10/16/25, 11:39 AM

SPRINGER NATURE Link

= Menu Q Search

Home > Cluster Computing > Articles

Cluster Computing
Publishing model: Hybrid

£ UniversitasKristen Petra Explore open access funding | Change institution

Articles | Cluster Computing

Login

Q Cart

\ Journal menu

Articles

l Search all Cluster Computing articles >

Filter by

Volume:

Volume 23 (2020)

Publishing model:
I:' Open access only

Sort by
Date published:

@ New to old O Old to new

Updateresults

Showing 1-50 of 205 articles

A model-driven engineering approach for the service integration of loT systems

OriginalPaper 24 August2020 = Pages:1937-1954

Apache Spark Implementation of Whale Optimization Algorithm

OriginalPaper 12 August2020 Pages:2021-2034

Multi-task learning based on question—answering style reviews for aspect category class

aspect term extraction on GPU clusters

OriginalPaper Openaccess = 27July2020 Pages:1973-1986

Security assurance of MongoDB in singularity LXCs: an elastic and convenient testbed using

containers to explore vulnerabilities

OriginalPaper = 25)uly2020 Pages:1955-1971

Design and implementation of an 1/0 isolation scheme for key-value store on multiple solid -

https://link.springer.com/journal/10586/articles ?filter-by-volume=23&sortBy=newestFirst

1/5

https://link.springer.com/search?new-search=true&query=*&search-within=Journal&sortBy=relevance&facet-journal-id=10586
https://link.springer.com/search?new-search=true&query=*&search-within=Journal&sortBy=relevance&facet-journal-id=10586
https://link.springer.com/
https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/journal/10586/articles?filter-by-volume=23&sortBy=newestFirst
javascript:;
javascript:;
https://order.springer.com/public/cart
https://link.springer.com/article/10.1007/s10586-020-03150-x
https://link.springer.com/article/10.1007/s10586-020-03162-7
https://link.springer.com/article/10.1007/s10586-020-03160-9
https://link.springer.com/article/10.1007/s10586-020-03160-9
https://link.springer.com/article/10.1007/s10586-020-03154-7
https://link.springer.com/article/10.1007/s10586-020-03154-7
https://link.springer.com/article/10.1007/s10586-020-03161-8
https://link.springer.com/
https://link.springer.com/journal/10586
https://link.springer.com/journal/10586
https://link.springer.com/journal/10586
https://link.springer.com/journal/10586
https://link.springer.com/journal/10586/funding-eligibility?bpid=2000335706
https://link.springer.com/journal/10586/funding-eligibility?resetInstitution=true

10/16/25, 11:39 AM Articles | Cluster Computing
OriginalPaper 24)uly2020 Pages:2301-2313

Towards an optimized distributed deep learning framework for a heterogeneous multi-GPL

OriginalPaper 11)July2020 Pages:2287-2300

Blockchain-based database in an loT environment: challenges, opportunities, and analysis = A

OriginalPaper = 09)uly2020 Pages: 2151-2165

Multi-level particle swarm optimisation and its parallel version for parameter optimisation
models: a case of sentiment polarity prediction

OriginalPaper 06 July2020 Pages:3371-3386

loTBlockSIEM for information security incident management in the internet of things ecosy

OriginalPaper = 29)June2020 Pages:1911-1925

Lightweight memory tracing for hot data identification li::,E

OriginalPaper 04)une2020 Pages:2273-2285

E-MHMS: enhanced MAC-based secure delay-aware healthcare monitoring system in WBA[- =

OriginalPaper = 29 May2020 Pages:1725-1740

RETRACTED ARTICLE: Intrusion detection and performance simulation based on improved s
pattern mining algorithm

OriginalPaper 26 May2020 @ Pages:1927-1936

Data mining techniques for analyzing healthcare conditions of urban space-person lung usi
heuristic optimized neural networks S

OriginalPaper 25May2020 Pages:1781-1794

An optimization of distributed Voronoi-based collaboration for energy-efficient geographi
wireless sensor networks

OriginalPaper 18 May2020 Pages:1741-1754

Internet of things-based urban waste management system for smart cities using a Cuckoo §: =
Algorithm

>

OriginalPaper 17May2020 Pages:1769 -1780

Developing computerized speech therapy system using metaheuristic optimized artificial ¢ =
immune system

OriginalPaper 16 May2020 Pages:1755-1767

Replacing email protocols with blockchain-based smart contracts

https://link.springer.com/journal/10586/articles ?filter-by-volume=23&sortBy=newestFirst 2/5

https://link.springer.com/article/10.1007/s10586-020-03144-9
https://link.springer.com/article/10.1007/s10586-020-03138-7
https://link.springer.com/article/10.1007/s10586-020-03093-3
https://link.springer.com/article/10.1007/s10586-020-03093-3
https://link.springer.com/article/10.1007/s10586-020-03110-5
https://link.springer.com/article/10.1007/s10586-020-03130-1
https://link.springer.com/article/10.1007/s10586-020-03121-2
https://link.springer.com/article/10.1007/s10586-020-03129-8
https://link.springer.com/article/10.1007/s10586-020-03129-8
https://link.springer.com/article/10.1007/s10586-020-03127-w
https://link.springer.com/article/10.1007/s10586-020-03127-w
https://link.springer.com/article/10.1007/s10586-020-03122-1
https://link.springer.com/article/10.1007/s10586-020-03122-1
https://link.springer.com/article/10.1007/s10586-020-03126-x
https://link.springer.com/article/10.1007/s10586-020-03126-x
https://link.springer.com/article/10.1007/s10586-020-03123-0
https://link.springer.com/article/10.1007/s10586-020-03123-0
https://link.springer.com/article/10.1007/s10586-020-03128-9
BAU-AMELIA
Highlight

10/16/25, 11:43 AM Editorial board | Cluster Computing
SPRINGER NATURE Link Login
= Menu Q search D cart

Home > Cluster Computing > Editorial board

Cluster Computing
Publishing model: Hybrid

£ UniversitasKristen Petra Explore open access funding | Change institution

\ Journal menu

Editorial board
Editor-in-Chief
o)

a

Salim Hariri
Electrical & Computer Engineering Dept., University of Arizona, Tucson, United States

Editor-in-Chief of Special Issues

o
()

Yaser Jararweh
Jordan University of Science and Technology, Irbid, Jordan

\v Show more

Editorial Board

o
()

Cristinel Ababei
University of Minnesota, Minneapolis, United States

o
()

Haider Abbas
National University of Sciences and Technology, Islamabad, Pakistan

O
()

Sherif Abdelwahed
VirginiaCommonwealth University, Richmond, United States

o
()

Raja Wasim Ahmad
Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

https://link.springer.com/journal/10586/editorial-board 1/6

https://link.springer.com/
https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/journal/10586/editorial-board
javascript:;
javascript:;
https://order.springer.com/public/cart
https://link.springer.com/
https://link.springer.com/journal/10586
https://link.springer.com/journal/10586
https://link.springer.com/journal/10586
https://link.springer.com/journal/10586
https://link.springer.com/journal/10586/funding-eligibility?bpid=2000335706
https://link.springer.com/journal/10586/funding-eligibility?resetInstitution=true

10/16/25, 11:43 AM Editorial board | Cluster Computing

o
()

Ali Akoglu
University of Arizona, Tucson, United States

o
()

Sadi Alawadi
Blekinge Institute of Technology, Karlskrona, Sweden

o
()

Shadi Alawneh
Oakland University, Rochester, United States

o
a

Mahmoud Al-Ayyoub
Jordan University of Science and Technology, Irbid, Jordan

o
a

Youssif Al-Nashif
Florida Polytechnic University, Lakeland, United States

o
a

Moayad Aloqaily
Gnowit (Canada), Ottawa, Canada

o
a

Saed Saleh Al Rabaee
United Arab Emirates University, Al Ain City, United Arab Emirates

o
a

Ismaeel Al Ridhawi
University of Ottawa, Ottawa, Canada

o
a

Feras M. Awaysheh
University of Tartu, Tartu, Estonia

o
a

Shanmugam Balamurugan
Quants IS & CS, Coimbatore, India

o
a

Mustapha Bouakkaz
University of Laghouat, Laghouat, Algeria

O
a

https://link.springer.com/journal/10586/editorial-board

2/6

10/16/25, 11:43 AM Editorial board | Cluster Computing

Zheyi Chen
Fuzhou University, Fuzhou, China

o
a

Deniz Dal
Atatiirk University, Erzurum, Tiirkiye

o
a

Stratos (Efstratios) Dimopoulos
University of California, Santa Barbara, Santa Barbara, United States

o
[

Gregory Ditzler
University of Arizona, Tucson, United States

o
[

Siileyman Eken
Kocaeli Universitesi, Izmit, Tiirkiye

o
()

Miguel Garcia-Pineda
Universitat de Valéncia, Valencia, Spain

o
()

Sukhpal Singh Gill
Queen Mary University of London, London, United Kingdom

o
()

Rima Grati
Zayed University, Abu Dhabi, United Arab Emirates

o
()

Marco Guazzone
Universita degli Studi del Piemonte Orientale “Amedeo Avogadro”, Vercelli, Italy

o
a

Omer Melih Giil
Istanbul Technical University, Istanbul, Tiirkiye

o
a

Majid Haghparast
University of Jyvaskyld, Jyvaskyla, Finland

o
a

Rasheed Hussain

https://link.springer.com/journal/10586/editorial-board 3/6

10/16/25, 11:43 AM Editorial board | Cluster Computing
Innopolis University, Innopolis, Russia

o
a

Stefano lannucci
Mississippi State University, Starkville, United States

o
a

Helen Karatza
Aristotle University of Thessaloniki, Thessaloniki, Greece

o
a

Attila Kertesz
University of Szeged, Szeged, Hungary

o
a

Atta ur Rehman Khan
Ajman University, Ajman, United Arab Emirates

o
a

Yoonhee Kim
Sookmyung Women's University, Seoul, South Korea

o
a

Joanna Kolodziej
Cracow University of Technology, Krakow, Poland

o
a

Tevfik Kosar
University at Buffalo, State University of New York, Buffalo, United States

o
[

ShigangLi
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

o
()

