
Multi-level particle swarm optimisation and its parallel version
for parameter optimisation of ensemble models: a case of sentiment
polarity prediction

Gregorius Satia Budhi1,2 • Raymond Chiong1 • Sandeep Dhakal1

Received: 9 September 2019 / Revised: 8 January 2020 / Accepted: 9 March 2020
� Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Ensemble learning is increasingly used in sentiment analysis. Determining the parameter settings of ensemble models,

however, is not easy. Besides its own parameters, an ensemble model has base-predictors that have their individual

parameters. Some ensemble models use a specific base-predictor and could be optimised using standard metaheuristics

such as the Particle Swarm Optimisation (PSO) approach. Optimising ensemble models with multiple base-predictor

candidates is more complicated and challenging, as there are multiple options to choose from. We therefore propose Multi-

Level PSO (ML-PSO) and Parallel ML-PSO (PML-PSO) to optimise the parameters of ensemble models, especially those

with multiple base-predictors, for sentiment analysis. The idea is to utilise multiple PSOs as particles of the main PSO. The

main PSO optimises ensemble-model parameters and determines the best base-predictor, whereas PSOs within it optimise

the corresponding base-predictor’s parameters. Experimental results using Bagging Predictors as the underlying ensemble

model show that ML-PSO can improve prediction accuracy, while PML-PSO is able to speed up the processing time and

further improve the accuracy.

Keywords Particle swarm optimisation � Parallelism � Machine learning � Sentiment analysis

1 Introduction

Sentiment polarity detection, or more generally known as

sentiment analysis, is the process of automatically and

systematically detecting the sentiment or opinion of a given

text. In addition to feature selection, the outcome of sen-

timent analysis primarily depends on the detection algo-

rithm applied [1–4]. The majority of methods used for

sentiment analysis belong to the machine learning domain.

These methods are usually applied to predict the sentiment

polarity of social media texts, online product reviews or

other kinds of texts [2–8]. Due to the extensive amount of

online texts such as product reviews, tweets and other

social media texts, a system capable of automated senti-

ment analysis is vital in the online environment [9, 10].

Analysis using machine learning generally begins with

training the machines to make them capable of discrimi-

nating the texts. The accuracy of the prediction model is

determined by the quality of this training process [4, 11],

and also how features of the text are extracted [12, 13].

However, acquiring the correct parameter settings for

machine learning models to obtain the desired accuracy is

challenging [14, 15]. Researchers usually apply either the

original set of parameters used by the authors of the

algorithms, improved settings suggested by other

researchers, or default settings of the software components.

These approaches, however, often do not produce optimal

results, since the parameter settings are not tuned to the

problem at hand.

Metaheuristics and nature-inspired algorithms [16–18],

such as swarm intelligence and evolutionary algorithms,

are regularly applied to optimise machine learning models.

Compared to other metaheuristic optimisation techniques,

particle swarm optimisation (PSO) offers advantages such

& Raymond Chiong

Raymond.Chiong@newcastle.edu.au

1 School of Electrical Engineering and Computing, The

University of Newcastle, Callaghan, NSW 2308, Australia

2 Informatics Department, Petra Christian University,

Surabaya 60236, Indonesia

123

Cluster Computing
https://doi.org/10.1007/s10586-020-03093-3(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03093-3&domain=pdf
https://doi.org/10.1007/s10586-020-03093-3

as easy implementation, rapid convergence, avoidance of

local optima, and is also computationally inexpensive

because of low memory and CPU speed requirements. It

has, therefore, been widely used in many research areas,

such as function optimisation [18, 19], fuel management

optimisation [20], energy-efficient scheduling [21], mali-

cious web domain identification [22, 23], image semantic

classification [24], and so on. Some examples of the use of

PSO for sentiment analysis include parameter optimisation

[1, 5, 14, 15, 25, 26], feature selection [1, 6, 12, 15], and

clustering [27], among others. Parallel processing power

has also been applied to speed up the PSO process

[20, 24, 28–30].

In this paper, we introduce two novel methods based on

PSO to obtain best possible parameter settings for an

ensemble of classifiers. The first method introduced, called

Multi-Level PSO (ML-PSO), comprises two levels. The

first level consists of a main PSO algorithm, while the

second level consists of multiple PSOs (hereafter referred

to as inner PSOs) representing the particles in the main

PSO. Each inner PSO can optimise a base-predictor, and

each classifier has different sets of parameters. The inner

PSOs report their results to the main PSO. The main PSO

then chooses the best classifier and the best possible setting

of its parameters. Due to the hierarchical nature of ML-

PSO, the computing resources required are multiplied by

the number of particles in each inner PSO and the number

of particles in the main PSO. Given that PSO algorithms

need a large number of particles and iterations to achieve

satisfactory results, the computing resources required by

ML-PSO can be enormous. To overcome this problem, we

propose the second method, called Parallel ML-PSO

(PML-PSO), which applies parallelism to ML-PSO. In

PML-PSO, each inner PSO is set as a small semi-inde-

pendent module that can be run separately in a different

thread or process (CPU) using a different set of resources,

and in parallel with other inner PSOs, thus reducing the

processing time. This approach also helps overcome the

processing-time limit usually applied to grid computing

facilities.

In our experiments, we use Bagging Predictors (BP) [31]

as the underlying ensemble model, with classifiers

including the Logistic Regression (LR) [32], Linear-kernel

Support Vector Machine (LSVM) [33], and Multilayer

Perceptron (MLP) [34] as base-predictor candidates for BP.

These classifiers were chosen because they have performed

well in previous studies on sentiment polarity prediction of

review texts (e.g., see [3–8]). Some studies have shown

that ensemble algorithms can further increase the accuracy

and other measurements [2, 4, 35], and BP was identified as

the best ensemble algorithm for the problem at hand in one

of these previous studies [4]. We also found that BP was

the most flexible ensemble model and can be paired with

any single classifier as its base-predictor. This flexibility

makes BP the most suitable ensemble-model candidate for

our proposed multi-level approach. The task of optimising

ensemble parameters, choosing the base-predictor from a

number of candidates, and optimising the parameters of the

base-predictor, can be considered a multi-level problem,

which needs to be solved in a multi-level manner. Our

experimental results show that ML-PSO can improve

sentiment polarity prediction by more than 14% compared

to BP using a default set of parameters and the default

base-predictors. Furthermore, PML-PSO is able to speed

up the processing time and enhance the performance of BP

following training with a large amount of data.

The rest of this paper is organised as follows. In the next

section, the related literature background on PSO for sen-

timent analysis is briefly reviewed. The design of ML-PSO

and PML-PSO is described in detail after that, followed by

experimental results and discussions about their perfor-

mance. Finally, we draw conclusion and highlight future

research directions.

2 Background

PSO, inspired by animal swarming behaviour such as bird

flocking or fish schooling, was originally developed by

Kennedy and Eberhart in 1995 [36]. Different variants of

the original PSO have been proposed by researchers over

the years to further improve the process or make it more

suitable for a particular problem. Examples include the

discrete binary PSO (BPSO) [37], accelerated PSO [38],

hybrid PSO with genetic operators [21] or new formula

addition [24, 39], and ensemble of multiple PSOs [40].

PSO has also been widely used in sentiment analysis.

Basari et al. [14] used a Support Vector Machine (SVM) to

detect the polarity of Twitter’s movie reviews, with its

parameters optimised by a PSO algorithm. Similarly, Li

et al. [1] used PSO to optimise the parameters of their

SVM, to detect the sentiment polarities of texts from a

Chinese-based social media website with user-generated

content. In addition, they used PSO to optimise feature

dimensions used for SVM training. Wahyudi and Kris-

tiyanti [41] utilised PSO for feature selection and combined

it with an SVM to classify smartphone product reviews.

Two types of modified BPSO were proposed by Shang

et al. [13] to select features for Chinese text sentiment

classification using three types of machine learning algo-

rithms (i.e., SVM, Naı̈ve Bayes (NB), and CART4.5).

Rapid PSO-based feature selection, which is similar to

accelerated PSO [38], was proposed by Kumar and Kumar

[42] for sentiment analysis. A combination of PSO and a

genetic algorithm (GA), named PSO-GA [43], was pro-

posed by Sonagi and Gore [12] to be implemented for

Cluster Computing

123

feature selection in sentiment analysis using an SVM

classifier.

Mikula and Machova implemented PSO and bare-bones

PSO to create annotations for a dictionary used for senti-

ment analysis in Slovak [44]. Meanwhile, Bansal and Kaur

[6] compared the performances of ant colony optimisation

and PSO for the optimisation of feature selection from

tweets; they used the optimised features in NB and SVM

classifiers to predict the sentiment polarity of the data.

More recently, Budhi et al. [26] proposed a multi-PSO

model to select the best classifier for sentiment analysis and

optimise the parameters of the selected classifier.

