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Abstract

Ensemble learning is increasingly used in sentiment analysis. Determining the parameter settings of ensemble models,
however, is not easy. Besides its own parameters, an ensemble model has base-predictors that have their individual
parameters. Some ensemble models use a specific base-predictor and could be optimised using standard metaheuristics
such as the Particle Swarm Optimisation (PSO) approach. Optimising ensemble models with multiple base-predictor
candidates is more complicated and challenging, as there are multiple options to choose from. We therefore propose Multi-
Level PSO (ML-PSO) and Parallel ML-PSO (PML-PSO) to optimise the parameters of ensemble models, especially those
with multiple base-predictors, for sentiment analysis. The idea is to utilise multiple PSOs as particles of the main PSO. The
main PSO optimises ensemble-model parameters and determines the best base-predictor, whereas PSOs within it optimise
the corresponding base-predictor’s parameters. Experimental results using Bagging Predictors as the underlying ensemble
model show that ML-PSO can improve prediction accuracy, while PML-PSO is able to speed up the processing time and

further improve the accuracy.

Keywords Particle swarm optimisation - Parallelism - Machine learning - Sentiment analysis

1 Introduction

Sentiment polarity detection, or more generally known as
sentiment analysis, is the process of automatically and
systematically detecting the sentiment or opinion of a given
text. In addition to feature selection, the outcome of sen-
timent analysis primarily depends on the detection algo-
rithm applied [1-4]. The majority of methods used for
sentiment analysis belong to the machine learning domain.
These methods are usually applied to predict the sentiment
polarity of social media texts, online product reviews or
other kinds of texts [2—8]. Due to the extensive amount of
online texts such as product reviews, tweets and other

< Raymond Chiong
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School of Electrical Engineering and Computing, The
University of Newcastle, Callaghan, NSW 2308, Australia

Informatics Department, Petra Christian University,
Surabaya 60236, Indonesia
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social media texts, a system capable of automated senti-
ment analysis is vital in the online environment [9, 10].
Analysis using machine learning generally begins with
training the machines to make them capable of discrimi-
nating the texts. The accuracy of the prediction model is
determined by the quality of this training process [4, 11],
and also how features of the text are extracted [12, 13].
However, acquiring the correct parameter settings for
machine learning models to obtain the desired accuracy is
challenging [14, 15]. Researchers usually apply either the
original set of parameters used by the authors of the
algorithms, improved settings suggested by other
researchers, or default settings of the software components.
These approaches, however, often do not produce optimal
results, since the parameter settings are not tuned to the
problem at hand.

Metaheuristics and nature-inspired algorithms [16—18],
such as swarm intelligence and evolutionary algorithms,
are regularly applied to optimise machine learning models.
Compared to other metaheuristic optimisation techniques,
particle swarm optimisation (PSO) offers advantages such

@ Springer
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as easy implementation, rapid convergence, avoidance of
local optima, and is also computationally inexpensive
because of low memory and CPU speed requirements. It
has, therefore, been widely used in many research areas,
such as function optimisation [18, 19], fuel management
optimisation [20], energy-efficient scheduling [21], mali-
cious web domain identification [22, 23], image semantic
classification [24], and so on. Some examples of the use of
PSO for sentiment analysis include parameter optimisation
[1, 5, 14, 15, 25, 26], feature selection [1, 6, 12, 15], and
clustering [27], among others. Parallel processing power
has also been applied to speed up the PSO process
[20, 24, 28-30].

In this paper, we introduce two novel methods based on
PSO to obtain best possible parameter settings for an
ensemble of classifiers. The first method introduced, called
Multi-Level PSO (ML-PSO), comprises two levels. The
first level consists of a main PSO algorithm, while the
second level consists of multiple PSOs (hereafter referred
to as inner PSOs) representing the particles in the main
PSO. Each inner PSO can optimise a base-predictor, and
each classifier has different sets of parameters. The inner
PSOs report their results to the main PSO. The main PSO
then chooses the best classifier and the best possible setting
of its parameters. Due to the hierarchical nature of ML-
PSO, the computing resources required are multiplied by
the number of particles in each inner PSO and the number
of particles in the main PSO. Given that PSO algorithms
need a large number of particles and iterations to achieve
satisfactory results, the computing resources required by
ML-PSO can be enormous. To overcome this problem, we
propose the second method, called Parallel ML-PSO
(PML-PSO), which applies parallelism to ML-PSO. In
PML-PSO, each inner PSO is set as a small semi-inde-
pendent module that can be run separately in a different
thread or process (CPU) using a different set of resources,
and in parallel with other inner PSOs, thus reducing the
processing time. This approach also helps overcome the
processing-time limit usually applied to grid computing
facilities.

In our experiments, we use Bagging Predictors (BP) [31]
as the underlying ensemble model, with classifiers
including the Logistic Regression (LR) [32], Linear-kernel
Support Vector Machine (LSVM) [33], and Multilayer
Perceptron (MLP) [34] as base-predictor candidates for BP.
These classifiers were chosen because they have performed
well in previous studies on sentiment polarity prediction of
review texts (e.g., see [3-8]). Some studies have shown
that ensemble algorithms can further increase the accuracy
and other measurements [2, 4, 35], and BP was identified as
the best ensemble algorithm for the problem at hand in one
of these previous studies [4]. We also found that BP was
the most flexible ensemble model and can be paired with
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any single classifier as its base-predictor. This flexibility
makes BP the most suitable ensemble-model candidate for
our proposed multi-level approach. The task of optimising
ensemble parameters, choosing the base-predictor from a
number of candidates, and optimising the parameters of the
base-predictor, can be considered a multi-level problem,
which needs to be solved in a multi-level manner. Our
experimental results show that ML-PSO can improve
sentiment polarity prediction by more than 14% compared
to BP using a default set of parameters and the default
base-predictors. Furthermore, PML-PSO is able to speed
up the processing time and enhance the performance of BP
following training with a large amount of data.