Yan Ma
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

o
()

Sheheeda Manakkadu
Gannon University, Erie, United States

O
()

Gabriele Mencagli
University of Pisa, Pisa, Italy

https://link.springer.com/journal/10586/editorial-board

4/6

10/16/25, 11:43 AM Editorial board | Cluster Computing

o
[

Saad Mustafa
COMSATS University Islamabad, Islamabad, Pakistan

o
()

Safa Otoum
Zayed University, Abu Dhabi, United Arab Emirates

o
()

Oznur Ozkasap
Kog University, Istanbul, Tiirkiye

o
()

Manish Parashar
Rutgers, The State University of New Jersey, New Brunswick, United States

o
a

Jean-Marc Pierson
Institut de Recherche en Informatique de Toulouse, Toulouse, France

o
()

Ashwin Poojary
Nvidia (United States), Santa Clara, United States

o
a

Muhammad Habib ur Rehman
Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

o
a

Pratik Satam
University of Arizona, Tucson, United States

o
a

Sicong Shao
University of North Dakota, Grand Forks, United States

o
a

Manik Sharma
DAV University, Jalandhar, India

o
a

Rong Shi
Meta (United States), Menlo Park, United States

o
a

https://link.springer.com/journal/10586/editorial-board 5/6

10/16/25, 11:43 AM Editorial board | Cluster Computing

Junaid Shuja
Southeast Missouri State University, Cape Girardeau, United States

o
()

Alireza Souri
Hali¢ University, Istanbul, Tiirkiye

o
()

Chunzhi Su
Google (United States), Mountain View, United States

o
a

Lewis Tseng
Boston College, Boston, United States

o
a

Cihan Tunc
University of North Texas, Denton, United States

o
a

Onder Tutsoy
Adana Science and Technology University, Adana, Tiirkiye

o
a

Mohammad Wardat
Oakland University, Rochester, United States

o
a

Qichung “Kit” Zhang
University of Bradford, Bradford, United Kingdom

o
a

Rui Zhang
IBM Research - Almaden, San Jose, United States

o
a

Yeliang Zhang
Google (United States), Mountain View, United States

O
[

Yunpeng (Jack) Zhang
University of Houston, Houston, United States

https://link.springer.com/journal/10586/editorial-board 6/6

10/16/25, 11:46 AM

SJR

SJR

Scimago Journal & Country Rank

Cluster Computing

Cluster Computing

COUNTRY

Netherlands

T Universities and research
== institutions in Netherlands

., Media Ranking in Netherlands

»

PUBLICATION TYPE

Journals

SCOPE

Home Journal Rankings Journal Value

SUBJECT AREA AND CATEGORY

Computer Science
Computer Networks and Communications
Software

ISSN

13867857

Country Rankings Viz Tools Help

PUBLISHER

Kluwer Academic Publishers

COVERAGE

1998, 2005-2025

About Us

SJR 2024

1.040

H-INDEX

80

INFORMATION

Homepage

How to publish in this journal

Cluster Computing: the Journal of Networks, Software Tools and Applications will provide a forum for presenting the latest research and technology that unify the fields of parallel processing, distributed computing
systems and high performance computer networks. The current advances in computing, networking technology and software have spurred a lot of research interest in cluster and internet computing, as
demonstrated in Cloud and Grid computing, and distributed high performance data centers. In the last few years, we have seen an increased interest in developing applications, software tools, communications
protocols and high performance data centers, Grids and cloud computing sites to capitalize on these advances and initiatives. Publications about these developments currently appear in several journals that either
focus on the communications field, or on parallel and distributed computing with a strong emphasis on the parallel algorithms. Cluster Computing Journal will uniquely address the latest results in integrating these
three fields to support the development of high performance parallel distributed computing systems and their applications. The journal will be an important source of information for the growing number of
researchers, developers and users of High Performance Parallel and Distributed Computing environments. In these environments, parallel and/or distributed computing techniques are applied to the solution of large-
scale scientific and engineering applications running on clusters, cloud computing and/or distributed data centers.

X Quartiles
FIND SIMILAR JOURNALS @
Journal of Cloud Computing
<
o,
66%

® SR N
15

1
05

2006 2009 2012 2015 2018 2021 2024

® External Cites per Doc @ Cites per Doc N

2005 2008 2011 2014 2017 2020 2023

Q Join the conversation about this journal

Future G ion C C
Systems

63%

© Total Documents AN

1.4k

700

2005 2008 2011 2014 2017 2020 2023

@ % International Collaboration RN

60

40

20

2005 2008 2011 2074 2017 2020 2023

https://lwww.scimagojr.com/journalsearch.php?q=24596&tip=sid&clean=0

61%

Concurrency and

Computation: Practice and

61%

© Total Cites ® Self-Cites N

6k

0
2005 2008 2011 2014 2017 2020 2023

© Citable ©® Non-citabl RN

2k

0 [

2005 2008 2011 2014 2017 2020 2023

Journal of Grid Computing

60%

Citations per document N

2005 2008 2011 2074 2017 2020 2023
Cites / Doc. (4 years)

Cites / Doc. (3 years)
@ Cites/ Doc. (2 years)

13

https://www.scimagojr.com/
https://www.scimagojr.com/
https://www.scimagojr.com/
https://www.scimagojr.com/
https://www.scimagojr.com/index.php
https://www.scimagojr.com/journalrank.php
https://www.scimagojr.com/journalvalue.php
https://www.scimagojr.com/countryrank.php
https://www.scimagojr.com/viztools.php
https://www.scimagojr.com/help.php
https://www.scimagojr.com/aboutus.php
https://www.scimagojr.com/journalrank.php?country=NL
https://www.scimagojr.com/journalrank.php?area=1700
https://www.scimagojr.com/journalsearch.php?q=Kluwer%20Academic%20Publishers&tip=pub
https://www.springer.com/journal/10586
https://www.editorialmanager.com/clus/default.aspx
https://www.scimagoir.com/rankings.php?country=NLD
https://www.scimagomedia.com/rankings.php?country=Netherlands
https://www.scimagojr.com/journalrank.php?category=1705
https://www.scimagojr.com/journalrank.php?category=1712
https://www.scimagojr.com/journalsearch.php?q=21100383744&tip=sid&clean=0
https://www.scimagojr.com/journalsearch.php?q=12264&tip=sid&clean=0
https://www.scimagojr.com/journalsearch.php?q=24407&tip=sid&clean=0
https://www.scimagojr.com/journalsearch.php?q=27871&tip=sid&clean=0
https://www.scimagojr.com/journalsearch.php?q=800147111&tip=sid&clean=0
https://www.scimagojr.com/
https://www.scimagoir.com/
https://www.scimagomedia.com/
https://www.scimagoiber.com/
https://www.scimagorc.com/
https://www.graphica.app/
https://www.scimagoepi.com/
https://www.scimagolab.com/
https://www.scimagolab.com/

10/16/25, 11:46 AM

© cited documents @ Uncited documents
2k

2005 2008 2011 2014 2017

@ Estimated APC

4k

2k

2005 2008 2011 2014 2017

Cluster Computing

N B © % Female Authors X ®m © Documents cited by public policy (Overton) XX =
36 8
27
4
18
9 0
2020 2023 2005 2008 2011 2014 2017 2020 2023 2005 2008 2011 2014 2017 2020 2023
PANNESS] @ Estimated financial value R e
i — Cluster Computing « Show this W|dg§t in
am your own website
Computer
Q‘I [Cmirier Do Just copy the code below
am Communications and paste within your html
best quartile
. code:
SJR2024 _—“/_/‘
0 1.04 | <a href="https://www.scimag
powered by scimagajr.com
2020 2023 2005 2008 2011 2014 2017 2020 2023
Metrics based on Scopus® data as of March 2025
Faisal 17 months ago
Hello,
The publisher for cluster computing is Springer Nature. Why is the publisher here as kluwer?
 reply
=8 [sCimago Team |
'@ | Melanie Ortiz 11 months ago
=/

Dear Faisal, thank you for contacting us. We will proceed to analyze your request as soon
as possible. Greetings from Spain and thank you for using the SCImago products,
SClmago Team

husam 3 years ago

Dear SJR admin,

kindly send me a template of journal as docx file.

best regards

4 reply

= SCImago Team
’@ | Melanie Ortiz 2 years ago
=2/

Dear Husam, thank you very much for your comment, we suggest you look for the author's
instructions/submission guidelines in the journal's website. Best Regards, SCImago Team

Ahmad 4 years ago

Hi SJR admin, | am wondering that cluster computing is Q1 in the JCR ranking which was Q2
before 2020. However, it is Q3 in your ranking which was Q2 before 2020.

 reply
Y
’@\ | Melanie Ortiz 4 years ago
NS 2
Dear Ahmad,

thank you very much for your comment.

SClmago Journal and Country Rank uses Scopus data as a source and our impact
indicator is the SJR. The Journal Citation Report (JCR) is based on the Web of Science
(WOS) journal's collection. Therefore, the Source and the Methodology used by SJR are
different from the JCR. Best Regards, SCImago Team

Greg 5 years ago

Hi SJR admin,

When is the Journals ranks in SJR updated? Here | see the rank of this journal is based on SJR
2019. Thanks.