3 Methods

3.1 Particle swarm optimisation

We use basic PSO as the foundation of our methods [21]. It

can be implemented in a few lines of code and uses only

primitive mathematical operators. The PSO algorithm used

in our study is described as follows:

Algorithm 1 Basic PSO
1. Initialise the particles’ positions and velocities randomly. Initialise each particle’s personal best (Pb) and the swarm’s

global best (Gb);

2. Update the particles’ positions using Eq. 1 and Eq. 2:

3. = −1 + 1 11(
−1- −1) + 2 12(

−1- −1) (1)

4. = −1 + { , } (2)

5. Update Pb and Gb;

6. Update the inertia-weight, w, randomly;

7. If terminating criteria are met, stop and report Gb; else go to step 2.

In Algorithm 1, Ut
lq, Pb

t
lq, Gb

t
lq and vtlq represent the

current position, personal best position Pb, global best

position Gb, and the velocity of particle l at dimension q

and iteration t, respectively; rnd11 and rnd12 are random

values from 0 to 1; c1 and c2 are the weights for regulating

the influence of Pb and Gb; w is the inertia weight for

balancing personal and global exploration abilities of the

swarm, and Vmax is the maximum velocity to stop the

particle from moving beyond its limitation [21].

3.2 Classifiers

While the proposed method can apply any classifier for

sentiment analysis, in our current study, we opt for the

three best classifiers identified by prior experiments [4],

namely the LR, SVM, and MLP. We also investigate an

ensemble of classifier algorithms, using BP, which was

identified as the best ensemble algorithm for the problem at

hand [4], as the underlying model. BP uses several single

predictors to build a cluster of predictors, and is commonly

adopted in many areas [35, 45]. These predictors are

trained through a bootstrapping process that replicates the

training set. BP predicts a class using plurality voting [31].

In addition to the three classifiers mentioned above, we

also include Classification And Regression Trees (CART)

and Nearest Neighbour (NNb) algorithms, since they are

the default base-predictors for BP [31].

LR is a member of the generalised linear model family

created by Nelder and Wedderburn in 1972 [46], and

improved by Hastie and Tibshirani in 1990 [47]. Traditional

linear models are limited to using continuous and normally

distributed variables, which is not always desirable. The

generalised linear models overcome this problem by using

non-normal dependent variables [48, 49]. In LR analysis, the

dependent variables can either be unordered polytomous

(polytomous nominal) or ordered polytomous (polytomous

ordinal); while the independent variables (predictors) can

either be interval/ratio variables or dummy variables for

representing a limited number of categories [32].

The SVM learns from a training dataset and generalises

for correct predictions on unseen data. It works by sepa-

rating a hyperplane and maximises the separation distance.

Larger the margin, lower the error generated by the clas-

sifier [33]. SVMs are widely used in many research areas

[50–55]. In this study, we consider the LSVM, as previous

studies have found it to perform better than other types of

kernels (e.g., see [4]).

The MLP is a feedforward artificial neural network

normally used as a supervised model for pattern recogni-

tion and classification [56]. This model minimises the error

in its results by computing the weights in its network. The

algorithm continually updates the weights to achieve the

best configuration and consists of two phases: feed-forward

and backpropagation. In the feed-forward phase, training

data is forwarded to produce an output, then the difference

Cluster Computing

123

between the real output and desired target is calculated to

produce an error. This error is then used to update the

weights accordingly [34]. This algorithm has been used and

improved by researchers in different areas [22, 57–62].

In the original BP ensemble, CART and NNb algorithms

were used as the base-predictors [31]. CART or the Deci-

sion Tree classifier was developed by Quinlan [63] based

on Hunt’s algorithm [64]. As the name suggests, it is a tree-

like model, creating decision trees for classification and

prediction purposes. This classifier is a useful explanatory

tool for expressing the cause and effect chain [65]. It has

been used for text classification [66, 67] and many other

applications [68, 69]. This algorithm is typically used as a

base-predictor for ensemble methods [31, 70, 71], and is

also widely used for solving classification and regression

problems. Similarly, the NNb is a long-established algo-

rithm that is often used to estimate an unknown sample

using the closest instances [72]. This algorithm is still

widely used [22] and regularly improved [73].

3.3 Multi-level PSO

The proposed method, ML-PSO, can be seen in Fig. 1. By

design, this method consists of two levels. The first level

has a main PSO, whose particles are PSOs themselves

(called inner PSOs). We use basic PSO from Kennedy and

Eberhart [36] for both the main and inner PSOs. However,

they can be easily replaced by other PSO variants if

required. It is also possible to create an ensemble of PSOs

from different variants of PSO algorithms as suggested by

Lynn and Suganthan [40]. The inner PSOs (particles of the

main PSO) work independently of each other and report

their results to the main PSO for the adjustment of its Pb

and Gb values. Therefore, different types of PSOs can be

used for each particle in the main PSO. However, for

simplicity and easier tracking, the same type of PSO is

used for the particles of the main PSO in this study. The

purpose of the main PSO is to achieve the best possible

parameters of the ensemble classifier (i.e., BP), and con-

currently utilise the inner PSOs to choose the best base-

predictor for the ensemble and optimise the parameters of

this chosen base-predictor.

Algorithm 2 Main PSO of ML-PSO
1. Create particles in the inner PSOs;

2. Initialise, with random values, the particles’ positions, velocities, and personal best (Pb); and the swarm’s global best

(Gb) for the main PSO;

3. For each particle:

4. Calculate the current fitness value by calling the inner PSO function;

5. Update the particle’s Pb and the Gb, if the current fitness value is better;

6. For each particle:

7. Update their velocity and position using Eq. 1 and Eq. 2;

8. Update the inertia-weight, w, randomly;

9. If the particles’ iterations exceed the maximum number of iteration or terminating criteria are met, stop and report Gb;

else go to step 3;

Algorithm 3 Inner PSOs of ML-PSO
1. Create the particles. Initialise, with random values, their positions, velocities, and Pb; and the swarm’s Gb;

2. For each particle:

3. Calculate the current fitness value;

4. Update Pb and Gb, if the current fitness value is better;

5. For each particle:

6. Update their velocity and position using Eq. 1 and Eq. 2;

7. Update the inertia-weight, w, randomly;

8. If particles’ iterations exceed the maximum number of iterations or terminating criteria are met, return Gb to the caller

(Main PSO); else go to step 2;

Cluster Computing

123

After data preparation, the main PSO creates its PSO

particles randomly, following which a classifier is assigned

to each PSO particle to be processed as a base-predictor

candidate. For instance, if the number of particles is 10 and

given three classifiers to be investigated in our case—

namely the LR, LSVM and MLP—these classifiers are

distributed evenly among the PSO particles using a simple

loop (4 PSOs for the LR, 3 PSOs for the LSVM, and 3

PSOs for the MLP). Each inner PSO runs independently

without affecting the other inner PSOs. After an inner PSO

process is terminated, it reports its Gb result to the main

PSO, which uses this information to adjust the Pb of the

particle and its own Gb. The particle initiates further inner

PSO runs until the iterations are complete. The number of

particles and iterations of main and inner PSOs can be set

individually at the beginning of the process. The intention

is to separate the optimisation process of ensemble

parameters in the main PSO and parameter optimisation of

the base-predictors of this ensemble in the inner PSOs. The

reason for separation is that each predictor/classifier can-

didate has a different set of parameters. It is impossible to

combine optimisation of the ensemble parameters and

optimisation of the base-predictor candidate’s parameters,

since the number of parameters of each classifier is dif-

ferent (see the examples in Table 1).

Each inner PSO may optimise a different classifier, and

each classifier has different sets of parameters. Initially, the

classifier’s parameters are set randomly and are used as the

location and velocity vectors of the PSO. In each iteration,

each particle calls the classifier assigned to it for evaluation

using its current location vector as the classifier’s param-

eters. Once the classifier completes its training and testing

processes, it reports the measurement results (e.g., accu-

racy, precision, recall, F-measure) back to the PSO’s par-

ticles for evaluation. Then, based on the evaluation results

(the Pb and Gb vectors), each particle adjusts its velocity

and location vectors. When all the particles have either

completed their iterations or met their termination criteria,

the inner PSOs send their classifier’s identity, Gb vector

and measurement values to their corresponding particle in

the main PSO. The inner PSOs then use this information to

adjust their velocity and location, and update the Pb and

Gb. If the iterations are not completed (or termination

criteria are not met), the particle will initiate another inner

PSO and so on. Once the overall process is completed, the

method reports the Gb set for the main PSO, which consists

of its measurement value, ensemble-optimised parameters,

the best base-predictor choice, and the optimised parame-

ters of this base-predictor. See Algorithms 2 and 3 for

details of the main PSO and inner PSOs, respectively.