The rest of this paper is organised as follows. In the next
section, the related literature background on PSO for sen-
timent analysis is briefly reviewed. The design of ML-PSO
and PML-PSO is described in detail after that, followed by
experimental results and discussions about their perfor-
mance. Finally, we draw conclusion and highlight future
research directions.

2 Background

PSO, inspired by animal swarming behaviour such as bird
flocking or fish schooling, was originally developed by
Kennedy and Eberhart in 1995 [36]. Different variants of
the original PSO have been proposed by researchers over
the years to further improve the process or make it more
suitable for a particular problem. Examples include the
discrete binary PSO (BPSO) [37], accelerated PSO [38],
hybrid PSO with genetic operators [21] or new formula
addition [24, 39], and ensemble of multiple PSOs [40].
PSO has also been widely used in sentiment analysis.
Basari et al. [14] used a Support Vector Machine (SVM) to
detect the polarity of Twitter’s movie reviews, with its
parameters optimised by a PSO algorithm. Similarly, Li
et al. [1] used PSO to optimise the parameters of their
SVM, to detect the sentiment polarities of texts from a
Chinese-based social media website with user-generated
content. In addition, they used PSO to optimise feature
dimensions used for SVM training. Wahyudi and Kris-
tiyanti [41] utilised PSO for feature selection and combined
it with an SVM to classify smartphone product reviews.
Two types of modified BPSO were proposed by Shang
et al. [13] to select features for Chinese text sentiment
classification using three types of machine learning algo-
rithms (i.e., SVM, Naive Bayes (NB), and CART4.5).
Rapid PSO-based feature selection, which is similar to
accelerated PSO [38], was proposed by Kumar and Kumar
[42] for sentiment analysis. A combination of PSO and a
genetic algorithm (GA), named PSO-GA [43], was pro-
posed by Sonagi and Gore [12] to be implemented for
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feature selection in sentiment analysis using an SVM
classifier.

Mikula and Machova implemented PSO and bare-bones
PSO to create annotations for a dictionary used for senti-
ment analysis in Slovak [44]. Meanwhile, Bansal and Kaur
[6] compared the performances of ant colony optimisation
and PSO for the optimisation of feature selection from
tweets; they used the optimised features in NB and SVM
classifiers to predict the sentiment polarity of the data.
More recently, Budhi et al. [26] proposed a multi-PSO
model to select the best classifier for sentiment analysis and
optimise the parameters of the selected classifier.

3 Methods
3.1 Particle swarm optimisation

We use basic PSO as the foundation of our methods [21]. It
can be implemented in a few lines of code and uses only
primitive mathematical operators. The PSO algorithm used
in our study is described as follows:

ensemble of classifier algorithms, using BP, which was
identified as the best ensemble algorithm for the problem at
hand [4], as the underlying model. BP uses several single
predictors to build a cluster of predictors, and is commonly
adopted in many areas [35, 45]. These predictors are
trained through a bootstrapping process that replicates the
training set. BP predicts a class using plurality voting [31].
In addition to the three classifiers mentioned above, we
also include Classification And Regression Trees (CART)
and Nearest Neighbour (NNb) algorithms, since they are
the default base-predictors for BP [31].

LR is a member of the generalised linear model family
created by Nelder and Wedderburn in 1972 [46], and
improved by Hastie and Tibshirani in 1990 [47]. Traditional
linear models are limited to using continuous and normally
distributed variables, which is not always desirable. The
generalised linear models overcome this problem by using
non-normal dependent variables [48, 49]. In LR analysis, the
dependent variables can either be unordered polytomous
(polytomous nominal) or ordered polytomous (polytomous
ordinal); while the independent variables (predictors) can
either be interval/ratio variables or dummy variables for
representing a limited number of categories [32].

Algorithm 1 Basic PSO

1. Initialise the particles’ positions and velocities randomly. Initialise each particle’s personal best (Pb) and the swarm’s

global best (Gb);
2. Update the particles’ positions using Eq. 1 and Eq. 2:
3. vig = w4 eyrndyy (Phi UG + cprndyp (Gh{ UL (1)
4. Ul =UlTt + min{Vmax, vi;} )
5. Update Pb and Gb;
6. Update the inertia-weight, w, randomly;

7. If terminating criteria are met, stop and report Gb; else go to step 2.

In Algorithm 1, U;q, beq,
current position, personal best position Pb, global best
position Gb, and the velocity of particle / at dimension g
and iteration #, respectively; rndy; and rnd, are random
values from 0 to 1; ¢ and ¢, are the weights for regulating
the influence of Pb and Gb; w is the inertia weight for
balancing personal and global exploration abilities of the
swarm, and Vmax is the maximum velocity to stop the
particle from moving beyond its limitation [21].

Gbj, and vj, represent the

3.2 Classifiers

While the proposed method can apply any classifier for
sentiment analysis, in our current study, we opt for the
three best classifiers identified by prior experiments [4],
namely the LR, SVM, and MLP. We also investigate an

The SVM learns from a training dataset and generalises
for correct predictions on unseen data. It works by sepa-
rating a hyperplane and maximises the separation distance.
Larger the margin, lower the error generated by the clas-
sifier [33]. SVMs are widely used in many research areas
[50-55]. In this study, we consider the LSVM, as previous
studies have found it to perform better than other types of
kernels (e.g., see [4]).

The MLP is a feedforward artificial neural network
normally used as a supervised model for pattern recogni-
tion and classification [56]. This model minimises the error
in its results by computing the weights in its network. The
algorithm continually updates the weights to achieve the
best configuration and consists of two phases: feed-forward
and backpropagation. In the feed-forward phase, training
data is forwarded to produce an output, then the difference
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between the real output and desired target is calculated to
produce an error. This error is then used to update the
weights accordingly [34]. This algorithm has been used and
improved by researchers in different areas [22, 57-62].