Kind regards,
Greg

4 reply

https://www.scimagojr.com/journalsearch.php?q=24596&tip=sid&clean=0

© Documents related to SDGs (UN) A o
300
200
100
0

2018 2019 2020 2021

2022 2023 2024

G SCimago Graphica

Explore, visually
communicate and make
sense of data with our
new data visualization
tool.

2/3

https://www.graphica.app/
https://www.graphica.app/

Q_ Author Search

Source details

Cluster Computing

Years currently covered by Scopus: from 2005 to 2025
Publisher: Springer Nature

ISSN: 1386-7857

Subject area: CComputer Science: Computer Networks and Communicutions) <Computer Science: Software)

Source type: Journal

View all documents » Set document alert [Save to source list

CiteScore CiteScore rank &trend ~ Scopus content coverage

CiteScore 2024 e CiteScoreTracker 2025 ©
11,990 Citations 2021 - 2024 14,760 Citations to date

8 * 1,378 Documents 2021 - 2024 7°3) 2,027 Documents to date

Calculated on 05 May, 2025 Last updated on 05 October, 2025 - Updated monthly

CiteScore rank 2024 ¢

Category Rank Percentile

Computer Science

L Computer Networks and #70/507 86th
Communications
Computer Science
#81/490 83rd

Software

View CiteScore methodology > CiteScore FAQ> Add CiteScore to your site ¢

Sources

o

CiteScore 2024

8.7

SJR 2024

1.040

SNIP 2024

1.592

https://www.scopus.com/source/citedby.uri?sourceId=24596&docType=ar,re,cp,dp,ch&citedYear=2025,2024,2023,2022&years=2025,2024,2023,2022&pubstageExclusions=aip
https://www.scopus.com/source/search/docType.uri?sourceId=24596&years=2025,2024,2023,2022&docType=ar,re,cp,dp,ch&pubstageExclusions=aip
https://www.scopus.com/standard/help.uri?topic=14880
https://www.scopus.com/home.uri?zone=header&origin=sourceinfo
https://www.scopus.com/home.uri?zone=header&origin=sourceinfo
https://www.scopus.com/freelookup/form/author.uri?zone=TopNavBar&origin=NO%20ORIGIN%20DEFINED
https://www.scopus.com/sources.uri?zone=TopNavBar&origin=sourceinfo
https://www.scopus.com/signin.uri?origin=sourceinfo&zone=TopNavBar

Cluster Computing
https://doi.org/10.1007/s10586-020-03093-3

=

Check for
updates

Multi-level particle swarm optimisation and its parallel version
for parameter optimisation of ensemble models: a case of sentiment
polarity prediction

Gregorius Satia Budhi'? - Raymond Chiong' - Sandeep Dhakal’

Received: 9 September 2019 /Revised: 8 January 2020/ Accepted: 9 March 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Ensemble learning is increasingly used in sentiment analysis. Determining the parameter settings of ensemble models,
however, is not easy. Besides its own parameters, an ensemble model has base-predictors that have their individual
parameters. Some ensemble models use a specific base-predictor and could be optimised using standard metaheuristics
such as the Particle Swarm Optimisation (PSO) approach. Optimising ensemble models with multiple base-predictor
candidates is more complicated and challenging, as there are multiple options to choose from. We therefore propose Multi-
Level PSO (ML-PSO) and Parallel ML-PSO (PML-PSO) to optimise the parameters of ensemble models, especially those
with multiple base-predictors, for sentiment analysis. The idea is to utilise multiple PSOs as particles of the main PSO. The
main PSO optimises ensemble-model parameters and determines the best base-predictor, whereas PSOs within it optimise
the corresponding base-predictor’s parameters. Experimental results using Bagging Predictors as the underlying ensemble
model show that ML-PSO can improve prediction accuracy, while PML-PSO is able to speed up the processing time and

further improve the accuracy.

Keywords Particle swarm optimisation - Parallelism - Machine learning - Sentiment analysis

1 Introduction

Sentiment polarity detection, or more generally known as
sentiment analysis, is the process of automatically and
systematically detecting the sentiment or opinion of a given
text. In addition to feature selection, the outcome of sen-
timent analysis primarily depends on the detection algo-
rithm applied [1-4]. The majority of methods used for
sentiment analysis belong to the machine learning domain.
These methods are usually applied to predict the sentiment
polarity of social media texts, online product reviews or
other kinds of texts [2—8]. Due to the extensive amount of
online texts such as product reviews, tweets and other

< Raymond Chiong
Raymond.Chiong @newcastle.edu.au

School of Electrical Engineering and Computing, The
University of Newcastle, Callaghan, NSW 2308, Australia

Informatics Department, Petra Christian University,
Surabaya 60236, Indonesia

Published online: 06 July 2020

social media texts, a system capable of automated senti-
ment analysis is vital in the online environment [9, 10].
Analysis using machine learning generally begins with
training the machines to make them capable of discrimi-
nating the texts. The accuracy of the prediction model is
determined by the quality of this training process [4, 11],
and also how features of the text are extracted [12, 13].
However, acquiring the correct parameter settings for
machine learning models to obtain the desired accuracy is
challenging [14, 15]. Researchers usually apply either the
original set of parameters used by the authors of the
algorithms, improved settings suggested by other
researchers, or default settings of the software components.
These approaches, however, often do not produce optimal
results, since the parameter settings are not tuned to the
problem at hand.

Metaheuristics and nature-inspired algorithms [16—18],
such as swarm intelligence and evolutionary algorithms,
are regularly applied to optimise machine learning models.
Compared to other metaheuristic optimisation techniques,
particle swarm optimisation (PSO) offers advantages such

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03093-3&domain=pdf
https://doi.org/10.1007/s10586-020-03093-3

Cluster Computing

as easy implementation, rapid convergence, avoidance of
local optima, and is also computationally inexpensive
because of low memory and CPU speed requirements. It
has, therefore, been widely used in many research areas,
such as function optimisation [18, 19], fuel management
optimisation [20], energy-efficient scheduling [21], mali-
cious web domain identification [22, 23], image semantic
classification [24], and so on. Some examples of the use of
PSO for sentiment analysis include parameter optimisation
[1, 5, 14, 15, 25, 26], feature selection [1, 6, 12, 15], and
clustering [27], among others. Parallel processing power
has also been applied to speed up the PSO process
[20, 24, 28-30].

In this paper, we introduce two novel methods based on
PSO to obtain best possible parameter settings for an
ensemble of classifiers. The first method introduced, called
Multi-Level PSO (ML-PSO), comprises two levels. The
first level consists of a main PSO algorithm, while the
second level consists of multiple PSOs (hereafter referred
to as inner PSOs) representing the particles in the main
PSO. Each inner PSO can optimise a base-predictor, and
each classifier has different sets of parameters. The inner
PSOs report their results to the main PSO. The main PSO
then chooses the best classifier and the best possible setting
of its parameters. Due to the hierarchical nature of ML-
PSO, the computing resources required are multiplied by
the number of particles in each inner PSO and the number
of particles in the main PSO. Given that PSO algorithms
need a large number of particles and iterations to achieve
satisfactory results, the computing resources required by
ML-PSO can be enormous. To overcome this problem, we
propose the second method, called Parallel ML-PSO
(PML-PSO), which applies parallelism to ML-PSO. In
PML-PSO, each inner PSO is set as a small semi-inde-
pendent module that can be run separately in a different
thread or process (CPU) using a different set of resources,
and in parallel with other inner PSOs, thus reducing the
processing time. This approach also helps overcome the
processing-time limit usually applied to grid computing
facilities.

In our experiments, we use Bagging Predictors (BP) [31]
as the underlying ensemble model, with classifiers
including the Logistic Regression (LR) [32], Linear-kernel
Support Vector Machine (LSVM) [33], and Multilayer
Perceptron (MLP) [34] as base-predictor candidates for BP.
These classifiers were chosen because they have performed
well in previous studies on sentiment polarity prediction of
review texts (e.g., see [3-8]). Some studies have shown
that ensemble algorithms can further increase the accuracy
and other measurements [2, 4, 35], and BP was identified as
the best ensemble algorithm for the problem at hand in one
of these previous studies [4]. We also found that BP was
the most flexible ensemble model and can be paired with

@ Springer

any single classifier as its base-predictor. This flexibility
makes BP the most suitable ensemble-model candidate for
our proposed multi-level approach. The task of optimising
ensemble parameters, choosing the base-predictor from a
number of candidates, and optimising the parameters of the
base-predictor, can be considered a multi-level problem,
which needs to be solved in a multi-level manner. Our
experimental results show that ML-PSO can improve
sentiment polarity prediction by more than 14% compared
to BP using a default set of parameters and the default
base-predictors. Furthermore, PML-PSO is able to speed
up the processing time and enhance the performance of BP
following training with a large amount of data.

The rest of this paper is organised as follows. In the next
section, the related literature background on PSO for sen-
timent analysis is briefly reviewed. The design of ML-PSO
and PML-PSO is described in detail after that, followed by
experimental results and discussions about their perfor-
mance. Finally, we draw conclusion and highlight future
research directions.

