are given positive/neutral/ 

negative values in SentiWordNet 3.0, and positive/negative values in SenticNet 4. 
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Table 14. Accuracy of Bag of Words and two sentiment lexicons (%) 
Polarity  
Type 

Classifier Bag of Words SentiWordNet3 (bigram) SenticNet 4 (bigram) 

Unigram Bigram Trigram w. score w/o score w. score w/o score 

Type A Bagging (MLP) 91.75 92.03 92.05 91.12 91.70 91.48 91.52 

(12-345) Bagging (LR) 90.92 91.34 91.23 90.23 91.01 90.60 90.92 

  Bagging (LSVM) 89.76 90.49 90.29 90.28 90.05 89.93 89.90 
Type B Bagging (MLP) 88.26 88.69 88.77 88.10 88.02 87.63 87.57 

(123-45) Bagging (LR) 87.34 87.78 87.67 87.07 87.22 86.42 86.67 

  Bagging (LSVM) 86.49 87.10 86.97 86.31 86.41 85.90 85.90 

2-Polarity Avg. Accuracy 89.09 89.57 89.50 88.85 89.07 88.66 88.75 

Type C Bagging (MLP) 84.06 84.57 84.57 82.97 83.83 83.45 83.33 

(12-3-45) Bagging (LR) 82.93 83.49 83.37 81.94 82.90 82.10 82.45 

  Bagging (LSVM) 81.86 82.81 82.64 81.95 82.04 81.49 81.56 
Type H Bagging (MLP) 82.58 82.95 83.23 80.23 82.08 80.82 80.88 

(1-3-5) Bagging (LR) 80.70 81.51 81.37 77.34 80.35 78.41 79.04 

  Bagging (LSVM) 79.33 80.28 80.09 77.63 79.14 77.57 77.86 

3-Polarity Avg. Accuracy 81.91 82.60 82.55 80.34 81.72 80.64 80.85 

Overall Avg. Accuracy 85.50 86.09 86.02 84.60 85.40 84.65 84.80 

 

From these experiments we can see that including two words or multiple words (bigram or trigram) as the 

features has a positive effect compared to single words (unigram), but it is not large (only 0.5%). This small effect is 

because the number of bigram words in the features is not significant compared to the unigram, and even less 

compared to the trigram. The number of trigrams in the features is so small so that they do not increase the accuracy, 

and sometimes they even have a slightly negative effect.    

Instead of the bag of words, we also investigated the effect of using sentiment lexicon as the features. 

Sentiment lexicon is the group of special words with a connection to opinions or emotions. Some researchers have 

made an effort to build sentiment lexicons in order to use it for detecting sentiment in a text. There is an advantage to 

using a sentiment lexicon compared to a bag of words. In the bag of words model, we need to create a bag of words 

feature every time we want to train the classifier. It means the features we produce depend on a certain set of data. 

On the contrary, a sentiment lexicon is built with the intention of using it for general purpose sentiment analysis, so 

they are independent of the data set. Usually, a sentiment lexicon is created along with a set of fixed procedures. 

However, instead of using such procedures, here we investigated the performance of two well-known sentiment 

lexicons, SentiWordNet 3.0 and SenticNet 4, when used to train classifiers, and we have used this process to predict 

the sentiment of customer reviews. 

The experiments were done using a sentiment lexicon with a unigram, bigram, and trigram approach. There 

are 4-gram words (and more) in both sentiment lexicons; however, 4-gram words do not exist in the dataset we used. 

The results were consistent with BoW, where the unigram had slightly lower accuracy compared to the bigram, while 

the trigram was similar to the bigram. For comparison with the BoW, Table 14 shows the accuracy of bigram 

SentiWordNet 3.0 and SenticNet 4. On average, the results of the experiments using bigram sentiment lexicons were 

slightly worse than using the unigram BoW, especially when we included the sentiment score given by the authors as 

features. This is because when the scores are included, the features become more diverse. However, the small 

difference shows that the effect of sentiment scores in the features is not significant.     