In the original BP ensemble, CART and NNb algorithms
were used as the base-predictors [31]. CART or the Deci-
sion Tree classifier was developed by Quinlan [63] based
on Hunt’s algorithm [64]. As the name suggests, it is a tree-
like model, creating decision trees for classification and
prediction purposes. This classifier is a useful explanatory
tool for expressing the cause and effect chain [65]. It has
been used for text classification [66, 67] and many other
applications [68, 69]. This algorithm is typically used as a
base-predictor for ensemble methods [31, 70, 71], and is
also widely used for solving classification and regression
problems. Similarly, the NNb is a long-established algo-
rithm that is often used to estimate an unknown sample
using the closest instances [72]. This algorithm is still
widely used [22] and regularly improved [73].

3.3 Multi-level PSO

The proposed method, ML-PSO, can be seen in Fig. 1. By
design, this method consists of two levels. The first level
has a main PSO, whose particles are PSOs themselves
(called inner PSOs). We use basic PSO from Kennedy and
Eberhart [36] for both the main and inner PSOs. However,
they can be easily replaced by other PSO variants if
required. It is also possible to create an ensemble of PSOs
from different variants of PSO algorithms as suggested by
Lynn and Suganthan [40]. The inner PSOs (particles of the
main PSO) work independently of each other and report
their results to the main PSO for the adjustment of its Pb
and Gb values. Therefore, different types of PSOs can be
used for each particle in the main PSO. However, for
simplicity and easier tracking, the same type of PSO is
used for the particles of the main PSO in this study. The
purpose of the main PSO is to achieve the best possible
parameters of the ensemble classifier (i.e., BP), and con-
currently utilise the inner PSOs to choose the best base-
predictor for the ensemble and optimise the parameters of
this chosen base-predictor.

Algorithm 2 Main PSO of ML-PSO

1. Create particles in the inner PSOs;

2. Initialise, with random values, the particles’ positions, velocities, and personal best (Pb); and the swarm’s global best

(Gb) for the main PSO;
For each particle:

For each particle:

Update the inertia-weight, w, randomly;

VN

else go to step 3;

Update their velocity and position using Eq. 1 and Eq. 2;

Calculate the current fitness value by calling the inner PSO function;
Update the particle’s Pb and the Gb, if the current fitness value is better;

If the particles’ iterations exceed the maximum number of iteration or terminating criteria are met, stop and report Gb;

Algorithm 3 Inner PSOs of ML-PSO

Create the particles. Initialise, with random values, their positions, velocities, and Pb; and the swarm’s Gb;

For each particle:
Calculate the current fitness value;

Update Pb and Gb, if the current fitness value is better;

Update their velocity and position using Eq. 1 and Eq. 2;

1
2
3
4
5. For each particle:
6
7. Update the inertia-weight, w, randomly;
8

If particles’ iterations exceed the maximum number of iterations or terminating criteria are met, return Gb to the caller

(Main PSO); else go to step 2;
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Fig. 1 Design of ML-PSO

Inner PSO
Optimise single-classifier
parameters (e.g., LSVM-2)

After data preparation, the main PSO creates its PSO
particles randomly, following which a classifier is assigned
to each PSO particle to be processed as a base-predictor
candidate. For instance, if the number of particles is 10 and
given three classifiers to be investigated in our case—
namely the LR, LSVM and MLP—these classifiers are
distributed evenly among the PSO particles using a simple
loop (4 PSOs for the LR, 3 PSOs for the LSVM, and 3
PSOs for the MLP). Each inner PSO runs independently
without affecting the other inner PSOs. After an inner PSO
process is terminated, it reports its Gb result to the main
PSO, which uses this information to adjust the Pb of the
particle and its own Gb. The particle initiates further inner
PSO runs until the iterations are complete. The number of
particles and iterations of main and inner PSOs can be set
individually at the beginning of the process. The intention
is to separate the optimisation process of ensemble
parameters in the main PSO and parameter optimisation of
the base-predictors of this ensemble in the inner PSOs. The
reason for separation is that each predictor/classifier can-
didate has a different set of parameters. It is impossible to
combine optimisation of the ensemble parameters and
optimisation of the base-predictor candidate’s parameters,
since the number of parameters of each classifier is dif-
ferent (see the examples in Table 1).

Inner PSO
Optimise single-classifier
parameters (e.g., LSVM-1)

Inner PSO
Optimise single-classifier
parameters (e.g., LR-1)

Main PSO (Cluster of PSOs)
Optimise ensemble-model
parameters (e.g., BP)

Inner PSO
Optimise single-classifier
parameters (e.g., MLP-1)

Inner PSO
Optimise single-classifier
parameters (e.g., LR-2)

Each inner PSO may optimise a different classifier, and
each classifier has different sets of parameters. Initially, the
classifier’s parameters are set randomly and are used as the
location and velocity vectors of the PSO. In each iteration,
each particle calls the classifier assigned to it for evaluation
using its current location vector as the classifier’s param-
eters. Once the classifier completes its training and testing
processes, it reports the measurement results (e.g., accu-
racy, precision, recall, F-measure) back to the PSO’s par-
ticles for evaluation. Then, based on the evaluation results
(the Pb and Gb vectors), each particle adjusts its velocity
and location vectors. When all the particles have either
completed their iterations or met their termination criteria,
the inner PSOs send their classifier’s identity, Gb vector
and measurement values to their corresponding particle in
the main PSO. The inner PSOs then use this information to
adjust their velocity and location, and update the Pb and
Gb. If the iterations are not completed (or termination
criteria are not met), the particle will initiate another inner
PSO and so on. Once the overall process is completed, the
method reports the Gb set for the main PSO, which consists
of its measurement value, ensemble-optimised parameters,
the best base-predictor choice, and the optimised parame-
ters of this base-predictor. See Algorithms 2 and 3 for
details of the main PSO and inner PSOs, respectively.
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Table 1 Parameters of classifiers to be optimised