Main PSO (Cluster of PSOs)
Op�mise ensemble-model
parameters (e.g., BP)

Inner PSO
Op�mise single-classifier
parameters (e.g., LR-1)

Inner PSO
Op�mise single-classifier
parameters (e.g., LSVM-1)

Inner PSO
Op�mise single-classifier
parameters (e.g., MLP-1)

Inner PSO
Op�mise single-classifier
parameters (e.g., LR-2)

Inner PSO
Op�mise single-classifier
parameters (e.g., LSVM-2)

Fig. 1 Design of ML-PSO

Cluster Computing

123

It should be noted that the ML-PSO in this study con-

sists of two levels because it is used to optimise ensemble

parameters, select the base-predictor for this ensemble, and

optimise the parameters of the selected predictor. However,

for more complex problems, and depending on the problem

Table 1 Parameters of classifiers to be optimised

Classifier Parameter Description Type Values

LSVM C Inverse of regularisation strength Floating

point

0.1–1.0

Multi-class

strategy

The multi-class strategy used if y contains more than two classes Nominal 0 = ‘ovr’; 1 = ‘crammer

singer’

Intercept scaling Intercept scaling is used to lessen the effect of regularisation on

intercept (synthetic feature weight)

Floating

point

0.1–1.0

Max. Iteration The maximum number of iterations to be run Integer 100–3000

LR C The inverse of regularisation strength Floating

point

0.1–1.0

Solver Algorithm to use for optimisation Nominal 0 = ‘newton-cg’;

1 = ‘lbfgs’;

2 = ‘liblinear’

3 = ‘sag’

Max. Iteration The maximum number of iterations taken for the solvers to converge Integer 50–300

MLP Number of hidden

layers

The number of hidden layers Integer 1–3

Number of hidden

neurons

The number of hidden layer neurons; the number of neurons can be

different for each hidden layer

Integer 50–3000

Activation Activation function for the hidden layer Nominal 0 = ‘identity’ [f(x) = x]

1 = ‘logistic’ [f(x) = 1 /

(1 ? exp(-x))]

2 = ‘tanh’ [f(x) = tanh(x)]

3 = ‘relu’ [f(x) = max(0,

x)]

Solver The solver for weight optimisation Nominal 0 = ‘lbfgs’; 1 = ‘sgd’;

2 = ‘adam’

Learning rate The learning rate used when updating network weights Floating

Point

0.0001—0.05

Shuffle Whether to shuffle samples in each iteration Boolean 0 = False; 1 = True

Early stopping Whether to use early stopping to terminate training when the

validation score is not improving

Boolean 0 = False; 1 = True

Beta 1 The exponential decay rate for estimates of the first-moment vector of

Adam solver

Floating

point

0.5–0.99999

Beta 2 The exponential decay rate for estimates of the second-moment

vector of Adam solver

Floating

point

0.5–0.99999

BP Base estimator Predictor/classifier used to build the ensemble Classifier 0 = LR; 1 = LSVM;

2 = MLP

N estimators The number of base estimators in the ensemble Integer 1–30

Max. samples The number of samples to draw from the dataset to train each base

estimator

(n_samples = max_samples * total_samples)

Floating

point

0.3–1.0

Max. features The number of features to draw from a set of features to train each

base estimator

(n_features = max_features * total_features)

Floating

point

0.2–1.0

Bootstrap Whether samples are drawn with replacement Boolean 0 = False; 1 = True

Bootstrap features Whether features are drawn with replacement Boolean 0 = False; 1 = True

Cluster Computing

123

at hand, it can easily be expanded to comprise up to

n levels.

3.4 Parallel multi-level PSO

The general problem with PSO and other nature-inspired

optimisation algorithms is the large number of iterations

required to simulate the ‘evolution’ process, resulting in

long runtime. Approaches to overcome this problem

include the simplification of the entire process, application

of simpler equations, or parallelism [20, 28, 29, 38, 39, 42].

We utilise parallelism to design a parallel version of ML-

PSO, PML-PSO in short, with the intention of speeding up

the optimisation process. See Fig. 2 for a high-level rep-

resentation of the method. The approach has been specifi-

cally designed to utilise grid computing facilities, such as

the high-performance computing (HPC) facilities at the

University of Newcastle (UoN), Australia. While PML-

PSO has the same fundamental idea as ML-PSO, i.e., the

utilisation of multiple levels of PSOs, it has been rede-

signed and rewritten to make the best use of parallelism in

grid computing facilities. In any grid computing facility,

each node is considered as a single CPU running inde-

pendently of and in parallel with other nodes. The nodes do

not share the RAM but the data storage. Each job/script

submitted by a user is queued in a central job queue and is

assigned to a CPU whenever one is free. Therefore, to fully

utilise the power of HPC, PML-PSO is composed of sev-

eral small programs that recursively call each other, as

illustrated in Fig. 3.

H
P
C

Main PSO

Inner PSOs

Data
storage

Fig. 2 Design of PML-PSO

1st Component
Ini�alisa�on and

preparing the dataset

2nd Component
Main PSO

3rd Component
Inner PSO

3rd Component
Inner PSO

3rd Component
Inner PSO

3rd Component
Inner PSO

2nd Component
Main PSO

2nd Component
Main PSO

2nd Component
Main PSO

Start

End2nd Component
Main PSO

Fig. 3 PML-PSO processes

Algorithm 4 First Component of PML-PSO
1. Prepare all settings;

2. Create the Settings and Lv1Gbest files (Lv1Gbest = -1) to save all settings and Gb of main PSO, respectively;

3. Create and queue a job for the second component and stop;

Cluster Computing

123

Algorithm 5 Second Component of PML-PSO
//The Second Component is used to handle the process of main PSO in PML-PSO
1. Load the Settings and Lv1Gbest files;

2. If this job is created by the First Component:

3. Create n particles and set all their attributes as assigned in the settings;

4. Create n Lv1ParticleClass files to save the n particles and all their attributes;

5. Create n Lv1ParticleResult files with value -1;

6. Create and queue n jobs for the Third Component and stop.

7. Else if this job is created by the Third Component:

8. particle = load the appropriate Lv1ParticleClass file;

9. Lv1Gbest = load the Lv1Gbest file;

10. If particle.iteration > particle.maxIteration or terminating criteria are met:

11. Write Lv1Gbest to a report file then stop;

//This is the end of this particle’s cycle. Once all main PSO particles complete their cycles, the last report of
Lv1Gbest in the report file is the expected solution

12. Else:

13. particle.currentFitness = load the Lv1ParticleResult file;

14. Update particle.pbest with particle.currentFitness if particle.currentFitness > particle.pbest;

15. Update Lv1Gbest with particle.currentFitness if particle.currentFitness > Lv1GBest;

16. Update particle.velocity and particle.position using Eq. 1 and Eq. 2;

17. Increment particle.iteration;

18. Update the particleClass and Lv1Gbest files;

19. Create and queue a Third Component job for this particular particle and stop.

// The Second Component calls the Third Component for another round of inner PSOs. This instruction is similar
with “Calculate” in the main PSO function of ML-PSO

Algorithm 6 Third Component of PML-PSO
//The Third Component is used to handle the process of inner PSOs in PML-PSO
1. Load the appropriate Lv1ParticleResult and Lv1ParticleClass files for setting parameters of the job

2. Create all particles. Then initialise, with random values, the particles’ positions, velocities, and personal best (Pb), and

the swarm’s global best (Gb);

3. For each particle:

4. Calculate the current fitness value;

5. Update Pb (particle) and Gb, if the current fitness value is better;

6. For each particle:

7. Update their velocities and positions using Eq. 1 and Eq. 2;

8. Update the inertia-weight, w, randomly;

9. If the particles’ iterations exceed the maximum number of iterations or terminating criteria are met:

10. If Gb is better than the Lv1ParticleResult file value, update the Lv1ParticleResult file;

11. Create and queue a Second Component job corresponding to this particular particle and stop.

//By creating the Second Component, this Third Component calls the main PSO to continue its iteration or stop when
it completes the maximum number of iterations or when the terminating criteria are met.

PML-PSO consists of three different components, and

each has been coded separately. The first component pre-

pares the dataset, classifiers to be used in the process, and

settings such as the number of particles and total iterations

of both the main PSO and inner PSOs. Once the prepara-

tion phase has completed, this component creates and

queues the job for the second component, which handles

the main PSO. When the job for the second component is

run on HPC, it creates and queues several jobs for the third

component, corresponding to the particles of the main

PSO. The jobs created for the third component represent

the inner PSOs in ML-PSO. Each such job continuously

updates its Pb and Gb values, adjusts the velocity and

position of each particle, and so on until the number of

scheduled iterations is completed or the termination criteria

are met. Multithreading is utilised in the third component

to speed up the entire process.