2 Background

PSO, inspired by animal swarming behaviour such as bird
flocking or fish schooling, was originally developed by
Kennedy and Eberhart in 1995 [36]. Different variants of
the original PSO have been proposed by researchers over
the years to further improve the process or make it more
suitable for a particular problem. Examples include the
discrete binary PSO (BPSO) [37], accelerated PSO [38],
hybrid PSO with genetic operators [21] or new formula
addition [24, 39], and ensemble of multiple PSOs [40].
PSO has also been widely used in sentiment analysis.
Basari et al. [14] used a Support Vector Machine (SVM) to
detect the polarity of Twitter’s movie reviews, with its
parameters optimised by a PSO algorithm. Similarly, Li
et al. [1] used PSO to optimise the parameters of their
SVM, to detect the sentiment polarities of texts from a
Chinese-based social media website with user-generated
content. In addition, they used PSO to optimise feature
dimensions used for SVM training. Wahyudi and Kris-
tiyanti [41] utilised PSO for feature selection and combined
it with an SVM to classify smartphone product reviews.
Two types of modified BPSO were proposed by Shang
et al. [13] to select features for Chinese text sentiment
classification using three types of machine learning algo-
rithms (i.e., SVM, Naive Bayes (NB), and CART4.5).
Rapid PSO-based feature selection, which is similar to
accelerated PSO [38], was proposed by Kumar and Kumar
[42] for sentiment analysis. A combination of PSO and a
genetic algorithm (GA), named PSO-GA [43], was pro-
posed by Sonagi and Gore [12] to be implemented for

Cluster Computing

feature selection in sentiment analysis using an SVM
classifier.

Mikula and Machova implemented PSO and bare-bones
PSO to create annotations for a dictionary used for senti-
ment analysis in Slovak [44]. Meanwhile, Bansal and Kaur
[6] compared the performances of ant colony optimisation
and PSO for the optimisation of feature selection from
tweets; they used the optimised features in NB and SVM
classifiers to predict the sentiment polarity of the data.
More recently, Budhi et al. [26] proposed a multi-PSO
model to select the best classifier for sentiment analysis and
optimise the parameters of the selected classifier.

3 Methods
3.1 Particle swarm optimisation

We use basic PSO as the foundation of our methods [21]. It
can be implemented in a few lines of code and uses only
primitive mathematical operators. The PSO algorithm used
in our study is described as follows:

ensemble of classifier algorithms, using BP, which was
identified as the best ensemble algorithm for the problem at
hand [4], as the underlying model. BP uses several single
predictors to build a cluster of predictors, and is commonly
adopted in many areas [35, 45]. These predictors are
trained through a bootstrapping process that replicates the
training set. BP predicts a class using plurality voting [31].
In addition to the three classifiers mentioned above, we
also include Classification And Regression Trees (CART)
and Nearest Neighbour (NNb) algorithms, since they are
the default base-predictors for BP [31].

LR is a member of the generalised linear model family
created by Nelder and Wedderburn in 1972 [46], and
improved by Hastie and Tibshirani in 1990 [47]. Traditional
linear models are limited to using continuous and normally
distributed variables, which is not always desirable. The
generalised linear models overcome this problem by using
non-normal dependent variables [48, 49]. In LR analysis, the
dependent variables can either be unordered polytomous
(polytomous nominal) or ordered polytomous (polytomous
ordinal); while the independent variables (predictors) can
either be interval/ratio variables or dummy variables for
representing a limited number of categories [32].

Algorithm 1 Basic PSO

1. Initialise the particles’ positions and velocities randomly. Initialise each particle’s personal best (Pb) and the swarm’s

global best (Gb);
2. Update the particles’ positions using Eq. 1 and Eq. 2:
3. vig = w4 eyrndyy (Phi UG + cprndyp (Gh{ UL (1)
4. Ul =UlTt + min{Vmax, vi;})
5. Update Pb and Gb;
6. Update the inertia-weight, w, randomly;

7. If terminating criteria are met, stop and report Gb; else go to step 2.

In Algorithm 1, U;q, beq,
current position, personal best position Pb, global best
position Gb, and the velocity of particle / at dimension g
and iteration #, respectively; rndy; and rnd, are random
values from 0 to 1; ¢ and ¢, are the weights for regulating
the influence of Pb and Gb; w is the inertia weight for
balancing personal and global exploration abilities of the
swarm, and Vmax is the maximum velocity to stop the
particle from moving beyond its limitation [21].

Gbj, and vj, represent the

3.2 Classifiers

While the proposed method can apply any classifier for
sentiment analysis, in our current study, we opt for the
three best classifiers identified by prior experiments [4],
namely the LR, SVM, and MLP. We also investigate an

The SVM learns from a training dataset and generalises
for correct predictions on unseen data. It works by sepa-
rating a hyperplane and maximises the separation distance.
Larger the margin, lower the error generated by the clas-
sifier [33]. SVMs are widely used in many research areas
[50-55]. In this study, we consider the LSVM, as previous
studies have found it to perform better than other types of
kernels (e.g., see [4]).

The MLP is a feedforward artificial neural network
normally used as a supervised model for pattern recogni-
tion and classification [56]. This model minimises the error
in its results by computing the weights in its network. The
algorithm continually updates the weights to achieve the
best configuration and consists of two phases: feed-forward
and backpropagation. In the feed-forward phase, training
data is forwarded to produce an output, then the difference

@ Springer

Cluster Computing

between the real output and desired target is calculated to
produce an error. This error is then used to update the
weights accordingly [34]. This algorithm has been used and
improved by researchers in different areas [22, 57-62].

In the original BP ensemble, CART and NNb algorithms
were used as the base-predictors [31]. CART or the Deci-
sion Tree classifier was developed by Quinlan [63] based
on Hunt’s algorithm [64]. As the name suggests, it is a tree-
like model, creating decision trees for classification and
prediction purposes. This classifier is a useful explanatory
tool for expressing the cause and effect chain [65]. It has
been used for text classification [66, 67] and many other
applications [68, 69]. This algorithm is typically used as a
base-predictor for ensemble methods [31, 70, 71], and is
also widely used for solving classification and regression
problems. Similarly, the NNb is a long-established algo-
rithm that is often used to estimate an unknown sample
using the closest instances [72]. This algorithm is still
widely used [22] and regularly improved [73].

3.3 Multi-level PSO

The proposed method, ML-PSO, can be seen in Fig. 1. By
design, this method consists of two levels. The first level
has a main PSO, whose particles are PSOs themselves
(called inner PSOs). We use basic PSO from Kennedy and
Eberhart [36] for both the main and inner PSOs. However,
they can be easily replaced by other PSO variants if
required. It is also possible to create an ensemble of PSOs
from different variants of PSO algorithms as suggested by
Lynn and Suganthan [40]. The inner PSOs (particles of the
main PSO) work independently of each other and report
their results to the main PSO for the adjustment of its Pb
and Gb values. Therefore, different types of PSOs can be
used for each particle in the main PSO. However, for
simplicity and easier tracking, the same type of PSO is
used for the particles of the main PSO in this study. The
purpose of the main PSO is to achieve the best possible
parameters of the ensemble classifier (i.e., BP), and con-
currently utilise the inner PSOs to choose the best base-
predictor for the ensemble and optimise the parameters of
this chosen base-predictor.

Algorithm 2 Main PSO of ML-PSO

1. Create particles in the inner PSOs;

2. Initialise, with random values, the particles’ positions, velocities, and personal best (Pb); and the swarm’s global best

(Gb) for the main PSO;
For each particle:

For each particle:

Update the inertia-weight, w, randomly;

VN

else go to step 3;

Update their velocity and position using Eq. 1 and Eq. 2;

Calculate the current fitness value by calling the inner PSO function;
Update the particle’s Pb and the Gb, if the current fitness value is better;

If the particles’ iterations exceed the maximum number of iteration or terminating criteria are met, stop and report Gb;

Algorithm 3 Inner PSOs of ML-PSO

Create the particles. Initialise, with random values, their positions, velocities, and Pb; and the swarm’s Gb;

For each particle:
Calculate the current fitness value;

Update Pb and Gb, if the current fitness value is better;

Update their velocity and position using Eq. 1 and Eq. 2;

1
2
3
4
5. For each particle:
6
7. Update the inertia-weight, w, randomly;
8

If particles’ iterations exceed the maximum number of iterations or terminating criteria are met, return Gb to the caller

(Main PSO); else go to step 2;

@ Springer

Cluster Computing

Fig. 1 Design of ML-PSO

Inner PSO
Optimise single-classifier
parameters (e.g., LSVM-2)

After data preparation, the main PSO creates its PSO
particles randomly, following which a classifier is assigned
to each PSO particle to be processed as a base-predictor
candidate. For instance, if the number of particles is 10 and
given three classifiers to be investigated in our case—
namely the LR, LSVM and MLP—these classifiers are
distributed evenly among the PSO particles using a simple
loop (4 PSOs for the LR, 3 PSOs for the LSVM, and 3
PSOs for the MLP). Each inner PSO runs independently
without affecting the other inner PSOs. After an inner PSO
process is terminated, it reports its Gb result to the main
PSO, which uses this information to adjust the Pb of the
particle and its own Gb. The particle initiates further inner
PSO runs until the iterations are complete. The number of
particles and iterations of main and inner PSOs can be set
individually at the beginning of the process. The intention
is to separate the optimisation process of ensemble
parameters in the main PSO and parameter optimisation of
the base-predictors of this ensemble in the inner PSOs. The
reason for separation is that each predictor/classifier can-
didate has a different set of parameters. It is impossible to
combine optimisation of the ensemble parameters and
optimisation of the base-predictor candidate’s parameters,
since the number of parameters of each classifier is dif-
ferent (see the examples in Table 1).