Classifier Parameter Description Type Values
LSVM C Inverse of regularisation strength Floating  0.1-1.0
point
Multi-class The multi-class strategy used if y contains more than two classes Nominal 0 = ‘ovr’; 1 = ‘crammer
strategy singer’
Intercept scaling Intercept scaling is used to lessen the effect of regularisation on Floating  0.1-1.0
intercept (synthetic feature weight) point
Max. Iteration The maximum number of iterations to be run Integer 100-3000
LR C The inverse of regularisation strength Floating  0.1-1.0
point
Solver Algorithm to use for optimisation Nominal 0 = ‘newton-cg’;
1 = ‘Ibfgs’;
2 = ‘liblinear’
3 = ‘sag’
Max. Iteration The maximum number of iterations taken for the solvers to converge Integer 50-300
MLP Number of hidden The number of hidden layers Integer 1-3
layers
Number of hidden The number of hidden layer neurons; the number of neurons can be Integer 50-3000
neurons different for each hidden layer
Activation Activation function for the hidden layer Nominal 0 = ‘identity’ [f(x) = X]
1 = ‘logistic’ [f(x) =1/
(1 + exp(-x))]
2 = ‘tanh’ [f(x) = tanh(x)]
3 = ‘relu’ [f(x) = max(0,
x)]
Solver The solver for weight optimisation Nominal 0 = ‘Ibfgs’; 1 = ‘sgd’;
2 = ‘adam’
Learning rate The learning rate used when updating network weights Floating  0.0001—0.05
Point
Shuffle Whether to shuffle samples in each iteration Boolean 0 = False; 1 = True
Early stopping Whether to use early stopping to terminate training when the Boolean 0 = False; 1 = True
validation score is not improving
Beta 1 The exponential decay rate for estimates of the first-moment vector of Floating  0.5-0.99999
Adam solver point
Beta 2 The exponential decay rate for estimates of the second-moment Floating  0.5-0.99999
vector of Adam solver point
BP Base estimator Predictor/classifier used to build the ensemble Classifier 0=LR; 1 =LSVM;
2 = MLP
N estimators The number of base estimators in the ensemble Integer 1-30
Max. samples The number of samples to draw from the dataset to train each base Floating  0.3-1.0
estimator point
(n_samples = max_samples * total_samples)
Max. features The number of features to draw from a set of features to train each  Floating  0.2-1.0
base estimator point
(n_features = max_features * total_features)
Bootstrap Whether samples are drawn with replacement Boolean 0 = False; 1 = True
Bootstrap features Whether features are drawn with replacement Boolean 0 = False; 1 = True

It should be noted that the ML-PSO in this study con-
sists of two levels because it is used to optimise ensemble
parameters, select the base-predictor for this ensemble, and
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optimise the parameters of the selected predictor. However,
for more complex problems, and depending on the problem
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Fig. 2 Design of PML-PSO
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at hand, it can easily be expanded to comprise up to

n levels.

3.4 Parallel multi-level PSO

The general problem with PSO and other nature-inspired
optimisation algorithms is the large number of iterations

required to simulate the ‘evolution’ process, resulting in
long runtime. Approaches to overcome this problem
include the simplification of the entire process, application
of simpler equations, or parallelism [20, 28, 29, 38, 39, 42].
We utilise parallelism to design a parallel version of ML-
PSO, PML-PSO in short, with the intention of speeding up
the optimisation process. See Fig. 2 for a high-level rep-
resentation of the method. The approach has been specifi-
cally designed to utilise grid computing facilities, such as
the high-performance computing (HPC) facilities at the
University of Newcastle (UoN), Australia. While PML-
PSO has the same fundamental idea as ML-PSO, i.e., the
utilisation of multiple levels of PSOs, it has been rede-
signed and rewritten to make the best use of parallelism in
grid computing facilities. In any grid computing facility,
each node is considered as a single CPU running inde-
pendently of and in parallel with other nodes. The nodes do
not share the RAM but the data storage. Each job/script
submitted by a user is queued in a central job queue and is
assigned to a CPU whenever one is free. Therefore, to fully
utilise the power of HPC, PML-PSO is composed of sev-
eral small programs that recursively call each other, as
illustrated in Fig. 3.

Algorithm 4 First Component of PML-PSO

1. Prepare all settings;

2. Create the Settings and Lv1Gbest files (Lv1Gbest = -1) to save all settings and Gb of main PSO, respectively;

3. Create and queue a job for the second component and stop;
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Algorithm 5 Second Component of PML-PSO

//The Second Component is used to handle the process of main PSO in PML-PSO

Load the Settings and Lv1Gbest files;
If this job is created by the First Component:

Create n particles and set all their attributes as assigned in the settings;
Create n Lv1ParticleClass files to save the n particles and all their attributes;

Create n Lv1ParticleResult files with value -1;

Else if this job is created by the Third Component:

particle = load the appropriate Lv1ParticleClass file;

Lv1Gbest = load the Lv1Gbest file;

—_—

Write Lv1Gbest to a report file then stop;

1

2

3

4

5

6. Create and queue n jobs for the Third Component and stop.

7

8

9

1 If particle.iteration > particle.maxIteration or terminating criteria are met:
1

//This is the end of this particle’s cycle. Once all main PSO particles complete their cycles, the last report of

LviGbest in the report file is the expected solution

12. Else:

13. particle.currentFitness = load the Lv1ParticleResult file;

14. Update particle.pbest with particle.currentFitness if particle.currentFitness > particle.pbest;
15. Update Lv1Gbest with particle.currentFitness if particle.currentFitness > Lv1GBest;