Once an inner PSO process has completed, its corre-

sponding component (i.e., the third component) creates and

queues a job for its parent (second) component using the

available template. When this second component job is run,

it updates Pb of the corresponding particle (i.e., the inner

PSO), and Gb of the main PSO, and finally adjusts the

velocity and position of the particle. Following this, if the

number of iterations set for this particle (i.e., the inner

PSO) has been completed or the termination criteria are

met, the process for the particle is terminated; otherwise,

another job for the next iteration of the inner PSO (i.e., the

third component) is created and queued. The third com-

ponent, thus created, will run as described earlier and ter-

minates by creating a job for the parent (second)

Cluster Computing

123

component. Thus, the second and third components are

designed to call each other in a double recursive fashion.

The communication between the components, such as

passing parameters and global variables for Pb and Gb, is

done by saving them on several temporary files in a com-

mon data storage on the HPC. Theoretically, all particles in

the main PSO will run in parallel without waiting for the

other particles to complete. Therefore, in an ideal situation,

where the HPC’s CPUs immediately serve all jobs at the

same time, the processing time of the main PSO is equal to

the longest processing time of its particles; thus solving the

problem of long runtime. See Algorithms 4, 5 and 6 for

details of the first, second and third components,

respectively.

4 Experiments and results

As discussed earlier, in our experiments, we used the LR,

LSVM and MLP as base-predictors of BP. In addition, we

also compared the results with those of CART and NNb

algorithms, which are the default base-predictors for BP

[31]. It is worth noting that other types of ensemble mod-

els, such as Gradient Boosting (GBo) [74] and Random

Forest (RF) [70], are limited to using CART as their base-

predictor. They were, therefore, not considered suitable for

our current study. Another popular ensemble model,

Adaptive Boosting (AB) [75], which has more than one

suitable base-predictor, cannot use the MLP as its base-

predictor [4]; we also found its performance for sentiment

analysis to be inferior to BP [4].

The parameters to be optimised for each classifier can be

found in Table 1. In order to facilitate comparison with

results of previous experiments, fixed settings for the inner

PSOs were used. These settings are: 15 particles and 30

iterations for each particle; c1 = c2 = 1.49445; and a ran-

dom number for w (0.5–0.9) generated every time the

velocity was updated. Regarding the dataset, 1000 records

from the Yelp 2017 review dataset [76] and 1000 features

of two polarities (negative/positive) were used. Since the

Yelp review dataset is an unlabelled dataset, we used star

ratings given by its reviewers as the basis for assigning

negative (1 & 2 stars) and positive (3, 4 and 5 stars)

polarities. For detailed information about this decision,

please refer to [4]. We used 10-fold cross validation for

training and testing every classifier in the inner PSOs

(particles of the main PSO).

4.1 Experiments on ML-PSO

The first series of experiments was conducted by varying

the number of particles in the main PSO from 5 to 50, and

each particle was run for 10 iterations. Fitness of each

particle was measured using the accuracy achieved with the

parameter settings of the classifiers. The maximum runtime

of each job was limited to 400 h (for the UoN’s HPC

facility), and the maximum RAM available to each job was

120 Gigabytes. Detailed results of each process were

recorded, including the Gb of every particle in the main

PSO, with each particle being an inner PSO.

Results in Table 2 show that parameters determined by

ML-PSO, using only 5 particles for the main PSO, out-

perform the default parameters by a minimum of 1.6% and

Table 2 Accuracies of BP using default parameters versus ML-PSO with 5 particles and 10 iterations for each particle

Experiment Default parameters ML-PSO (5 particles)

GBo AB RF BP (CART)a BP (NNb)a BP (LR) BP (LSVM) BP (MLP) BP (LR) BP (LSVM) BP (MLP)

1 0.821 0.803 0.753 0.717 0.626 0.827 0.782 0.840 0.846 0.828 0.860

2 0.823 0.780 0.762 0.706 0.609 0.832 0.788 0.851 0.850 0.819 0.857

3 0.813 0.799 0.744 0.729 0.619 0.835 0.828 0.847 0.844 0.829 0.863

4 0.818 0.782 0.756 0.724 0.634 0.839 0.781 0.837 0.848 0.825 0.855

5 0.825 0.800 0.764 0.726 0.606 0.834 0.795 0.852 0.845 0.833 0.869

6 0.823 0.789 0.744 0.729 0.628 0.820 0.788 0.841 0.848 0.814 0.864

7 0.826 0.807 0.750 0.694 0.651 0.825 0.799 0.834 0.849 0.819 0.868

8 0.818 0.806 0.743 0.723 0.631 0.844 0.804 0.838 0.850 0.832 0.858

9 0.813 0.799 0.758 0.739 0.634 0.836 0.803 0.843 0.850 0.828 0.857

10 0.819 0.800 0.751 0.736 0.631 0.831 0.786 0.844 0.849 0.822 0.862

Avg: 0.820 0.797 0.753 0.722 0.627 0.832 0.795 0.843 0.848 0.825 0.861

Std.Dev 0.004 0.009 0.007 0.013 0.012 0.007 0.013 0.006 0.002 0.006 0.005

aBP uses CART and NNb algorithms as its default base-predictors [31, 77]

Cluster Computing

123

up to 23.4%. Accuracies of the optimised BP(LR),

BP(MLP) and BP(LSVM) are higher by 1.6%, 1.8% and

3%, respectively, compared to their counterparts with

default parameters [77]. The optimised BP(LR), BP(MLP)

and BP(LSVM) also outperform other ensemble models,

namely GBo, AB and RF with default parameters, by at

least 2.8%, 4.1% and 0.5%, respectively. The MLP clas-

sifier, which produces the best results overall, outperforms

the default base-predictors, Decision Tree/CART and NNb

algorithms, by 13.9% and 23.4%, respectively. These

results indicate that the proposed method, ML-PSO, can

greatly improve the performance of the sentiment polarity

predictors, even with a small number of particles. Statis-

tical analysis using the Mann–Whitney (MW) U test, as

shown in Table 3, confirmed that the improvements are

mostly significant, since all of the p-values of the tests are

below the significance level (a\ 0.01), except the opti-

mised BP(LSVM) against GBo.

To further investigate improvements that might be

achieved with more particles in the main PSO, the above

experiments were repeated by increasing the number of

particles up to 50, with an interval of 5 particles for each

experiment. The results show that, with more particles,

ML-PSO is able to further improve the accuracy of the

prediction by * 1.2%, from a maximum of 0.869 to 0.881

(see Table 4, the Gb of ML-PSO (accuracy), sub-column

BP(MLP)). Another interesting observation made from

these results is that the MLP is always the best base-pre-

dictor for BP, except for the ML-PSO with 25 particles,

where BP(LR) is slightly better than BP(MLP). From our

results, it can, therefore, be concluded that the proposed

ML-PSO method can choose a better base-predictor auto-

matically for the ensemble algorithm (BP), and success-

fully optimise the parameters of the chosen base-predictor

as well as the parameters of the ensemble.

However, upon closer inspection of the processing times

of ML-PSO, it was discovered that the processing times for

10 particles and above are the same, i.e., 400 h (see

Table 4, the ‘‘Processing time’’ column, ML-PSO). 400 h,

as mentioned earlier, is the maximum processing time

available to each node in the HPC facility at the UoN. A

detailed inspection of the process logs revealed that most of

the particles in the main PSO neither completed all itera-

tions nor met the termination criteria; rather, they were

forcefully terminated after reaching the maximum pro-

cessing time limit. It should be noted that, even though the

processes were forcefully terminated, ML-PSO still pro-

vides an output because the current Gb and the vectors that

yielded it are recorded at each iteration. Nevertheless, it is

safe to assume that the results are not the best possible

results as initially expected. To overcome this situation,

experiments using parallelism (i.e., PML-PSO) were con-

ducted, and the results are described in the next section.

4.2 Experiments on PML-PSO

PML-PSO has been created, as explained in earlier sec-

tions, to overcome the problem faced by ML-PSO in the

preceding section. Experiments to test this idea were run on

the same HPC facility at the UoN, which has 2560 cores for

66 CPU and 4 GPU nodes, and up to 512 Gigabytes’ RAM

available to be assigned to each node. For all our

Table 3 Average difference and MW U test results

ML-PSO (5p) optimised params Default parameters Average difference (%) MW U test p value (a\ 0.01)

BP(LR) BP(LR) 1.6 0.00022

BP(LR) GBo 2.8 0.00018

BP(LR) AB 5.1 0.00018

BP(LR) RF 9.5 0.00018

BP(LSVM) BP(LSVM) 3 0.001

BP(LSVM) GBo 0.5 0.05876

BP(LSVM) AB 2.8 0.00018

BP(LSVM) RF 7.2 0.00018

BP(MLP) BP(MLP) 1.8 0.00018

BP(MLP) BP(LR) 2.9 0.00018

BP(MLP) BP(LSVM) 6.6 0.00018

BP(MLP) BP(CART) 13.9 0.00018

BP(MLP) BP(NNb) 23.4 0.00018

BP(MLP) GBo 4.1 0.00018

BP(MLP) AB 6.4 0.00018

BP(MLP) RF 10.8 0.00018

Cluster Computing

123

experiments, we used an HPC cluster consisting of 32

nodes of CPUs. Each experimental setting was run only

once, for two different HPC load environments, since each

optimisation process took a very long time to complete.