Inner PSO
Optimise single-classifier
parameters (e.g., LSVM-1)

Inner PSO
Optimise single-classifier
parameters (e.g., LR-1)

Main PSO (Cluster of PSOs)
Optimise ensemble-model
parameters (e.g., BP)

Inner PSO
Optimise single-classifier
parameters (e.g., MLP-1)

Inner PSO
Optimise single-classifier
parameters (e.g., LR-2)

Each inner PSO may optimise a different classifier, and
each classifier has different sets of parameters. Initially, the
classifier’s parameters are set randomly and are used as the
location and velocity vectors of the PSO. In each iteration,
each particle calls the classifier assigned to it for evaluation
using its current location vector as the classifier’s param-
eters. Once the classifier completes its training and testing
processes, it reports the measurement results (e.g., accu-
racy, precision, recall, F-measure) back to the PSO’s par-
ticles for evaluation. Then, based on the evaluation results
(the Pb and Gb vectors), each particle adjusts its velocity
and location vectors. When all the particles have either
completed their iterations or met their termination criteria,
the inner PSOs send their classifier’s identity, Gb vector
and measurement values to their corresponding particle in
the main PSO. The inner PSOs then use this information to
adjust their velocity and location, and update the Pb and
Gb. If the iterations are not completed (or termination
criteria are not met), the particle will initiate another inner
PSO and so on. Once the overall process is completed, the
method reports the Gb set for the main PSO, which consists
of its measurement value, ensemble-optimised parameters,
the best base-predictor choice, and the optimised parame-
ters of this base-predictor. See Algorithms 2 and 3 for
details of the main PSO and inner PSOs, respectively.

@ Springer

Cluster Computing

Table 1 Parameters of classifiers to be optimised

Classifier Parameter Description Type Values
LSVM C Inverse of regularisation strength Floating 0.1-1.0
point
Multi-class The multi-class strategy used if y contains more than two classes Nominal 0 = ‘ovr’; 1 = ‘crammer
strategy singer’
Intercept scaling Intercept scaling is used to lessen the effect of regularisation on Floating 0.1-1.0
intercept (synthetic feature weight) point
Max. Iteration The maximum number of iterations to be run Integer 100-3000
LR C The inverse of regularisation strength Floating 0.1-1.0
point
Solver Algorithm to use for optimisation Nominal 0 = ‘newton-cg’;
1 = ‘Ibfgs’;
2 = ‘liblinear’
3 = ‘sag’
Max. Iteration The maximum number of iterations taken for the solvers to converge Integer 50-300
MLP Number of hidden The number of hidden layers Integer 1-3
layers
Number of hidden The number of hidden layer neurons; the number of neurons can be Integer 50-3000
neurons different for each hidden layer
Activation Activation function for the hidden layer Nominal 0 = ‘identity’ [f(x) = X]
1 = ‘logistic’ [f(x) =1/
(1 + exp(-x))]
2 = ‘tanh’ [f(x) = tanh(x)]
3 = ‘relu’ [f(x) = max(0,
x)]
Solver The solver for weight optimisation Nominal 0 = ‘Ibfgs’; 1 = ‘sgd’;
2 = ‘adam’
Learning rate The learning rate used when updating network weights Floating 0.0001—0.05
Point
Shuffle Whether to shuffle samples in each iteration Boolean 0 = False; 1 = True
Early stopping Whether to use early stopping to terminate training when the Boolean 0 = False; 1 = True
validation score is not improving
Beta 1 The exponential decay rate for estimates of the first-moment vector of Floating 0.5-0.99999
Adam solver point
Beta 2 The exponential decay rate for estimates of the second-moment Floating 0.5-0.99999
vector of Adam solver point
BP Base estimator Predictor/classifier used to build the ensemble Classifier 0=LR; 1 =LSVM;
2 = MLP
N estimators The number of base estimators in the ensemble Integer 1-30
Max. samples The number of samples to draw from the dataset to train each base Floating 0.3-1.0
estimator point
(n_samples = max_samples * total_samples)
Max. features The number of features to draw from a set of features to train each Floating 0.2-1.0
base estimator point
(n_features = max_features * total_features)
Bootstrap Whether samples are drawn with replacement Boolean 0 = False; 1 = True
Bootstrap features Whether features are drawn with replacement Boolean 0 = False; 1 = True

It should be noted that the ML-PSO in this study con-
sists of two levels because it is used to optimise ensemble
parameters, select the base-predictor for this ensemble, and

@ Springer

optimise the parameters of the selected predictor. However,
for more complex problems, and depending on the problem

Cluster Computing

Fig. 2 Design of PML-PSO

1* Component
Initialisation and
preparing the dataset

A

Main PSO

———’——/l—
4

Inner PSOs

/

Data

storage

ER=n=l=]= ==

O o o e

Recursive process of the Main PSO particles

I

3" Component
Inner PSO

2" Component
Main PSO

| —

)

3" Component

Inner PSO

2" Component
Main PSO

| S

I

2" Component
Main PSO

3" Component
Inner PSO

2" Component
Main PSO

. & .
. .
. .
—
3" Component 2" Component
Inner PSO Main PSO
|

Fig. 3 PML-PSO processes

at hand, it can easily be expanded to comprise up to

n levels.

3.4 Parallel multi-level PSO

The general problem with PSO and other nature-inspired
optimisation algorithms is the large number of iterations

required to simulate the ‘evolution’ process, resulting in
long runtime. Approaches to overcome this problem
include the simplification of the entire process, application
of simpler equations, or parallelism [20, 28, 29, 38, 39, 42].
We utilise parallelism to design a parallel version of ML-
PSO, PML-PSO in short, with the intention of speeding up
the optimisation process. See Fig. 2 for a high-level rep-
resentation of the method. The approach has been specifi-
cally designed to utilise grid computing facilities, such as
the high-performance computing (HPC) facilities at the
University of Newcastle (UoN), Australia. While PML-
PSO has the same fundamental idea as ML-PSO, i.e., the
utilisation of multiple levels of PSOs, it has been rede-
signed and rewritten to make the best use of parallelism in
grid computing facilities. In any grid computing facility,
each node is considered as a single CPU running inde-
pendently of and in parallel with other nodes. The nodes do
not share the RAM but the data storage. Each job/script
submitted by a user is queued in a central job queue and is
assigned to a CPU whenever one is free. Therefore, to fully
utilise the power of HPC, PML-PSO is composed of sev-
eral small programs that recursively call each other, as
illustrated in Fig. 3.

Algorithm 4 First Component of PML-PSO

1. Prepare all settings;

2. Create the Settings and Lv1Gbest files (Lv1Gbest = -1) to save all settings and Gb of main PSO, respectively;

3. Create and queue a job for the second component and stop;

@ Springer

Cluster Computing

Algorithm 5 Second Component of PML-PSO

//The Second Component is used to handle the process of main PSO in PML-PSO

Load the Settings and Lv1Gbest files;
If this job is created by the First Component:

Create n particles and set all their attributes as assigned in the settings;
Create n Lv1ParticleClass files to save the n particles and all their attributes;

Create n Lv1ParticleResult files with value -1;

Else if this job is created by the Third Component:

particle = load the appropriate Lv1ParticleClass file;

Lv1Gbest = load the Lv1Gbest file;

—_—

Write Lv1Gbest to a report file then stop;

1

2

3

4

5

6. Create and queue n jobs for the Third Component and stop.

7

8

9

1 If particle.iteration > particle.maxIteration or terminating criteria are met:
1

//This is the end of this particle’s cycle. Once all main PSO particles complete their cycles, the last report of

LviGbest in the report file is the expected solution

12. Else:

13. particle.currentFitness = load the Lv1ParticleResult file;

14. Update particle.pbest with particle.currentFitness if particle.currentFitness > particle.pbest;
15. Update Lv1Gbest with particle.currentFitness if particle.currentFitness > Lv1GBest;

16. Update particle.velocity and particle.position using Eq. 1 and Eq. 2;

17. Increment particle.iteration;

18. Update the particleClass and Lv1Gbest files;

19. Create and queue a Third Component job for this particular particle and stop.

// The Second Component calls the Third Component for another round of inner PSOs. This instruction is similar
with “Calculate” in the main PSO function of ML-PSO

Algorithm 6 Third Component of PML-PSO

//The Third Component is used to handle the process of inner PSOs in PML-PSO
1. Load the appropriate Lv1ParticleResult and Lv1ParticleClass files for setting parameters of the job
2. Create all particles. Then initialise, with random values, the particles’ positions, velocities, and personal best (Pb), and

the swarm’s global best (Gb);
For each particle:
Calculate the current fitness value;

For each particle:

Update the inertia-weight, w, randomly;

el i e

— O

Update Pb (particle) and Gb, if the current fitness value is better;
Update their velocities and positions using Eq. 1 and Eq. 2;
If the particles’ iterations exceed the maximum number of iterations or terminating criteria are met:

If Gb is better than the Lv1ParticleResult file value, update the Lv1ParticleResult file;
Create and queue a Second Component job corresponding to this particular particle and stop.

//By creating the Second Component, this Third Component calls the main PSO to continue its iteration or stop when
it completes the maximum number of iterations or when the terminating criteria are met.

PML-PSO consists of three different components, and
each has been coded separately. The first component pre-
pares the dataset, classifiers to be used in the process, and
settings such as the number of particles and total iterations
of both the main PSO and inner PSOs. Once the prepara-
tion phase has completed, this component creates and
queues the job for the second component, which handles
the main PSO. When the job for the second component is
run on HPC, it creates and queues several jobs for the third
component, corresponding to the particles of the main
PSO. The jobs created for the third component represent
the inner PSOs in ML-PSO. Each such job continuously
updates its Pb and Gb values, adjusts the velocity and
position of each particle, and so on until the number of
scheduled iterations is completed or the termination criteria

@ Springer

are met. Multithreading is utilised in the third component
to speed up the entire process.