In Table 14, the accuracy of bigram sentiment lexicons is lower than unigram BoW. When we investigated 

this in detail, for 2-polarity (Type A and Type B) the differences were small (0.2% to 0.4%), while for 3-polarity 

(Type C and Type H) the difference was more than 1% for SenticNet 4 (without score) and less than 0.2% for 

SentiWordNet 3.0. This shows that SenticNet 4 is less suitable for detecting 3-polarity than SentiWordNet 3.0. This 

is because SenticNet 4 consists only of positive and negative words. Furthermore, similar results were obtained when 

we compared the result of Type A to the results published in the original SenticNet 4 paper [38]. We therefore 

conclude that the SenticNet 4 lexicon can be used as features for training machine learning classifiers for sentiment 

analysis, giving the same result as the author’s method. The authors of SentiWordNet 3.0 did not test the method 

they proposed, so we could not do a comparison. However, based on the good results of our experiments in Table 13, 

we can conclude that SentiWordNet 3.0 can also be used as a feature base to train classifiers for sentiment analysis.  
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4.4 Predicting using Deep Learning 

Because of their good results, Deep Learning (DL) algorithms are a  machine learning tool that is now 

frequently used by researchers as classifiers or predictors. We have investigated several types of common DL tools 

such as Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Feed Forward DL (FFDL). 

FFDL is a multilayer perceptron which is implemented using a deep learning library such as Theano or Keras [128]. 

Here we used Keras to build DL models [67]. First, we ran small experiments using 10,000 records from the Yelp 

Reviews dataset based on 1000 features, two targets (Type 2), unigram, and 10-fold cross-validation. For the 

experiments, we built five models of one layer FFDL. We implemented the default setting of MLP in Table 2 to 

create the FFDL-Base. We also built three LSTM models (one of them was a combination of CNN and LSTM), two 

CNN models that we based on the Simple CNN model [129], and a Very Deep CNN model [52, 130]. The 

configuration of the DL models we used and the results are shown in Table 15, Table 16, and Table 17.  

 

 

Table 15. FFDL models, 10,000 records, 1000 features, Experiment Type A 

DL model Configuration 
Average (%) 

accuracy precision recall F1 

FFDL Base Dense(100, relu) - Dense(2, softmax) 87.43 87.41 87.43 87.40 

FFDL 1 Dense(1000, relu) - Dense(2, softmax) 87.72 87.65 87.72 87.66 
FFDL 2 Dense(6000, relu) - Dense(2, softmax) 87.81 87.74 87.81 87.75 

FFDL 3 Dense(12000, relu) - Dense(2, softmax) 88.04 87.97 88.04 87.97 

FFDL 4 Dense(18000, relu) - Dense(2, softmax) 88.09 88.02 88.09 88.02 

 

Table 16. LSTM models, 10,000 records, 1000 features, Experiment Type A 

DL model Configuration 
Average (%) 

accuracy precision recall F1 

LSTM 1 LSTM(100) - Dense(2, softmax) 66.72 61.42 66.72 56.16 
LSTM 2 LSTM(200) - Dense(2, softmax) 67.18 52.88 67.18 54.95 

CNN-LSTM 2 x Convolution(128, relu, kernel 3x3) - 

MaxPooling - LSTM(100) – Dense(2, 
softmax) 

68.00 65.73 68.01 60.00 

 

Table 17. CNN models, 10,000 records, 1000 features, Experiment Type A 

DL model Configuration 
Average (%) 

accuracy precision recall F1 

CNN model 1 2 x Convolution(32, relu, kernel 3x3) - MaxPooling -  

2 x Convolution(64, relu, kernel 3x3) - MaxPooling -  

Dense(512, relu) - Dense(2, softmax) 