Table 4 presents the results of experiments run in a non-

ideal environment, where HPC loads range from normal to

full and jobs have to wait in the job queue before execut-

ing. Similarly, Table 5 presents the results for similar

experiments, but without BP(MLP), repeated in an ideal

environment where the HPC load was low enough for all

jobs to be executed immediately. It is also worth men-

tioning here that, since a node’s failure can prevent the

successful completion of a job, node failure can impact the

prediction accuracy. However, node failure is extremely

rare in the HPC environment, and our job logs did not

report any node failures during our experiments.

Results, as can be seen in Table 4 under the ‘‘Processing

time’’ column, show that PML-PSO is able to successfully

overcome the processing time limitation of 400 h (note that

the processing time values for PML-PSO are the total hours

required by all the jobs). One interesting observation is

that, for particle sizes 20, 30 and 35, the processing times

are similar to those with only 5 particles. The reason for

this is that, in these cases, the HPC job queue was suffi-

ciently low enough to allow the PML-PSO processes to run

in a truly parallel manner. In the other cases, however, the

HPC load prevented truly parallel processing of all PSO

runs. For further understanding of how the PML-PSO

Table 4 ML-PSO versus PML-PSO, in a non-ideal environment

Number of particles in main PSO Processing time (hour) Gb of ML-PSO (accuracy) Gb of PML-PSO (accuracy)

ML-PSO PML-PSO BP (LR) BP (LSVM) BP (MLP) BP (LR) BP (LSVM) BP (MLP)

50 400.00 878.59 0.870 0.859 0.873 0.874 0.874 0.884

45 400.00 705.24 0.863 0.853 0.876 0.871 0.870 0.886

40 400.00 622.36 0.861 0.868 0.878 0.873 0.871 0.883

35 400.00 134.31 0.860 0.865 0.873 0.872 0.873 0.879

30 400.00 119.92 0.862 0.864 0.881 0.876 0.876 0.885

25 400.00 807.82 0.870 0.861 0.868 0.872 0.872 0.881

20 400.00 126.95 0.865 0.856 0.875 0.872 0.871 0.881

15 400.00 557.76 0.860 0.868 0.872 0.871 0.873 0.879

10 400.00 512.50 0.863 0.857 0.875 0.869 0.869 0.880

5 245.77 123.22 0.845 0.833 0.869 0.871 0.861 0.875

MW U test p value (ML-PSO to PML-PSO, a\ 0.01): 0.00034 0.00068 0.00168

Table 5 ML-PSO versus PML-PSO without the MLP, in an ideal environment

Number of particles in main PSO Processing time (hour) Highest Gb and the accuracy

ML-PSO PML-PSO ML-PSO Gb ML-PSO accuracy PML-PSO Gb PML-PSO accuracy

50 125.39 46.59 BP(LR) 0.872 BP(LR) 0.870

45 81.86 40.92 BP(LSVM) 0.871 BP(LR) 0.870

40 94.82 49.27 BP(LR) 0.872 BP(LR) 0.870

35 141.26 46.73 BP(LR) 0.870 BP(LSVM) 0.871

30 128.47 42.45 BP(LR) 0.869 BP(LR) 0.869

25 108.36 45.38 BP(LR) 0.867 BP(LR) 0.870

20 39.33 44.63 BP(LR) 0.871 BP(LR) 0.872

15 34.37 44.02 BP(LR) 0.865 BP(LR) 0.870

10 8.65 47.32 BP(LR) 0.868 BP(LSVM) 0.869

5 3.83 39.80 BP(LR) 0.861 BP(LR) 0.862

MW U test analysis for the accuracy between ML-PSO and PML-PSO (a\ 0.01), p value = 0.8181

Cluster Computing

123

works in HPC together with other jobs, please refer to the

illustration in Fig. 4.

From the results of the MW U test listed in Table 4, it

can be seen that accuracy improvements with PML-PSO

are significantly higher than those with ML-PSO. This

indicates that the processing time limitation placed on HPC

has a severe impact on the efficacy of ML-PSO and its goal

of achieving the best possible solution. The results also

validated the idea of adding parallelism to ML-PSO, since

PML-PSO was able to meet its goal of speeding up the

process, evading HPC processing time limitations and

performing multi-level optimisation like ML-PSO.

To conduct a fairer comparison of ML-PSO and PML-

PSO, we conducted another set of experiments by

excluding BP(MLP), which requires much longer time to

reach convergence than other classifiers. The assumption

was that ML-PSO would successfully terminate under

400 h without BP(MLP). Besides the exclusion of

BP(MLP), other settings were the same as previous

experiments. Efforts were also made to run the experiments

when the HPC load was low enough to allow all jobs from

PML-PSO to be served immediately. The results of these

experiments can be found in Table 5.

These results in Table 5 show that the best accuracies

provided by ML-PSO and PML-PSO are very similar,

which means that, without being cut off by the processing

time limitation of HPC, ML-PSO can match the perfor-

mance of PML-PSO. MW U test analysis between the

accuracies of ML-PSO and PML-PSO confirmed that their

difference is not significant, since the p-value is higher than

the significance level of a\ 0.01. Nevertheless, since it

uses iterations instead of parallelism, ML-PSO needed

more time to reach its stopping condition when we

increased the number of particles; whereas the processing

times are similar for all particle sizes in PML-PSO. In an

ideal environment, parallelism allows all or almost all the

particles of PML-PSO entering the job queue to run at the

same time. The processing times of PML-PSO experiments

were, however, longer than ML-PSO when the number of

particles is relatively small (5 to 20). This is because, every

time the component is run, it should upload the sample

features from data storage to memory, whereas in ML-

PSO, the sample features are processed only once and stay

in memory for the duration of training.

The processing times for ML-PSO with 40, 45 and 50

particles are inconsistent with the trend of increased pro-

cessing time for a higher number of particles. An educated

guess here is that this is caused by the variance of con-

vergence speed of classifiers used inside the inner PSO;

however, we do not have a technical explanation, since we

did not record the time required by the classifiers of the

inner PSO particles. Nonetheless, from the results in

Table 5, we can conclude that the processing times for

PML-PSO are almost always constant in an ideal situation,

whereas the processing time increases with an increase in

the number of particles in ML-PSO.

4.3 Experiments using large-scale data

Our last set of experiments was conducted by applying the

best results of PML-PSO on 500,000 records from the Yelp

review dataset. The experiment settings and pre-processing

steps were based on previous research [4], and each

experimental setting was repeated 10 times. The experi-

ments were run using 10-fold cross validation. Experiment

types were (A) 1 and 2 stars as negative polarity and 3, 4

PML-PSO ini�al
script

Other script

Other script

Other script

Other job

Other job

Other job

Other job

Other job

Other job

Other job

Init PML-
PSO job

HPC job queue

Other job

Other job

Data Storage ... HPC

Other script

Other script

Other job

PML-PSO
job 1

Other job

Other job

PML-PSO
job 2

PML-PSO
job 3

Other job

PML-PSO
job 4

HPC job queue

Finished jobInit PML-
PSO job

Other job Finished job

Data Storage ... HPC

Other script

Other script

Other job

Other job

PML-PSO
job 4

PML-PSO
job 5

Other job

Other job

PML-PSO
job 6

HPC job queue

PML-PSO
job 2

PML-PSO
job 1

PML-PSO
job 3

Finished job

Data Storage ... HPC

Finished job

a) PML-PSO creates the ini�al job b) The ini�al job creates temporary data and
other jobs to handle the main PSO’s par�cles

c) When a par�cle job is finished, Pb of the
par�cle and Gb are updated in data storage, and
another job is created to con�nue the itera�on

Fig. 4 The PML-PSO process in detail

Cluster Computing

123

and 5 as positive polarity; (B) 1, 2 and 3 stars as negative

polarity and 4 and 5 as positive polarity; and (C) 1 and 2

stars as negative polarity, 3 star as neutral polarity, and 4

and 5 as positive polarity.

As can be seen from the results in Table 6, PML-PSO

can indeed improve the accuracy and other measurements

such as precision, recall and F1 (F-measure) of BP to

predict sentiment polarity of customer reviews. While

training the classifier with a larger dataset can improve its

performance, using our methods, we can be sure of

achieving the best possible parameters and also the best

base-classifier to be used for the ensemble. Based on the

results in Table 6, the improvement achieved by applying

PML-PSO (see BP(MLP)) is quite high compared to the

results obtained using default parameters and CART as the

default base-predictor (see BP(CART)). The improvements

on all measurements are around 6%, 7.7% and 7.5% for

Type A, B and C experiments, respectively. Statistical

analysis using the MW U test with a significance level of

a\ 0.01 confirms that the accuracy improvements

achieved from PML-PSO are significant when compared

with BP(LSVM), BP(LR) and BP(MLP) with default set-

tings. The best improvement is achieved by BP(LSVM):

the performance of BP(LSVM) is similar to BP(LR) using

PML-PSO optimised parameters, whereas its results are

worse than BP(LR) with default parameters.