Once an inner PSO process has completed, its corre-
sponding component (i.e., the third component) creates and
queues a job for its parent (second) component using the
available template. When this second component job is run,
it updates Pb of the corresponding particle (i.e., the inner
PSO), and Gb of the main PSO, and finally adjusts the
velocity and position of the particle. Following this, if the
number of iterations set for this particle (i.e., the inner
PSO) has been completed or the termination criteria are
met, the process for the particle is terminated; otherwise,
another job for the next iteration of the inner PSO (i.e., the
third component) is created and queued. The third com-
ponent, thus created, will run as described earlier and ter-
minates by creating a job for the parent (second)

Cluster Computing

Table 2 Accuracies of BP using default parameters versus ML-PSO with 5 particles and 10 iterations for each particle

Experiment Default parameters ML-PSO (5 particles)
GBo AB RF BP (CART)* BP (NNb)* BP (LR) BP (LSVM) BP (MLP) BP (LR) BP (LSVM) BP (MLP)

1 0.821 0.803 0.753 0.717 0.626 0.827 0.782 0.840 0.846 0.828 0.860
2 0.823 0.780 0.762 0.706 0.609 0.832 0.788 0.851 0.850 0.819 0.857
3 0.813 0.799 0.744 0.729 0.619 0.835 0.828 0.847 0.844 0.829 0.863
4 0.818 0.782 0.756 0.724 0.634 0.839 0.781 0.837 0.848 0.825 0.855
5 0.825 0.800 0.764 0.726 0.606 0.834 0.795 0.852 0.845 0.833 0.869
6 0.823 0.789 0.744 0.729 0.628 0.820 0.788 0.841 0.848 0.814 0.864
7 0.826 0.807 0.750 0.694 0.651 0.825 0.799 0.834 0.849 0.819 0.868
8 0.818 0.806 0.743 0.723 0.631 0.844 0.804 0.838 0.850 0.832 0.858
9 0.813 0.799 0.758 0.739 0.634 0.836 0.803 0.843 0.850 0.828 0.857
10 0.819 0.800 0.751 0.736 0.631 0.831 0.786 0.844 0.849 0.822 0.862
Avg: 0.820 0.797 0.753 0.722 0.627 0.832 0.795 0.843 0.848 0.825 0.861
Std.Dev 0.004 0.009 0.007 0.013 0.012 0.007 0.013 0.006 0.002 0.006 0.005

“BP uses CART and NNb algorithms as its default base-predictors [31, 77]

component. Thus, the second and third components are
designed to call each other in a double recursive fashion.

The communication between the components, such as
passing parameters and global variables for Pb and Gb, is
done by saving them on several temporary files in a com-
mon data storage on the HPC. Theoretically, all particles in
the main PSO will run in parallel without waiting for the
other particles to complete. Therefore, in an ideal situation,
where the HPC’s CPUs immediately serve all jobs at the
same time, the processing time of the main PSO is equal to
the longest processing time of its particles; thus solving the
problem of long runtime. See Algorithms 4, 5 and 6 for
details of the first, second and third components,
respectively.

4 Experiments and results

As discussed earlier, in our experiments, we used the LR,
LSVM and MLP as base-predictors of BP. In addition, we
also compared the results with those of CART and NNb
algorithms, which are the default base-predictors for BP
[31]. It is worth noting that other types of ensemble mod-
els, such as Gradient Boosting (GBo) [74] and Random
Forest (RF) [70], are limited to using CART as their base-
predictor. They were, therefore, not considered suitable for
our current study. Another popular ensemble model,
Adaptive Boosting (AB) [75], which has more than one
suitable base-predictor, cannot use the MLP as its base-
predictor [4]; we also found its performance for sentiment
analysis to be inferior to BP [4].

The parameters to be optimised for each classifier can be
found in Table 1. In order to facilitate comparison with
results of previous experiments, fixed settings for the inner
PSOs were used. These settings are: 15 particles and 30
iterations for each particle; cl = c2 = 1.49445; and a ran-
dom number for w (0.5-0.9) generated every time the
velocity was updated. Regarding the dataset, 1000 records
from the Yelp 2017 review dataset [76] and 1000 features
of two polarities (negative/positive) were used. Since the
Yelp review dataset is an unlabelled dataset, we used star
ratings given by its reviewers as the basis for assigning
negative (1 & 2 stars) and positive (3, 4 and 5 stars)
polarities. For detailed information about this decision,
please refer to [4]. We used 10-fold cross validation for
training and testing every classifier in the inner PSOs
(particles of the main PSO).

4.1 Experiments on ML-PSO

The first series of experiments was conducted by varying
the number of particles in the main PSO from 5 to 50, and
each particle was run for 10 iterations. Fitness of each
particle was measured using the accuracy achieved with the
parameter settings of the classifiers. The maximum runtime
of each job was limited to 400 h (for the UoN’s HPC
facility), and the maximum RAM available to each job was
120 Gigabytes. Detailed results of each process were
recorded, including the Gb of every particle in the main
PSO, with each particle being an inner PSO.

Results in Table 2 show that parameters determined by
ML-PSO, using only 5 particles for the main PSO, out-
perform the default parameters by a minimum of 1.6% and

@ Springer

Cluster Computing

Table 3 Average difference and MW U test results

ML-PSO (5p) optimised params Default parameters

Average difference (%) MW U test p value (a0 < 0.01)

BP(LR) BP(LR)
BP(LR) GBo
BP(LR) AB
BP(LR) RF
BP(LSVM) BP(LSVM)
BP(LSVM) GBo
BP(LSVM) AB
BP(LSVM) RF
BP(MLP) BP(MLP)
BP(MLP) BP(LR)
BP(MLP) BP(LSVM)
BP(MLP) BP(CART)
BP(MLP) BP(NNb)
BP(MLP) GBo
BP(MLP) AB
BP(MLP) RF

1.6 0.00022
2.8 0.00018
5.1 0.00018
9.5 0.00018
3 0.001

0.5 0.05876
2.8 0.00018
72 0.00018
1.8 0.00018
29 0.00018
6.6 0.00018
13.9 0.00018
23.4 0.00018
4.1 0.00018
6.4 0.00018
10.8 0.00018

up to 23.4%. Accuracies of the optimised BP(LR),
BP(MLP) and BP(LSVM) are higher by 1.6%, 1.8% and
3%, respectively, compared to their counterparts with
default parameters [77]. The optimised BP(LR), BP(MLP)
and BP(LSVM) also outperform other ensemble models,
namely GBo, AB and RF with default parameters, by at
least 2.8%, 4.1% and 0.5%, respectively. The MLP clas-
sifier, which produces the best results overall, outperforms
the default base-predictors, Decision Tree/CART and NNb
algorithms, by 13.9% and 23.4%, respectively. These
results indicate that the proposed method, ML-PSO, can
greatly improve the performance of the sentiment polarity
predictors, even with a small number of particles. Statis-
tical analysis using the Mann—Whitney (MW) U test, as
shown in Table 3, confirmed that the improvements are
mostly significant, since all of the p-values of the tests are
below the significance level (o < 0.01), except the opti-
mised BP(LSVM) against GBo.

To further investigate improvements that might be
achieved with more particles in the main PSO, the above
experiments were repeated by increasing the number of
particles up to 50, with an interval of 5 particles for each
experiment. The results show that, with more particles,
ML-PSO is able to further improve the accuracy of the
prediction by ~ 1.2%, from a maximum of 0.869 to 0.881
(see Table 4, the Gb of ML-PSO (accuracy), sub-column
BP(MLP)). Another interesting observation made from
these results is that the MLP is always the best base-pre-
dictor for BP, except for the ML-PSO with 25 particles,
where BP(LR) is slightly better than BP(MLP). From our
results, it can, therefore, be concluded that the proposed

@ Springer

ML-PSO method can choose a better base-predictor auto-
matically for the ensemble algorithm (BP), and success-
fully optimise the parameters of the chosen base-predictor
as well as the parameters of the ensemble.

However, upon closer inspection of the processing times
of ML-PSO, it was discovered that the processing times for
10 particles and above are the same, i.e., 400 h (see
Table 4, the “Processing time” column, ML-PSO). 400 h,
as mentioned earlier, is the maximum processing time
available to each node in the HPC facility at the UoN. A
detailed inspection of the process logs revealed that most of
the particles in the main PSO neither completed all itera-
tions nor met the termination criteria; rather, they were
forcefully terminated after reaching the maximum pro-
cessing time limit. It should be noted that, even though the
processes were forcefully terminated, ML-PSO still pro-
vides an output because the current Gb and the vectors that
yielded it are recorded at each iteration. Nevertheless, it is
safe to assume that the results are not the best possible
results as initially expected. To overcome this situation,
experiments using parallelism (i.e., PML-PSO) were con-
ducted, and the results are described in the next section.