83.31 83.16 83.31 83.13 

CNN model 2 2 x Convolution(32, relu, kernel 3x3) - MaxPooling -  

2 x Convolution(64, relu, kernel 3x3) - MaxPooling -  

2 x Convolution(128, relu, kernel 3x3) - MaxPooling -  

Dense(1024, relu) - Dense(512, relu) - Dense(2, softmax) 

82.69 82.70 82.69 82.66 

Very Deep 

CNN  [52, 130] 

2 x Convolution(64, relu, kernel 3x3) - MaxPooling -  

2 x Convolution(128, relu, kernel 3x3) - MaxPooling - 
3 x Convolution(256, relu, kernel 3x3) - MaxPooling -  

3 x Convolution(512, relu, kernel 3x3) - MaxPooling - 
3 x Convolution(512, relu, kernel 3x3) - MaxPooling - 

2 x Dense(4096, relu) - Dense(2, softmax) 

57.16 34.95 57.16 42.87 

 

From the experiments using small data (10,000 records), several interesting facts emerged. In FFDL (Table 

15) we can see that adding a neuron to the processing (hidden) layer increases the accuracy and other measurements, 

but the increase is minimal (0.3%). After reaching a particular point, the accuracy plateaus. Moreover, LSTM is not a 



23 

 

good choice for answering the problem and it achieved low accuracy (Table 16). Although adding more nodes to it 

can increase accuracy, in general LSTM performs much more poorly compared to other methods. We also conducted 

experiments with a combination of CNN and LSTM in which we added two convolution layers to learning and added 

more features before continuing to the LSTM layer. The result was better, since the addition of 2 convolution layers 

increased accuracy by more than 1% and also greatly increased precision and other measurements, although they 

were still lower than with other methods. This is reasonable, since while LSTM is usually good at predicting serial 

data such as time series, the nature of the data featuring that we applied is not serial but simply reflects the existence 

of words in the data and disregards their order. 

After the CNN-LSTM experiment, we took another approach: implementing Convolution layers which 

directly forwards the features from convolution layers to the predicted Dense layers (Table 17). For relatively small 

data sets, our CNN models performed well, although not better than the FFDL models. The more convolution layers 

we added, the worse the accuracy, and when we applied the Very Deep CNN setting the accuracy and other 

measurements fell below 50%. Our analysis differs from image processing in that the analysis of text reviews doesn’t 

need deep feature extraction. In text processing the text needs to be pre-processed, either with Word2Vec [131], 

Doc2Vec [132], or other techniques, to reformat the input to a fixed form. In our research, however, we used a 

combination of BoW and TF, so in terms of text processing, the input of DL is already in the form of features, and 

doesn’t need very deep featuring.  

Finally, taking the models which showed good results, we conducted experiments in the same Big Data 

setting as used in previous experiments (500,000 records, 5000 features, unigram, Type A). The aim was to compare 

DL models with the best classifier found so far (Table 3 and Table 5, experiment Type A). The results of these 

experiments are set out in Table 18. 

Table 18. Deep Learning models, 500,000 records, 5000 features, Type A 

DL model Configuration 
Average (%) 

accuracy precision recall F1 

FFDL Base Dense(100, relu) - Dense(2, softmax) 90.62 90.58 90.62 90.60 
CNN  

model 1 

2 x Convolution(32, relu, kernel 3x3) - MaxPooling -  

2 x Convolution(64, relu, kernel 3x3) - MaxPooling - 

Dense(512, relu) - Dense(2, softmax) 

90.28 90.12 90.28 90.17 

CNN  

model 2 

2 x Convolution(32, relu, kernel 3x3) - MaxPooling -  

2 x Convolution(64, relu, kernel 3x3) - MaxPooling -  

2 x Convolution(128, relu, kernel 3x3) - MaxPooling -  
Dense(1024, relu) - Dense(512, relu) – Dense(2, softmax) 

91.30 91.10 91.30 91.13 

 