5 Conclusion

Ensemble models, such as BP, can provide better perfor-

mance than a single classifier. However, determining a

suitable classifier for the ensemble’s base-predictor is a

challenging problem. Other difficulties for problems such

as sentiment polarity detection include obtaining optimal

parameters for both the ensemble and its base-predictor.

The methods proposed in this paper, ML-PSO and PML-

PSO, can overcome all of the above-mentioned problems.

The first set of experiments, using a small number of par-

ticles in the main PSO and a small number of records (1000

records), showed that the proposed ML-PSO can outper-

form the default base-classifier settings for BP (CART or

NNb). The accuracy of ML-PSO optimised BP ensemble is

14% and 23% higher than BP(CART) and BP(NNb),

respectively. Our experimental results also showed that the

accuracy could be further improved by using more particles

in ML-PSO.

However, it was observed from the experiments that the

limitation on processing times on HPC prevents ML-PSO

processes from running until completion and providing

better results. The second method proposed in this paper,

PML-PSO, utilises parallelism to reduce the processing

time of ML-PSO and helps overcome the problem caused

by limited processing times available on HPC. By breaking

down a long process into several smaller and independent

processes running in parallel, PML-PSO requires less time

for successful completion even with a larger number of

particles. Therefore, PML-PSO can successfully obtain

Table 6 Performance of PML-PSO optimised parameters for processing big data

Experiment type Classifier Default parameters PML-PSO optimised parameters MW U test (p value)b

Acc StDa Prec Rec F1 Acc StDa Prec Rec F1 Acc F1

A (2-polarity) BP (CART) 0.864 0.0066 0.864 0.864 0.864 – – – – –

BP (LSVM) 0.898 0.0001 0.897 0.898 0.897 0.916 0.0009 0.913 0.916 0.913 0.00018 0.00018

BP (LR) 0.909 0.0001 0.908 0.909 0.908 0.917 0.0009 0.915 0.917 0.915 0.00018 0.00018

BP (MLP) 0.917 0.0004 0.916 0.917 0.917 0.923 0.0003 0.921 0.923 0.921 0.00018 0.00018

B (2-polarity) BP (CART) 0.814 0.0068 0.817 0.814 0.815 – – – – –

BP (LSVM) 0.854 0.0001 0.853 0.854 0.853 0.885 0.0014 0.884 0.885 0.883 0.00018 0.00018

BP (LR) 0.873 0.0001 0.872 0.873 0.872 0.886 0.0014 0.885 0.886 0.884 0.00018 0.00018

BP (MLP) 0.883 0.0004 0.882 0.883 0.882 0.891 0.0002 0.890 0.891 0.890 0.00018 0.00018

C (3-polarity) BP (CART) 0.775 0.0064 0.756 0.775 0.761 – – – – –

BP (LSVM) 0.819 0.0001 0.798 0.819 0.805 0.836 0.0019 0.811 0.836 0.809 0.00018 0.00018

BP (LR) 0.829 0.0002 0.809 0.829 0.815 0.839 0.0013 0.815 0.839 0.817 0.00018 0.00252

BP (MLP) 0.840 0.0004 0.827 0.840 0.832 0.850 0.0001 0.833 0.850 0.835 0.00018 0.00018

aStD = standard deviation of the accuracy of experiments over 10 runs
bWe did not include BP(CART) in the MW U test, since we did not investigate its optimised version; the test was applied to the detailed results of

10-fold cross validation of each experiment

Cluster Computing

123

better solutions than those obtained by ML-PSO even

under the restrictions placed on the available processing

time. However, further investigation revealed that, when

both methods were applied in an ideal environment, their

performances were very similar; thus, proving that both

methods are quite similar except in terms of their imple-

mentation and how they deal with a larger number of

particles. The final set of experiments using a larger dataset

(500,000 records) proved that the best possible parameter

settings obtained using PML-PSO can significantly

improve the accuracy of sentiment polarity prediction.

For future work, we plan to implement ML-PSO and

PML-PSO for optimising the classifiers to detect fake

reviews or other cases.

Acknowledgements The first author would like to acknowledge

financial support from the Indonesian Endowment Fund for Education

(LPDP), Ministry of Finance; and the Directorate General of Higher

Education (DIKTI), Ministry of Education and Culture, Republic of

Indonesia.

References

1. Li, X., Li, J., Wu, Y.: A global optimization approach to multi-

polarity sentiment analysis. PLoS ONE 10(4), e0124672 (2015).

https://doi.org/10.1371/journal.pone.0124672

2. Huang, J., Xue, Y., Hu, X., Jin, H., Lu, X., Liu, Z.: Sentiment

analysis of Chinese online reviews using ensemble learning

framework. Clust. Comput. 22, 3043–3058 (2019)

3. Giatsoglou, M., Vozalis, M.G., Diamantaras, K., Vakali, A.,

Sarigiannidis, G., Chatzisavvas, K.C.: Sentiment analysis lever-

aging emotions and word embeddings. Expert Syst. Appl. 69,
214–224 (2017). https://doi.org/10.1016/j.eswa.2016.10.043

4. Budhi, G.S., Chiong, R., Pranata, I., Hu, Z.: Predicting rating

polarity through automatic classification of review texts. In:

Proceedings of the 2017 IEEE Conference on Big Data and

Analytics (ICBDA), pp. 19-24. Kuching, Malaysia, 16–17

November (2017)

5. Chiong, R., Fan, Z., Hu, Z., Adam, M.T.P., Lutz, B., Neumann,

D.: A sentiment analysis-based machine learning approach for

financial market prediction via news disclosures. In: Proceedings

of the Genetic and Evolutionary Computation Conference Com-

panion (GECCO ’18 Companion), pp. 278–279. Kyoto, Japan,

15–19 July (2018)

6. Bansal, P., Kaur, R.: Twitter sentiment analysis using machine

learning and optimization techniques. Int. J. Comput. Appl.

179(19), 5–8 (2018)

7. Yousefpour, A., Ibrahim, R., Hamed, H.N.A.: Ordinal-based and

frequency-based integration of feature selection methods for

sentiment analysis. Expert Syst. Appl. 75, 80–93 (2017). https://

doi.org/10.1016/j.eswa.2017.01.009

8. Zhang, W., Kong, S.-X., Zhu, Y.-C., Wang, X.: Sentiment clas-

sification and computing for online reviews by a hybrid SVM and

LSA based approach. Clust. Comput. 22, 1–14 (2018). https://doi.
org/10.1007/s10586-017-1693-7

9. Bagheri, A., Saraee, M., de Jong, F.: Care more about customers:

Unsupervised domain-independent aspect detection for sentiment

analysis of customer reviews. Knowl.-Based Syst. 52, 201–213
(2013). https://doi.org/10.1016/j.knosys.2013.08.011

10. Fersini, E., Messina, E., Pozzi, F.A.: Expressive signals in social

media languages to improve polarity detection. Inf. Process.

Manag. 52(1), 20–35 (2016). https://doi.org/10.1016/j.ipm.2015.

04.004

11. Devika, M.D., Sunitha, C., Ganesh, A.: Sentiment analysis: A

comparative study on different approaches. Procedia Comput.

Sci. 87, 44–49 (2016). https://doi.org/10.1016/j.procs.2016.05.

124

12. Sonagi, A., Gore, D.: Efficient sentiment analysis using hybrid

PSO-GA approach. Int. J. Innov. Res. Comput. Commun. Eng.

5(6), 11910–11916 (2017). https://doi.org/10.15680/IJIRCCE.

2017

13. Shang, L., Zhou, Z., Liu, X.: Particle swarm optimization-based

feature selection in sentiment classification. Soft Comput. 20(10),
3821–3834 (2016). https://doi.org/10.1007/s00500-016-2093-2

14. Basari, A.S.H., Hussin, B., Ananta, I.G.P., Zeniarja, J.: Opinion

mining of movie review using hybrid method of support vector

machine and particle swarm optimization. Procedia Eng. 53,
453–462 (2013). https://doi.org/10.1016/j.proeng.2013.02.059

15. Cho, M.Y., Hoang, T.T.: Feature selection and parameters opti-

mization of SVM using particle swarm optimization for fault

classification in power distribution systems. Comput. Intell.