4.2 Experiments on PML-PSO

PML-PSO has been created, as explained in earlier sec-
tions, to overcome the problem faced by ML-PSO in the
preceding section. Experiments to test this idea were run on
the same HPC facility at the UoN, which has 2560 cores for
66 CPU and 4 GPU nodes, and up to 512 Gigabytes’ RAM
available to be assigned to each node. For all our

Cluster Computing

Table 4 ML-PSO versus PML-PSO, in a non-ideal environment

Number of particles in main PSO Processing time (hour) Gb of ML-PSO (accuracy) Gb of PML-PSO (accuracy)

ML-PSO PML-PSO BP (LR)

BP (LSVM) BP (MLP) BP(LR) BP (LSVM) BP (MLP)

50 400.00 878.59 0.870
45 400.00 705.24 0.863
40 400.00 622.36 0.861
35 400.00 134.31 0.860
30 400.00 119.92 0.862
25 400.00 807.82 0.870
20 400.00 126.95 0.865
15 400.00 557.76 0.860
10 400.00 512.50 0.863
5 245.77 123.22 0.845

MW U test p value (ML-PSO to PML-PSO, o < 0.01):

0.859 0.873 0.874 0.874 0.884
0.853 0.876 0.871 0.870 0.886
0.868 0.878 0.873 0.871 0.883
0.865 0.873 0.872 0.873 0.879
0.864 0.881 0.876 0.876 0.885
0.861 0.868 0.872 0.872 0.881
0.856 0.875 0.872 0.871 0.881
0.868 0.872 0.871 0.873 0.879
0.857 0.875 0.869 0.869 0.880
0.833 0.869 0.871 0.861 0.875
0.00034 0.00068 0.00168

Table 5 ML-PSO versus PML-PSO without the MLP, in an ideal environment

Number of particles in main PSO Processing time (hour) Highest

Gb and the accuracy

ML-PSO PML-PSO ML-PSO Gb ML-PSO accuracy = PML-PSO Gb PML-PSO accuracy

50 125.39 46.59 BP(LR) 0.872 BP(LR) 0.870
45 81.86 40.92 BP(LSVM) 0.871 BP(LR) 0.870
40 94.82 49.27 BP(LR) 0.872 BP(LR) 0.870
35 141.26 46.73 BP(LR) 0.870 BP(LSVM) 0.871
30 128.47 42.45 BP(LR) 0.869 BP(LR) 0.869
25 108.36 45.38 BP(LR) 0.867 BP(LR) 0.870
20 39.33 44.63 BP(LR) 0.871 BP(LR) 0.872
15 34.37 44.02 BP(LR) 0.865 BP(LR) 0.870
10 8.65 4732 BP(LR) 0.868 BP(LSVM) 0.869
5 3.83 39.80 BP(LR) 0.861 BP(LR) 0.862

MW U test analysis for the accuracy between ML-PSO and PML-PSO (a < 0.01), p value = 0.8181

experiments, we used an HPC cluster consisting of 32
nodes of CPUs. Each experimental setting was run only
once, for two different HPC load environments, since each
optimisation process took a very long time to complete.
Table 4 presents the results of experiments run in a non-
ideal environment, where HPC loads range from normal to
full and jobs have to wait in the job queue before execut-
ing. Similarly, Table 5 presents the results for similar
experiments, but without BP(MLP), repeated in an ideal
environment where the HPC load was low enough for all
jobs to be executed immediately. It is also worth men-
tioning here that, since a node’s failure can prevent the
successful completion of a job, node failure can impact the
prediction accuracy. However, node failure is extremely

rare in the HPC environment, and our job logs did not
report any node failures during our experiments.

Results, as can be seen in Table 4 under the “Processing
time” column, show that PML-PSO is able to successfully
overcome the processing time limitation of 400 h (note that
the processing time values for PML-PSO are the total hours
required by all the jobs). One interesting observation is
that, for particle sizes 20, 30 and 35, the processing times
are similar to those with only 5 particles. The reason for
this is that, in these cases, the HPC job queue was suffi-
ciently low enough to allow the PML-PSO processes to run
in a truly parallel manner. In the other cases, however, the
HPC load prevented truly parallel processing of all PSO
runs. For further understanding of how the PML-PSO

@ Springer

Cluster Computing

=T
4 4

Other job

Other job

Other job Other script

Other job
Other script

Other job

Init PML-
PSO job

il

Other script

PML-PSO initial
script

HPC job queue
a) PML-PSO creates the initial job

[AEDE -
X < A 4 <«

\ : S -

\\ [Finished job
X : ——
Init PML- . |Otherjob Finished job

PSO job :

PML-PSO
job 1

Other job

PML-PSO
job 2
PML-PSO

job3 Other script

Other job

Other script

b

PML-PSO
job 4

HPC job queue

b) The initial job creates temporary data and
other jobs to handle the main PSQO’s particles

=ij=iy= =g
o R < <

v

PML-PSO |-
job 1

- Finished job
PML-PSO
job 3

Other job

PML-PSO

job 4
s
job 5
Other job
Other script
Other job

PML-PSO
job 6

HPC job queue
c) When a particle job is finished, Pb of the
particle and Gb are updated in data storage, and

another job is created to continue the iteration

Fig. 4 The PML-PSO process in detail

works in HPC together with other jobs, please refer to the
illustration in Fig. 4.

From the results of the MW U test listed in Table 4, it
can be seen that accuracy improvements with PML-PSO
are significantly higher than those with ML-PSO. This
indicates that the processing time limitation placed on HPC
has a severe impact on the efficacy of ML-PSO and its goal
of achieving the best possible solution. The results also
validated the idea of adding parallelism to ML-PSO, since
PML-PSO was able to meet its goal of speeding up the
process, evading HPC processing time limitations and
performing multi-level optimisation like ML-PSO.

To conduct a fairer comparison of ML-PSO and PML-
PSO, we conducted another set of experiments by
excluding BP(MLP), which requires much longer time to
reach convergence than other classifiers. The assumption
was that ML-PSO would successfully terminate under
400 h without BP(MLP). Besides the exclusion of
BP(MLP), other settings were the same as previous
experiments. Efforts were also made to run the experiments
when the HPC load was low enough to allow all jobs from
PML-PSO to be served immediately. The results of these
experiments can be found in Table 5.

These results in Table 5 show that the best accuracies
provided by ML-PSO and PML-PSO are very similar,
which means that, without being cut off by the processing
time limitation of HPC, ML-PSO can match the perfor-
mance of PML-PSO. MW U test analysis between the
accuracies of ML-PSO and PML-PSO confirmed that their
difference is not significant, since the p-value is higher than
the significance level of a < 0.01. Nevertheless, since it
uses iterations instead of parallelism, ML-PSO needed
more time to reach its stopping condition when we

@ Springer

increased the number of particles; whereas the processing
times are similar for all particle sizes in PML-PSO. In an
ideal environment, parallelism allows all or almost all the
particles of PML-PSO entering the job queue to run at the
same time. The processing times of PML-PSO experiments
were, however, longer than ML-PSO when the number of
particles is relatively small (5 to 20). This is because, every
time the component is run, it should upload the sample
features from data storage to memory, whereas in ML-
PSO, the sample features are processed only once and stay
in memory for the duration of training.

The processing times for ML-PSO with 40, 45 and 50
particles are inconsistent with the trend of increased pro-
cessing time for a higher number of particles. An educated
guess here is that this is caused by the variance of con-
vergence speed of classifiers used inside the inner PSO;
however, we do not have a technical explanation, since we
did not record the time required by the classifiers of the
inner PSO particles. Nonetheless, from the results in
Table 5, we can conclude that the processing times for
PML-PSO are almost always constant in an ideal situation,
whereas the processing time increases with an increase in
the number of particles in ML-PSO.

4.3 Experiments using large-scale data

Our last set of experiments was conducted by applying the
best results of PML-PSO on 500,000 records from the Yelp
review dataset. The experiment settings and pre-processing
steps were based on previous research [4], and each
experimental setting was repeated 10 times. The experi-
ments were run using 10-fold cross validation. Experiment
types were (A) 1 and 2 stars as negative polarity and 3, 4

Cluster Computing

and 5 as positive polarity; (B) 1, 2 and 3 stars as negative
polarity and 4 and 5 as positive polarity; and (C) 1 and 2
stars as negative polarity, 3 star as neutral polarity, and 4
and 5 as positive polarity.

As can be seen from the results in Table 6, PML-PSO
can indeed improve the accuracy and other measurements
such as precision, recall and F1 (F-measure) of BP to
predict sentiment polarity of customer reviews. While
training the classifier with a larger dataset can improve its
performance, using our methods, we can be sure of
achieving the best possible parameters and also the best
base-classifier to be used for the ensemble. Based on the
results in Table 6, the improvement achieved by applying
PML-PSO (see BP(MLP)) is quite high compared to the
results obtained using default parameters and CART as the
default base-predictor (see BP(CART)). The improvements
on all measurements are around 6%, 7.7% and 7.5% for
Type A, B and C experiments, respectively. Statistical
analysis using the MW U test with a significance level of
o < 0.01 confirms that the accuracy improvements
achieved from PML-PSO are significant when compared
with BP(LSVM), BP(LR) and BP(MLP) with default set-
tings. The best improvement is achieved by BP(LSVM):
the performance of BP(LSVM) is similar to BP(LR) using
PML-PSO optimised parameters, whereas its results are
worse than BP(LR) with default parameters.

5 Conclusion

Ensemble models, such as BP, can provide better perfor-
mance than a single classifier. However, determining a
suitable classifier for the ensemble’s base-predictor is a
challenging problem. Other difficulties for problems such
as sentiment polarity detection include obtaining optimal
parameters for both the ensemble and its base-predictor.
The methods proposed in this paper, ML-PSO and PML-
PSO, can overcome all of the above-mentioned problems.
The first set of experiments, using a small number of par-
ticles in the main PSO and a small number of records (1000
records), showed that the proposed ML-PSO can outper-
form the default base-classifier settings for BP (CART or
NNb). The accuracy of ML-PSO optimised BP ensemble is
14% and 23% higher than BP(CART) and BP(NNb),
respectively. Our experimental results also showed that the
accuracy could be further improved by using more particles
in ML-PSO.