It is well known that DL performs better with Big Data. Therefore, we applied FFDL-Base, CNN model 1, 

and CNN model 2 to large-scale review data. Table 18 confirms that the FFDL-Base models give a similar result to 

MLP in previous experiments. On the other hand, CNN performed well in big data, so that the  CNN model 1 that we 

built (based on a simple CNN model [129]) could reach an accuracy and other measurements similar to MLP. CNN 

model 2 achieved a better result, one that was similar to the Bagging (MLP). From these experiments, we conclude 

that DL, especially CNN, can be effectively used for sentiment polarity prediction since the accuracies achieved are 

similar to the best machine learning that we previously found (Table 3 and Table 5).   

 

5.  CONCLUSION AND FUTURE WORK 

Ratings and reviews are important in order that potential customers can make purchase decisions and that 

sellers can obtain feedback on their products. To classify the massive amount of reviews into different polarities, this 

study has proposed a comparison framework which makes use of various machine learning and feature extraction 

techniques. Using the framework, comparison experiments were carried out using three real-world review datasets: 

the Yelp 2017 review data, Amazon product reviews, and LMRs. We investigated several feature extraction methods 

including TF or TF-IDF in a BoW approach, N-gram terms, and sentiment lexicons.  

From these experiments we conclude that having more features or data in the training set does not necessarily 
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improve model performance. After reaching a certain threshold, the model performance plateaus. Our experiments 

indicate that 5,000 features and 500,000 reviews are the cut-off points for polarity prediction. The use of negation, 

correcting for word elongation, and POS lemmatisation can increase accuracy by 1%, while N-gram word feature 

extraction can increase accuracy slightly further. However, the N-gram method is limited to bigram words since 

words longer than bigram are rare in real-world datasets. Our experiments using sentiment lexicons for feature 

extraction show that accuracy (and associated measurements) are slightly lower than unigram BoW. But the success 

of sentiment lexicons for feature extraction is noteworthy, since sentiment lexicons are independent of the sample 

data whereas the BoW technique depends strongly on the sample. 

We identified three single classifiers – the LR, LSVM, and MLP – which had better performance compared to 

others. They obtained accuracy, precision, recall, and F-measure scores above 90% or more for Type A experiments, 

above 87% for Type B experiments, and above 82% for Type C experiments in both the Yelp 2017 and Amazon 

review datasets. Further improvements could be achieved by utilising these three classifiers as the base classifiers in 

ensemble models. The implementation of DL, especially CNN for sentiment prediction, is possible since their 

models achieve similar measurements scores with ML classifiers and the ensemble.  For a smaller dataset like LMR, 

the highest accuracy is slightly lower (87%). However, the similar results when comparing a manually polarised 

dataset (LMR) and a raw real-world dataset (Yelp Reviews 2017) convinces us that it is possible to use the stars or 

rankings given by the writers of these reviews as the basis of accurately gauging sentiment polarity.  

We found that classifying neutral ratings (3 stars) is more challenging due to the fact that neutral reviews do 

not tend to have an equal distribution of positive and negative comments. In fact, we noticed that users who gave 3-

star ratings had a tendency to give more positive reviews. Further experiments on use of three polarities, i.e., Types 

D and E, strengthened the finding that users giving a 3-star rating tend to give more positive reviews. The Type G 

experiments, with results for 5-polarity detection, show that creating a classifying system of more than 3-polarity is 

quite difficult, since the contents of some middle opinions (2, 3, and 4 stars) are vague and quite similar to each 

other. In our Type H experiments, we found that the accuracy of neutral polarity can be increased further if the in-

between stars (2 and 4 stars) are removed. Three polarities can be predicted quite well, with an average overall 

accuracy of more than 85% and neutral polarity accuracy of more than 60%.   

In future work, we plan to explore advanced feature selection techniques and bio-inspired optimisation 

algorithms which might help to improve the performance of the machine learning models considered in this study, 

especially in classifying neutral reviews. 
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