16. Update particle.velocity and particle.position using Eq. 1 and Eq. 2;

17. Increment particle.iteration;

18. Update the particleClass and Lv1Gbest files;

19. Create and queue a Third Component job for this particular particle and stop.

// The Second Component calls the Third Component for another round of inner PSOs. This instruction is similar
with “Calculate” in the main PSO function of ML-PSO

Algorithm 6 Third Component of PML-PSO

//The Third Component is used to handle the process of inner PSOs in PML-PSO
1. Load the appropriate Lv1ParticleResult and Lv1ParticleClass files for setting parameters of the job
2. Create all particles. Then initialise, with random values, the particles’ positions, velocities, and personal best (Pb), and

the swarm’s global best (Gb);
For each particle:
Calculate the current fitness value;

For each particle:

Update the inertia-weight, w, randomly;

el i e

— O

Update Pb (particle) and Gb, if the current fitness value is better;
Update their velocities and positions using Eq. 1 and Eq. 2;
If the particles’ iterations exceed the maximum number of iterations or terminating criteria are met:

If Gb is better than the Lv1ParticleResult file value, update the Lv1ParticleResult file;
Create and queue a Second Component job corresponding to this particular particle and stop.

//By creating the Second Component, this Third Component calls the main PSO to continue its iteration or stop when
it completes the maximum number of iterations or when the terminating criteria are met.

PML-PSO consists of three different components, and
each has been coded separately. The first component pre-
pares the dataset, classifiers to be used in the process, and
settings such as the number of particles and total iterations
of both the main PSO and inner PSOs. Once the prepara-
tion phase has completed, this component creates and
queues the job for the second component, which handles
the main PSO. When the job for the second component is
run on HPC, it creates and queues several jobs for the third
component, corresponding to the particles of the main
PSO. The jobs created for the third component represent
the inner PSOs in ML-PSO. Each such job continuously
updates its Pb and Gb values, adjusts the velocity and
position of each particle, and so on until the number of
scheduled iterations is completed or the termination criteria
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are met. Multithreading is utilised in the third component
to speed up the entire process.

Once an inner PSO process has completed, its corre-
sponding component (i.e., the third component) creates and
queues a job for its parent (second) component using the
available template. When this second component job is run,
it updates Pb of the corresponding particle (i.e., the inner
PSO), and Gb of the main PSO, and finally adjusts the
velocity and position of the particle. Following this, if the
number of iterations set for this particle (i.e., the inner
PSO) has been completed or the termination criteria are
met, the process for the particle is terminated; otherwise,
another job for the next iteration of the inner PSO (i.e., the
third component) is created and queued. The third com-
ponent, thus created, will run as described earlier and ter-
minates by creating a job for the parent (second)
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Table 2 Accuracies of BP using default parameters versus ML-PSO with 5 particles and 10 iterations for each particle

Experiment Default parameters ML-PSO (5 particles)
GBo AB RF  BP (CART)* BP (NNb)* BP (LR) BP (LSVM) BP (MLP) BP (LR) BP (LSVM) BP (MLP)

1 0.821 0.803 0.753 0.717 0.626 0.827 0.782 0.840 0.846 0.828 0.860
2 0.823 0.780 0.762 0.706 0.609 0.832 0.788 0.851 0.850 0.819 0.857
3 0.813 0.799 0.744 0.729 0.619 0.835 0.828 0.847 0.844 0.829 0.863
4 0.818 0.782 0.756 0.724 0.634 0.839 0.781 0.837 0.848 0.825 0.855
5 0.825 0.800 0.764 0.726 0.606 0.834 0.795 0.852 0.845 0.833 0.869
6 0.823 0.789 0.744 0.729 0.628 0.820 0.788 0.841 0.848 0.814 0.864
7 0.826 0.807 0.750 0.694 0.651 0.825 0.799 0.834 0.849 0.819 0.868
8 0.818 0.806 0.743 0.723 0.631 0.844 0.804 0.838 0.850 0.832 0.858
9 0.813 0.799 0.758 0.739 0.634 0.836 0.803 0.843 0.850 0.828 0.857
10 0.819 0.800 0.751 0.736 0.631 0.831 0.786 0.844 0.849 0.822 0.862
Avg: 0.820 0.797 0.753 0.722 0.627 0.832 0.795 0.843 0.848 0.825 0.861
Std.Dev 0.004 0.009 0.007 0.013 0.012 0.007 0.013 0.006 0.002 0.006 0.005

“BP uses CART and NNb algorithms as its default base-predictors [31, 77]

component. Thus, the second and third components are
designed to call each other in a double recursive fashion.

The communication between the components, such as
passing parameters and global variables for Pb and Gb, is
done by saving them on several temporary files in a com-
mon data storage on the HPC. Theoretically, all particles in
the main PSO will run in parallel without waiting for the
other particles to complete. Therefore, in an ideal situation,
where the HPC’s CPUs immediately serve all jobs at the
same time, the processing time of the main PSO is equal to
the longest processing time of its particles; thus solving the
problem of long runtime. See Algorithms 4, 5 and 6 for
details of the first, second and third components,
respectively.

4 Experiments and results

As discussed earlier, in our experiments, we used the LR,
LSVM and MLP as base-predictors of BP. In addition, we
also compared the results with those of CART and NNb
algorithms, which are the default base-predictors for BP
[31]. It is worth noting that other types of ensemble mod-
els, such as Gradient Boosting (GBo) [74] and Random
Forest (RF) [70], are limited to using CART as their base-
predictor. They were, therefore, not considered suitable for
our current study. Another popular ensemble model,
Adaptive Boosting (AB) [75], which has more than one
suitable base-predictor, cannot use the MLP as its base-
predictor [4]; we also found its performance for sentiment
analysis to be inferior to BP [4].