Neurosci. 2017, 1–9 (2017). https://doi.org/10.1155/2017/

4135465

16. Weise, T., Zapf, M., Chiong, R., Nebro, A.J.: Why is optimiza-

tion difficult? In: Chiong, R. (ed.) Nature-Inspired Algorithms for

Optimisation, pp. 1–50. Springer, Berlin (2009)

17. Zolghadr-Asli, B., Bozorg-Haddad, O., Chu, X.: Introduction. In:

Bozorg-Haddad, O. (ed.) Advanced Optimization by Nature-In-

spired Algorithms. Springer, Singapore (2018)

18. Moser, I., Chiong, R.: Dynamic function optimization: The

moving peaks benchmark. In: Alba, E., Nakib, A., Siarry, P.

(eds.) Metaheuristics for Dynamic Optimization, pp. 35–59.

Springer, Berlin (2013)

19. Lung, R.I., Dumitrescu, D.: Evolutionary swarm cooperative

optimization in dynamic environments. Nat. Comput. 9(1), 83–94
(2010). https://doi.org/10.1007/s11047-009-9129-9

20. Khoshahval, F., Zolfaghari, A., Minuchehr, H., Abbasi, M.R.: A

new hybrid method for multi-objective fuel management opti-

mization using parallel PSO-SA. Prog. Nucl. Energy 76, 112–121
(2014). https://doi.org/10.1016/j.pnucene.2014.05.014

21. Abedi, M., Chiong, R., Noman, N., Zhang, R.: A hybrid particle

swarm optimisation approach for energy-efficient single machine

scheduling with cumulative deterioration and multiple mainte-

nances. In: Proceedings of 2017 IEEE Symposium Series on

Computational Intelligence (SSCI), pp. 2930–2937. Honolulu,

Hawaii, USA, 27 November–1 December (2017)

22. Hu, Z., Chiong, R., Pranata, I., Susilo, W., Bao, Y.: Identifying

malicious web domains using machine learning techniques with

online credibility and performance data. In: Proceedings of IEEE

Congress on Evolutionary Computation (CEC),

pp. 5186–5194. Vancouver, BC, Canada, 24-29 July (2016)

23. Hu, Z., Chiong, R., Pranata, I., Bao, Y., Lin, Y.: Malicious web

domain identification using online credibility and performance

data by considering the class imbalance issue. Ind. Manag. Data

Syst. 119(3), 676–696 (2019). https://doi.org/10.1108/IMDS-

1102-2018-0072

24. Cao, J., Cui, H., Shi, H., Jiao, L.: Big data: A parallel particle

swarm optimization back propagation neural network algorithm

based on MapReduce. PLoS ONE 11(6), 1–17 (2016). https://doi.

org/10.1371/journal.pone.0157551

25. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.:

LIBLINEAR: A library for large linear classification. J. Mach.

Learn. Res. 9, 1871–1874 (2008)

26. Budhi, G.S., Chiong, R., Hu, Z., Pranata, I., Dhakal, S.: Multi-

PSO based classifier selection and parameter optimisation for

Cluster Computing

123

https://doi.org/10.1371/journal.pone.0124672
https://doi.org/10.1016/j.eswa.2016.10.043
https://doi.org/10.1016/j.eswa.2017.01.009
https://doi.org/10.1016/j.eswa.2017.01.009
https://doi.org/10.1007/s10586-017-1693-7
https://doi.org/10.1007/s10586-017-1693-7
https://doi.org/10.1016/j.knosys.2013.08.011
https://doi.org/10.1016/j.ipm.2015.04.004
https://doi.org/10.1016/j.ipm.2015.04.004
https://doi.org/10.1016/j.procs.2016.05.124
https://doi.org/10.1016/j.procs.2016.05.124
https://doi.org/10.15680/IJIRCCE.2017
https://doi.org/10.15680/IJIRCCE.2017
https://doi.org/10.1007/s00500-016-2093-2
https://doi.org/10.1016/j.proeng.2013.02.059
https://doi.org/10.1155/2017/4135465
https://doi.org/10.1155/2017/4135465
https://doi.org/10.1007/s11047-009-9129-9
https://doi.org/10.1016/j.pnucene.2014.05.014
https://doi.org/10.1108/IMDS-1102-2018-0072
https://doi.org/10.1108/IMDS-1102-2018-0072
https://doi.org/10.1371/journal.pone.0157551
https://doi.org/10.1371/journal.pone.0157551

sentiment polarity prediction. In: Proceedings of IEEE Confer-

ence on Big Data and Analytics (ICBDA), pp. 68–73. Langkawi

Island, Malaysia, 21-22 November (2018)

27. Souza, E., Santos, D., Oliveira, G., Silva, A., Oliveira, A.L.I.:

Swarm optimization clustering methods for opinion mining. Nat.

Comput. (2018). https://doi.org/10.1007/s11047-018-9681-2

28. Wu, K., Zhu, Y., Li, Q., Han, G.: Algorithm and implementation

of distributed ESN using spark framework and parallel PSO.

Appl. Sci. 7(4), 353 (2017). https://doi.org/10.3390/app7040353

29. Szwed, P., Chmiel, W.: Multi-swarm PSO algorithm for the

quadratic assignment problem: a massive parallel implementation

on the OpenCL platform. In: arXiv:1504.05158. (2015)

30. Lalwani, S., Sharma, H., Satapathy, S.C., Deep, K., Bansal, J.C.:

A survey on parallel particle swarm optimization algorithms.

Arab. J. Sci. Eng. 44(4), 2899–2923 (2019). https://doi.org/10.

1007/s13369-018-03713-6

31. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140
(1996). https://doi.org/10.1007/bf00058655

32. Menard, S.: Logistic Regression: From Introductory to Advanced

Concepts and Applications. SAGE, Los Angeles (2010)

33. Campbell, C., Ying, Y.: Learning with Support Vector Machines.

Morgan & Claypool, San Rafael (2011)

34. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal

representations by error propagation. Parallel Distributed Pro-

cessing: Explorations in the Microstructure of Cognition vol 1,

pp. 318–362. MIT Press, Cambridge (1986)

35. Onan, A., Korukoğlu, S., Bulut, H.: A multiobjective weighted

voting ensemble classifier based on differential evolution algo-

rithm for text sentiment classification. Expert Syst. Appl. 62,
1–16 (2016). https://doi.org/10.1016/j.eswa.2016.06.005

36. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In:

Proceedings of the IEEE International Conference on Neural

Networks, pp. 1942–1948. Perth, Australia, 27 November–1

December (1995)

37. Kennedy, J., Eberhart, R.C.: A discrete binary version of the

particle swarm algorithm. In: Proceedings of the IEEE Interna-

tional Conference on Systems, Man & Cybernetics Computa-

tional Cybernetics & Simulation, (5), pp. 4104–4108. Orlando,

FL, USA, 12–15 October (1997)

38. Yang, X.S., Deb, S., Fong, S.: Accelerated Particle Swarm

Optimization and Support Vector Machine for business opti-

mization and applications. Networked Digital Technologies

(NDT2011). Commun. Comput. Inf. Sci. 136, 53–66 (2011)

39. Tan, Y., Zhang, J.: Magnifier particle swarm optimization. In:

Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation,

pp. 279–298. Springer, Berlin (2009)

40. Lynn, N., Suganthan, P.N.: Ensemble particle swarm optimizer.

Appl. Soft Comput. 55, 533–548 (2017). https://doi.org/10.1016/

j.asoc.2017.02.007

41. Wahyudi, M., Kristiyanti, D.A.: Sentiment analysis of smart-

phone product review using support vector machine algorithm-

based particle swarm optimization. J. Theor. Appl. Inf. Technol.

91(1), 189–201 (2016)

42. Kumar, S., Kumar, H.: Rapid PSO based features selection for

classification. Int. J. Adv. Res. Comput. Sci. 8(9), 682–690

(2017). https://doi.org/10.26483/ijarcs.v8i9.5173

43. Nazir, M., Majid-Mirza, A., Ali-Khan, S.: PSO-GA based opti-

mized feature selection using facial and clothing information for

gender classification. J. Appl. Res. Technol. 12(1), 145–152

(2014). https://doi.org/10.1016/S1665-6423(14)71614-1

44. Mikula, M., Machová, K.: Combined approach for sentiment

analysis in Slovak using a dictionary annotated by particle swarm

optimization. Acta Electrotech. Inf. 18(2), 27–34 (2018). https://

doi.org/10.15546/aeei-2018-0013

45. Gaspar, R., Pedro, C., Panagiotopoulos, P., Seibt, B.: Beyond

positive or negative: Qualitative sentiment analysis of social

media reactions to unexpected stressful events. Comput. Hum.

Behav. 56, 179–191 (2016). https://doi.org/10.1016/j.chb.2015.

11.040

46. Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models.