The parameters to be optimised for each classifier can be
found in Table 1. In order to facilitate comparison with
results of previous experiments, fixed settings for the inner
PSOs were used. These settings are: 15 particles and 30
iterations for each particle; cl = c2 = 1.49445; and a ran-
dom number for w (0.5-0.9) generated every time the
velocity was updated. Regarding the dataset, 1000 records
from the Yelp 2017 review dataset [76] and 1000 features
of two polarities (negative/positive) were used. Since the
Yelp review dataset is an unlabelled dataset, we used star
ratings given by its reviewers as the basis for assigning
negative (1 & 2 stars) and positive (3, 4 and 5 stars)
polarities. For detailed information about this decision,
please refer to [4]. We used 10-fold cross validation for
training and testing every classifier in the inner PSOs
(particles of the main PSO).

4.1 Experiments on ML-PSO

The first series of experiments was conducted by varying
the number of particles in the main PSO from 5 to 50, and
each particle was run for 10 iterations. Fitness of each
particle was measured using the accuracy achieved with the
parameter settings of the classifiers. The maximum runtime
of each job was limited to 400 h (for the UoN’s HPC
facility), and the maximum RAM available to each job was
120 Gigabytes. Detailed results of each process were
recorded, including the Gb of every particle in the main
PSO, with each particle being an inner PSO.

Results in Table 2 show that parameters determined by
ML-PSO, using only 5 particles for the main PSO, out-
perform the default parameters by a minimum of 1.6% and
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Table 3 Average difference and MW U test results

ML-PSO (5p) optimised params Default parameters

Average difference (%) MW U test p value (a0 < 0.01)

BP(LR) BP(LR)
BP(LR) GBo
BP(LR) AB
BP(LR) RF
BP(LSVM) BP(LSVM)
BP(LSVM) GBo
BP(LSVM) AB
BP(LSVM) RF
BP(MLP) BP(MLP)
BP(MLP) BP(LR)
BP(MLP) BP(LSVM)
BP(MLP) BP(CART)
BP(MLP) BP(NNb)
BP(MLP) GBo
BP(MLP) AB
BP(MLP) RF

1.6 0.00022
2.8 0.00018
5.1 0.00018
9.5 0.00018
3 0.001

0.5 0.05876
2.8 0.00018
72 0.00018
1.8 0.00018
29 0.00018
6.6 0.00018
13.9 0.00018
23.4 0.00018
4.1 0.00018
6.4 0.00018
10.8 0.00018

up to 23.4%. Accuracies of the optimised BP(LR),
BP(MLP) and BP(LSVM) are higher by 1.6%, 1.8% and
3%, respectively, compared to their counterparts with
default parameters [77]. The optimised BP(LR), BP(MLP)
and BP(LSVM) also outperform other ensemble models,
namely GBo, AB and RF with default parameters, by at
least 2.8%, 4.1% and 0.5%, respectively. The MLP clas-
sifier, which produces the best results overall, outperforms
the default base-predictors, Decision Tree/CART and NNb
algorithms, by 13.9% and 23.4%, respectively. These
results indicate that the proposed method, ML-PSO, can
greatly improve the performance of the sentiment polarity
predictors, even with a small number of particles. Statis-
tical analysis using the Mann—Whitney (MW) U test, as
shown in Table 3, confirmed that the improvements are
mostly significant, since all of the p-values of the tests are
below the significance level (o < 0.01), except the opti-
mised BP(LSVM) against GBo.

To further investigate improvements that might be
achieved with more particles in the main PSO, the above
experiments were repeated by increasing the number of
particles up to 50, with an interval of 5 particles for each
experiment. The results show that, with more particles,
ML-PSO is able to further improve the accuracy of the
prediction by ~ 1.2%, from a maximum of 0.869 to 0.881
(see Table 4, the Gb of ML-PSO (accuracy), sub-column
BP(MLP)). Another interesting observation made from
these results is that the MLP is always the best base-pre-
dictor for BP, except for the ML-PSO with 25 particles,
where BP(LR) is slightly better than BP(MLP). From our
results, it can, therefore, be concluded that the proposed
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ML-PSO method can choose a better base-predictor auto-
matically for the ensemble algorithm (BP), and success-
fully optimise the parameters of the chosen base-predictor
as well as the parameters of the ensemble.

However, upon closer inspection of the processing times
of ML-PSO, it was discovered that the processing times for
10 particles and above are the same, i.e., 400 h (see
Table 4, the “Processing time” column, ML-PSO). 400 h,
as mentioned earlier, is the maximum processing time
available to each node in the HPC facility at the UoN. A
detailed inspection of the process logs revealed that most of
the particles in the main PSO neither completed all itera-
tions nor met the termination criteria; rather, they were
forcefully terminated after reaching the maximum pro-
cessing time limit. It should be noted that, even though the
processes were forcefully terminated, ML-PSO still pro-
vides an output because the current Gb and the vectors that
yielded it are recorded at each iteration. Nevertheless, it is
safe to assume that the results are not the best possible
results as initially expected. To overcome this situation,
experiments using parallelism (i.e., PML-PSO) were con-
ducted, and the results are described in the next section.

4.2 Experiments on PML-PSO

PML-PSO has been created, as explained in earlier sec-
tions, to overcome the problem faced by ML-PSO in the
preceding section. Experiments to test this idea were run on
the same HPC facility at the UoN, which has 2560 cores for
66 CPU and 4 GPU nodes, and up to 512 Gigabytes’ RAM
available to be assigned to each node. For all our
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Table 4 ML-PSO versus PML-PSO, in a non-ideal environment

Number of particles in main PSO  Processing time (hour) Gb of ML-PSO (accuracy) Gb of PML-PSO (accuracy)

ML-PSO PML-PSO BP (LR)

BP (LSVM) BP (MLP) BP(LR) BP (LSVM) BP (MLP)

50 400.00 878.59 0.870
45 400.00 705.24 0.863
40 400.00 622.36 0.861
35 400.00 134.31 0.860
30 400.00 119.92 0.862
25 400.00 807.82 0.870
20 400.00 126.95 0.865
15 400.00 557.76 0.860
10 400.00 512.50 0.863
5 245.77 123.22 0.845

MW U test p value (ML-PSO to PML-PSO, o < 0.01):

0.859 0.873 0.874 0.874 0.884
0.853 0.876 0.871 0.870 0.886
0.868 0.878 0.873 0.871 0.883
0.865 0.873 0.872 0.873 0.879
0.864 0.881 0.876 0.876 0.885
0.861 0.868 0.872 0.872 0.881
0.856 0.875 0.872 0.871 0.881
0.868 0.872 0.871 0.873 0.879
0.857 0.875 0.869 0.869 0.880
0.833 0.869 0.871 0.861 0.875
0.00034  0.00068 0.00168

Table 5 ML-PSO versus PML-PSO without the MLP, in an ideal environment

Number of particles in main PSO  Processing time (hour) Highest

Gb and the accuracy

ML-PSO PML-PSO ML-PSO Gb  ML-PSO accuracy = PML-PSO Gb  PML-PSO accuracy

50 125.39 46.59 BP(LR) 0.872 BP(LR) 0.870
45 81.86 40.92 BP(LSVM)  0.871 BP(LR) 0.870
40 94.82 49.27 BP(LR) 0.872 BP(LR) 0.870
35 141.26 46.73 BP(LR) 0.870 BP(LSVM) 0.871
30 128.47 42.45 BP(LR) 0.869 BP(LR) 0.869
25 108.36 45.38 BP(LR) 0.867 BP(LR) 0.870
20 39.33 44.63 BP(LR) 0.871 BP(LR) 0.872
15 34.37 44.02 BP(LR) 0.865 BP(LR) 0.870
10 8.65 4732 BP(LR) 0.868 BP(LSVM) 0.869
5 3.83 39.80 BP(LR) 0.861 BP(LR) 0.862

MW U test analysis for the accuracy between ML-PSO and PML-PSO (a < 0.01), p value = 0.8181

experiments, we used an HPC cluster consisting of 32
nodes of CPUs. Each experimental setting was run only
once, for two different HPC load environments, since each
optimisation process took a very long time to complete.
Table 4 presents the results of experiments run in a non-
ideal environment, where HPC loads range from normal to
full and jobs have to wait in the job queue before execut-
ing. Similarly, Table 5 presents the results for similar
experiments, but without BP(MLP), repeated in an ideal
environment where the HPC load was low enough for all
jobs to be executed immediately. It is also worth men-
tioning here that, since a node’s failure can prevent the
successful completion of a job, node failure can impact the
prediction accuracy. However, node failure is extremely

rare in the HPC environment, and our job logs did not
report any node failures during our experiments.

Results, as can be seen in Table 4 under the “Processing
time” column, show that PML-PSO is able to successfully
overcome the processing time limitation of 400 h (note that
the processing time values for PML-PSO are the total hours
required by all the jobs). One interesting observation is
that, for particle sizes 20, 30 and 35, the processing times
are similar to those with only 5 particles. The reason for
this is that, in these cases, the HPC job queue was suffi-
ciently low enough to allow the PML-PSO processes to run
in a truly parallel manner. In the other cases, however, the
HPC load prevented truly parallel processing of all PSO
runs. For further understanding of how the PML-PSO

@ Springer
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Fig. 4 The PML-PSO process in detail

works in HPC together with other jobs, please refer to the
illustration in Fig. 4.

From the results of the MW U test listed in Table 4, it
can be seen that accuracy improvements with PML-PSO
are significantly higher than those with ML-PSO. This
indicates that the processing time limitation placed on HPC
has a severe impact on the efficacy of ML-PSO and its goal
of achieving the best possible solution. The results also
validated the idea of adding parallelism to ML-PSO, since
PML-PSO was able to meet its goal of speeding up the
process, evading HPC processing time limitations and
performing multi-level optimisation like ML-PSO.

To conduct a fairer comparison of ML-PSO and PML-
PSO, we conducted another set of experiments by
excluding BP(MLP), which requires much longer time to
reach convergence than other classifiers. The assumption
was that ML-PSO would successfully terminate under
400 h  without BP(MLP). Besides the exclusion of
BP(MLP), other settings were the same as previous
experiments. Efforts were also made to run the experiments
when the HPC load was low enough to allow all jobs from
PML-PSO to be served immediately. The results of these
experiments can be found in Table 5.

These results in Table 5 show that the best accuracies
provided by ML-PSO and PML-PSO are very similar,
which means that, without being cut off by the processing
time limitation of HPC, ML-PSO can match the perfor-
mance of PML-PSO. MW U test analysis between the
accuracies of ML-PSO and PML-PSO confirmed that their
difference is not significant, since the p-value is higher than
the significance level of a < 0.01. Nevertheless, since it
uses iterations instead of parallelism, ML-PSO needed
more time to reach its stopping condition when we
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increased the number of particles; whereas the processing
times are similar for all particle sizes in PML-PSO. In an
ideal environment, parallelism allows all or almost all the
particles of PML-PSO entering the job queue to run at the
same time. The processing times of PML-PSO experiments
were, however, longer than ML-PSO when the number of
particles is relatively small (5 to 20). This is because, every
time the component is run, it should upload the sample
features from data storage to memory, whereas in ML-
PSO, the sample features are processed only once and stay
in memory for the duration of training.

The processing times for ML-PSO with 40, 45 and 50
particles are inconsistent with the trend of increased pro-
cessing time for a higher number of particles. An educated
guess here is that this is caused by the variance of con-
vergence speed of classifiers used inside the inner PSO;
however, we do not have a technical explanation, since we
did not record the time required by the classifiers of the
inner PSO particles. Nonetheless, from the results in
Table 5, we can conclude that the processing times for
PML-PSO are almost always constant in an ideal situation,
whereas the processing time increases with an increase in
the number of particles in ML-PSO.