J. R. Stat. Soc. 135(3), 370–384 (1972). https://doi.org/10.2307/

2344614

47. Hastie, T., Tibshirani, R.: Generalized Additive Models. Chap-

man and Hall/CRC, Boca Raton (1990)

48. Dunteman, G.H., Ho, M.H.R.: Generalized linear models. In:

Dobson, A.J., Barnett, A.G. (eds.) An Introduction to Generalized

Linear Models, pp. 2–6. SAGE Publications, Thousand Oaks

(2011)

49. Dobson, A.J., Barnett, A.G.: An Introduction to Generalized

Linear Models, 3rd edn. CRC Press, Boca Raton (2008)

50. Yu, D., Mu, Y., Jin, Y.: Rating prediction using review texts with

underlying sentiments. Inf. Process. Lett. 117, 10–18 (2017).

https://doi.org/10.1016/j.ipl.2016.08.002

51. Shah, Y.S., Hernandez-Garcia, L., Jahanian, H., Peltier, S.J.:

Support vector machine classification of arterial volume-weigh-

ted arterial spin tagging images. Brain Behav. 6, 1–8 (2016)

52. Sun, J., Fujita, H., Chen, P., Li, H.: Dynamic financial distress

prediction with concept drift based on time weighting combined

with Adaboost support vector machine ensemble. Knowl.-Based

Syst. 120, 4–14 (2017)

53. Chinniyan, K., Gangadharan, S., Sabanaikam, K.: Semantic

similarity based web document classification using support vector

machine. Int. Arab J. Inf. Technol. 14(3), 285–293 (2017)

54. Lo, S.L., Chiong, R., Cornforth, D.: Using support vector

machine ensembles for target audience classification on Twitter.

PLoS ONE 10(4), e0122855 (2015)

55. Lo, S.L., Cornforth, D., Chiong, R.: Identifying the high-value

social audience from Twitter through text-mining methods. In:

Proceedings of the 18th Asia Pacific Symposium on Intelligent

and Evolutionary Systems, pp. 325–339. Singapore, 10–12

November (2014)

56. Hur, M., Kang, P., Cho, S.: Box-office forecasting based on

sentiments of movie reviews and independent subspace method.

Inf. Sci. 372, 608–624 (2016). https://doi.org/10.1016/j.ins.2016.

08.027

57. Glorot, X., Bengio, Y.: Understanding the difficulty of training

deep feedforward neural networks. In: Proceedings of the 13th

International Conferenceon Artificial Intelligence and Statistics,

pp. 249–256. Sardinia, Italy, 13–15 May (2010)

58. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimiza-

tion. CoRR abs/1412.6980 (2014)

59. Adipranata, R., Budhi, G.S., Setiahadi, B.: Automatic classifica-

tion of sunspot groups for space weather analysis. Int. J. Mul-

timed. Ubiquitous Eng. 8(3), 41–54 (2013)

60. Budhi, G.S., Adipranata, R.: Handwritten Javanese character

recognition using several artificial neural network methods.

J. ICT Res. Appl. 8(3), 195–212 (2015). https://doi.org/10.5614/

itbj.ict.res.appl.2015.8.3.2

61. Budhi, G.S., Adipranata, R.: Java characters recognition using

evolutionary neural network and combination of Chi2 and

backpropagation neural network. Int. J. Appl. Eng. Res. 9(22),
18025–18036 (2014)

62. Sangjae, L., Joon, Y.C.: Predicting the helpfulness of online

reviews using multilayer perceptron neural networks. Expert

Syst. Appl. 41(6), 3041–3046 (2014)

63. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1),
81–106 (1986). https://doi.org/10.1007/bf00116251

64. Hunt, E.B., Marin, J., Stone, P.J.: Experiments in Induction.

Academic Press, New York (1966)

65. Rokach, L., Maimon, O.: Data Mining with Decision Trees:

Theory and Applications. World Scientific Publishing Company,

Singapore (2007)

Cluster Computing

123

https://doi.org/10.1007/s11047-018-9681-2
https://doi.org/10.3390/app7040353
https://doi.org/10.1007/s13369-018-03713-6
https://doi.org/10.1007/s13369-018-03713-6
https://doi.org/10.1007/bf00058655
https://doi.org/10.1016/j.eswa.2016.06.005
https://doi.org/10.1016/j.asoc.2017.02.007
https://doi.org/10.1016/j.asoc.2017.02.007
https://doi.org/10.26483/ijarcs.v8i9.5173
https://doi.org/10.1016/S1665-6423(14)71614-1
https://doi.org/10.15546/aeei-2018-0013
https://doi.org/10.15546/aeei-2018-0013
https://doi.org/10.1016/j.chb.2015.11.040
https://doi.org/10.1016/j.chb.2015.11.040
https://doi.org/10.2307/2344614
https://doi.org/10.2307/2344614
https://doi.org/10.1016/j.ipl.2016.08.002
https://doi.org/10.1016/j.ins.2016.08.027
https://doi.org/10.1016/j.ins.2016.08.027
https://doi.org/10.5614/itbj.ict.res.appl.2015.8.3.2
https://doi.org/10.5614/itbj.ict.res.appl.2015.8.3.2
https://doi.org/10.1007/bf00116251

66. Luo, B., Zeng, J., Duan, J.: Emotion space model for classifying

opinions in stock message board. Expert Syst. Appl. 44, 138–146
(2016). https://doi.org/10.1016/j.eswa.2015.08.023

67. Xu, Z., Li, P., Wang, Y.: Text classifier based on an improved

SVM decision tree. Phys. Procedia 33, 1986–1991 (2012)

68. Abhishek, S., Sugumaran, V., Devasenapati, S.B.: Misfire

detection in an IC engine using vibration signal and decision tree

algorithms. Measurement 50, 370–380 (2014)

69. Izydorczyk, B., Wojciechowski, B.: Differential diagnosis of

eating disorders with the use of classification trees (decision

algorithm). Arch. Psychiatry Psychother. 18(4), 53–62 (2016)

70. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).

https://doi.org/10.1023/a:1010933404324

71. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees.

Mach. Learn. 63(1), 3–42 (2006)

72. Bramer, M.: Nearest neighbour classification. In: Principles of

Data Mining. pp. 31–38. Springer, London (2007)

73. Pan, Z., Wang, Y., Ku, W.: A new general nearest neighbor

classification based on the mutual neighborhood information.

Knowl.-Based Syst. 121, 142–152 (2017)

74. Friedman, J.H.: Greedy function approximation: a gradient

boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

75. Zhu, J., Zou, H., Rosset, S., Hastie, T.: Multi-class adaboost. Stat.

Interface 2, 349–360 (2009)

76. Yelp: Yelp dataset challenge: Round 13. https://www.yelp.com/

dataset/challenge (2019). Accessed Dec 27 2019

77. Scikit-learn: API Reference. https://scikit-learn.org/stable/mod

ules/classes.html (2019). Accessed Mar 19 2019

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Gregorius Satia Budhi is cur-

rently a Ph.D. candidate with

the School of Electrical Engi-

neering and Computing, The

University of Newcastle, Aus-

tralia. He is also an academic

staff member of Petra Christian

University in Indonesia. His

research interests include senti-

ment analysis and machine

learning prediction.

Raymond Chiong is a tenured

academic staff member at the

University of Newcastle, Aus-

tralia. He is also a guest

research professor with the

Centre for Modern Information

Management at Huazhong

University of Science and

Technology, Wuhan, China, a

Minjiang Scholar with the

School of Economics and Man-

agement at Fuzhou University,

Fuzhou, China, and a visiting

scholar with the Department of

Automation, Tsinghua Univer-

sity, Beijing, China. His research interests include data analytics,

optimisation, evolutionary game theory, and modelling of complex

adaptive systems. He has published over 180 papers in these areas. He

is the Editor-in-Chief of the Journal of Systems and Information

Technology, an Editor of Engineering Applications of Artificial

Intelligence, and an Associate Editor of the IEEE Computational

Intelligence Magazine.

Sandeep Dhakal obtained his

B.Sc. from Swinburne Univer-

sity of Technology, Australia,

and his M.Sc. degree from the

University of St. Andrews,

Scotland. He is currently a

Ph.D. student at the University

of Newcastle, Australia. His

research interests include mod-

elling of complex adaptive sys-

tems, evolutionary game theory,

and optical character recogni-

tion. He has more than 10 pub-

lications to date in these areas,

and has reviewed papers for the

IEEE Computational Intelligence Magazine, IEEE Transactions on

Evolutionary Computation, and Engineering Applications of Artificial

Intelligence.

Cluster Computing

123

https://doi.org/10.1016/j.eswa.2015.08.023
https://doi.org/10.1023/a:1010933404324
https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/modules/classes.html

	Multi-level particle swarm optimisation and its parallel version for parameter optimisation of ensemble models: a case of sentiment polarity prediction
	Abstract
	Introduction
	Background
	Methods
	Particle swarm optimisation
	Classifiers
	Multi-level PSO
	Parallel multi-level PSO

	Experiments and results
	Experiments on ML-PSO
	Experiments on PML-PSO
	Experiments using large-scale data

	Conclusion
	Acknowledgements
	References