4.3 Experiments using large-scale data

Our last set of experiments was conducted by applying the
best results of PML-PSO on 500,000 records from the Yelp
review dataset. The experiment settings and pre-processing
steps were based on previous research [4], and each
experimental setting was repeated 10 times. The experi-
ments were run using 10-fold cross validation. Experiment
types were (A) 1 and 2 stars as negative polarity and 3, 4
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and 5 as positive polarity; (B) 1, 2 and 3 stars as negative
polarity and 4 and 5 as positive polarity; and (C) 1 and 2
stars as negative polarity, 3 star as neutral polarity, and 4
and 5 as positive polarity.

As can be seen from the results in Table 6, PML-PSO
can indeed improve the accuracy and other measurements
such as precision, recall and F1 (F-measure) of BP to
predict sentiment polarity of customer reviews. While
training the classifier with a larger dataset can improve its
performance, using our methods, we can be sure of
achieving the best possible parameters and also the best
base-classifier to be used for the ensemble. Based on the
results in Table 6, the improvement achieved by applying
PML-PSO (see BP(MLP)) is quite high compared to the
results obtained using default parameters and CART as the
default base-predictor (see BP(CART)). The improvements
on all measurements are around 6%, 7.7% and 7.5% for
Type A, B and C experiments, respectively. Statistical
analysis using the MW U test with a significance level of
o < 0.01 confirms that the accuracy improvements
achieved from PML-PSO are significant when compared
with BP(LSVM), BP(LR) and BP(MLP) with default set-
tings. The best improvement is achieved by BP(LSVM):
the performance of BP(LSVM) is similar to BP(LR) using
PML-PSO optimised parameters, whereas its results are
worse than BP(LR) with default parameters.

5 Conclusion

Ensemble models, such as BP, can provide better perfor-
mance than a single classifier. However, determining a
suitable classifier for the ensemble’s base-predictor is a
challenging problem. Other difficulties for problems such
as sentiment polarity detection include obtaining optimal
parameters for both the ensemble and its base-predictor.
The methods proposed in this paper, ML-PSO and PML-
PSO, can overcome all of the above-mentioned problems.
The first set of experiments, using a small number of par-
ticles in the main PSO and a small number of records (1000
records), showed that the proposed ML-PSO can outper-
form the default base-classifier settings for BP (CART or
NNb). The accuracy of ML-PSO optimised BP ensemble is
14% and 23% higher than BP(CART) and BP(NNb),
respectively. Our experimental results also showed that the
accuracy could be further improved by using more particles
in ML-PSO.

However, it was observed from the experiments that the
limitation on processing times on HPC prevents ML-PSO
processes from running until completion and providing
better results. The second method proposed in this paper,
PML-PSO, utilises parallelism to reduce the processing
time of ML-PSO and helps overcome the problem caused
by limited processing times available on HPC. By breaking
down a long process into several smaller and independent
processes running in parallel, PML-PSO requires less time
for successful completion even with a larger number of
particles. Therefore, PML-PSO can successfully obtain

Table 6 Performance of PML-PSO optimised parameters for processing big data

Experiment type Classifier Default parameters PML-PSO optimised parameters MW U test (p value)®
Acc  StD* Prec Rec Fl Acc  StD* Prec Rec Fl Acc F1
A (2-polarity) BP (CART) 0.864 0.0066 0.864 0.864 0.864 - - - - -
BP (LSVM) 0.898 0.0001 0.897 0.898 0.897 0.916 0.0009 0.913 0916 0.913 0.00018 0.00018
BP (LR) 0.909 0.0001 0.908 0.909 0.908 0917 0.0009 0915 0917 0915 0.00018 0.00018
BP (MLP) 0.917 0.0004 0916 0917 0917 0923 0.0003 0921 0.923 0.921 0.00018 0.00018
B (2-polarity) BP (CART) 0.814 0.0068 0.817 0.814 0.815 - - - - -
BP (LSVM) 0.854 0.0001 0.853 0.854 0.853 0.885 0.0014 0.884 0.885 0.883 0.00018 0.00018
BP (LR) 0.873 0.0001 0.872 0.873 0.872 0.886 0.0014 0.885 0.886 0.884 0.00018 0.00018
BP (MLP) 0.883 0.0004 0.882 0.883 0.882 0.891 0.0002 0.890 0.891 0.890 0.00018 0.00018
C (3-polarity) BP (CART) 0.775 0.0064 0.756 0.775 0.761 - - - - -
BP (LSVM) 0.819 0.0001 0.798 0.819 0.805 0.836 0.0019 0.811 0.836 0.809 0.00018 0.00018
BP (LR) 0.829 0.0002 0.809 0.829 0.815 0.839 0.0013 0.815 0.839 0.817 0.00018 0.00252
BP (MLP) 0.840 0.0004 0.827 0.840 0.832 0.850 0.0001 0.833 0.850 0.835 0.00018 0.00018

StD = standard deviation of the accuracy of experiments over 10 runs

"We did not include BP(CART) in the MW U test, since we did not investigate its optimised version; the test was applied to the detailed results of

10-fold cross validation of each experiment
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better solutions than those obtained by ML-PSO even
under the restrictions placed on the available processing
time. However, further investigation revealed that, when
both methods were applied in an ideal environment, their
performances were very similar; thus, proving that both
methods are quite similar except in terms of their imple-
mentation and how they deal with a larger number of
particles. The final set of experiments using a larger dataset
(500,000 records) proved that the best possible parameter
settings obtained using PML-PSO can significantly
improve the accuracy of sentiment polarity prediction.

For future work, we plan to implement ML-PSO and
PML-PSO for optimising the classifiers to detect fake
reviews or other cases.
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