However, it was observed from the experiments that the
limitation on processing times on HPC prevents ML-PSO
processes from running until completion and providing
better results. The second method proposed in this paper,
PML-PSO, utilises parallelism to reduce the processing
time of ML-PSO and helps overcome the problem caused
by limited processing times available on HPC. By breaking
down a long process into several smaller and independent
processes running in parallel, PML-PSO requires less time
for successful completion even with a larger number of
particles. Therefore, PML-PSO can successfully obtain

Table 6 Performance of PML-PSO optimised parameters for processing big data

Experiment type Classifier Default parameters PML-PSO optimised parameters MW U test (p value)®
Acc StD* Prec Rec Fl Acc StD* Prec Rec Fl Acc F1
A (2-polarity) BP (CART) 0.864 0.0066 0.864 0.864 0.864 - - - - -
BP (LSVM) 0.898 0.0001 0.897 0.898 0.897 0.916 0.0009 0.913 0916 0.913 0.00018 0.00018
BP (LR) 0.909 0.0001 0.908 0.909 0.908 0917 0.0009 0915 0917 0915 0.00018 0.00018
BP (MLP) 0.917 0.0004 0916 0917 0917 0923 0.0003 0921 0.923 0.921 0.00018 0.00018
B (2-polarity) BP (CART) 0.814 0.0068 0.817 0.814 0.815 - - - - -
BP (LSVM) 0.854 0.0001 0.853 0.854 0.853 0.885 0.0014 0.884 0.885 0.883 0.00018 0.00018
BP (LR) 0.873 0.0001 0.872 0.873 0.872 0.886 0.0014 0.885 0.886 0.884 0.00018 0.00018
BP (MLP) 0.883 0.0004 0.882 0.883 0.882 0.891 0.0002 0.890 0.891 0.890 0.00018 0.00018
C (3-polarity) BP (CART) 0.775 0.0064 0.756 0.775 0.761 - - - - -
BP (LSVM) 0.819 0.0001 0.798 0.819 0.805 0.836 0.0019 0.811 0.836 0.809 0.00018 0.00018
BP (LR) 0.829 0.0002 0.809 0.829 0.815 0.839 0.0013 0.815 0.839 0.817 0.00018 0.00252
BP (MLP) 0.840 0.0004 0.827 0.840 0.832 0.850 0.0001 0.833 0.850 0.835 0.00018 0.00018

StD = standard deviation of the accuracy of experiments over 10 runs

"We did not include BP(CART) in the MW U test, since we did not investigate its optimised version; the test was applied to the detailed results of

10-fold cross validation of each experiment

@ Springer

Cluster Computing

better solutions than those obtained by ML-PSO even
under the restrictions placed on the available processing
time. However, further investigation revealed that, when
both methods were applied in an ideal environment, their
performances were very similar; thus, proving that both
methods are quite similar except in terms of their imple-
mentation and how they deal with a larger number of
particles. The final set of experiments using a larger dataset
(500,000 records) proved that the best possible parameter
settings obtained using PML-PSO can significantly
improve the accuracy of sentiment polarity prediction.

For future work, we plan to implement ML-PSO and
PML-PSO for optimising the classifiers to detect fake
reviews or other cases.

Acknowledgements The first author would like to acknowledge
financial support from the Indonesian Endowment Fund for Education
(LPDP), Ministry of Finance; and the Directorate General of Higher
Education (DIKTI), Ministry of Education and Culture, Republic of
Indonesia.

References

1. Li, X., Li, J.,, Wu, Y.: A global optimization approach to multi-
polarity sentiment analysis. PLoS ONE 10(4), e0124672 (2015).
https://doi.org/10.1371/journal.pone.0124672

2. Huang, J., Xue, Y., Hu, X,, Jin, H., Lu, X., Liu, Z.: Sentiment
analysis of Chinese online reviews using ensemble learning
framework. Clust. Comput. 22, 3043-3058 (2019)

3. Giatsoglou, M., Vozalis, M.G., Diamantaras, K., Vakali, A.,
Sarigiannidis, G., Chatzisavvas, K.C.: Sentiment analysis lever-
aging emotions and word embeddings. Expert Syst. Appl. 69,
214-224 (2017). https://doi.org/10.1016/j.eswa.2016.10.043

4. Budhi, G.S., Chiong, R., Pranata, 1., Hu, Z.: Predicting rating
polarity through automatic classification of review texts. In:
Proceedings of the 2017 IEEE Conference on Big Data and
Analytics (ICBDA), pp. 19-24. Kuching, Malaysia, 16-17
November (2017)

5. Chiong, R., Fan, Z., Hu, Z., Adam, M.T.P., Lutz, B., Neumann,
D.: A sentiment analysis-based machine learning approach for
financial market prediction via news disclosures. In: Proceedings
of the Genetic and Evolutionary Computation Conference Com-
panion (GECCO ’18 Companion), pp. 278-279. Kyoto, Japan,
15-19 July (2018)

6. Bansal, P., Kaur, R.: Twitter sentiment analysis using machine
learning and optimization techniques. Int. J. Comput. Appl.
179(19), 5-8 (2018)

7. Yousefpour, A., Ibrahim, R., Hamed, H.N.A.: Ordinal-based and
frequency-based integration of feature selection methods for
sentiment analysis. Expert Syst. Appl. 75, 80-93 (2017). https://
doi.org/10.1016/j.eswa.2017.01.009

8. Zhang, W., Kong, S.-X., Zhu, Y.-C., Wang, X.: Sentiment clas-
sification and computing for online reviews by a hybrid SVM and
LSA based approach. Clust. Comput. 22, 1-14 (2018). https://doi.
org/10.1007/s10586-017-1693-7

9. Bagheri, A., Saraee, M., de Jong, F.: Care more about customers:
Unsupervised domain-independent aspect detection for sentiment
analysis of customer reviews. Knowl.-Based Syst. 52, 201-213
(2013). https://doi.org/10.1016/j.knosys.2013.08.011

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Fersini, E., Messina, E., Pozzi, F.A.: Expressive signals in social
media languages to improve polarity detection. Inf. Process.
Manag. 52(1), 20-35 (2016). https://doi.org/10.1016/j.ipm.2015.
04.004

Devika, M.D., Sunitha, C., Ganesh, A.: Sentiment analysis: A
comparative study on different approaches. Procedia Comput.
Sci. 87, 44-49 (2016). https://doi.org/10.1016/j.procs.2016.05.
124

Sonagi, A., Gore, D.: Efficient sentiment analysis using hybrid
PSO-GA approach. Int. J. Innov. Res. Comput. Commun. Eng.
5(6), 11910-11916 (2017). https://doi.org/10.15680/1JIRCCE.
2017

Shang, L., Zhou, Z., Liu, X.: Particle swarm optimization-based
feature selection in sentiment classification. Soft Comput. 20(10),
3821-3834 (2016). https://doi.org/10.1007/s00500-016-2093-2
Basari, A.S.H., Hussin, B., Ananta, I.G.P., Zeniarja, J.: Opinion
mining of movie review using hybrid method of support vector
machine and particle swarm optimization. Procedia Eng. 53,
453-462 (2013). https://doi.org/10.1016/j.proeng.2013.02.059
Cho, M.Y., Hoang, T.T.: Feature selection and parameters opti-
mization of SVM using particle swarm optimization for fault
classification in power distribution systems. Comput. Intell.
Neurosci. 2017, 1-9 (2017). https://doi.org/10.1155/2017/
4135465

Weise, T., Zapf, M., Chiong, R., Nebro, A.J.: Why is optimiza-
tion difficult? In: Chiong, R. (ed.) Nature-Inspired Algorithms for
Optimisation, pp. 1-50. Springer, Berlin (2009)

Zolghadr-Asli, B., Bozorg-Haddad, O., Chu, X.: Introduction. In:
Bozorg-Haddad, O. (ed.) Advanced Optimization by Nature-In-
spired Algorithms. Springer, Singapore (2018)

Moser, 1., Chiong, R.: Dynamic function optimization: The
moving peaks benchmark. In: Alba, E., Nakib, A., Siarry, P.
(eds.) Metaheuristics for Dynamic Optimization, pp. 35-59.
Springer, Berlin (2013)

Lung, R.I., Dumitrescu, D.: Evolutionary swarm cooperative
optimization in dynamic environments. Nat. Comput. 9(1), 83-94
(2010). https://doi.org/10.1007/s11047-009-9129-9

Khoshahval, F., Zolfaghari, A., Minuchehr, H., Abbasi, M.R.: A
new hybrid method for multi-objective fuel management opti-
mization using parallel PSO-SA. Prog. Nucl. Energy 76, 112-121
(2014). https://doi.org/10.1016/j.pnucene.2014.05.014

Abedi, M., Chiong, R., Noman, N., Zhang, R.: A hybrid particle
swarm optimisation approach for energy-efficient single machine
scheduling with cumulative deterioration and multiple mainte-
nances. In: Proceedings of 2017 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 2930-2937. Honolulu,
Hawaii, USA, 27 November—1 December (2017)

Hu, Z., Chiong, R., Pranata, I., Susilo, W., Bao, Y.: Identifying
malicious web domains using machine learning techniques with
online credibility and performance data. In: Proceedings of IEEE
Congress on Evolutionary Computation (CEO),
pp. 5186-5194. Vancouver, BC, Canada, 24-29 July (2016)

Hu, Z., Chiong, R., Pranata, 1., Bao, Y., Lin, Y.: Malicious web
domain identification using online credibility and performance
data by considering the class imbalance issue. Ind. Manag. Data
Syst. 119(3), 676-696 (2019). https://doi.org/10.1108/IMDS-
1102-2018-0072

Cao, J., Cui, H., Shi, H., Jiao, L.: Big data: A parallel particle
swarm optimization back propagation neural network algorithm
based on MapReduce. PLoS ONE 11(6), 1-17 (2016). https://doi.
org/10.1371/journal.pone.0157551

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.:
LIBLINEAR: A library for large linear classification. J. Mach.
Learn. Res. 9, 1871-1874 (2008)

Budhi, G.S., Chiong, R., Hu, Z., Pranata, 1., Dhakal, S.: Multi-
PSO based classifier selection and parameter optimisation for

https://doi.org/10.1371/journal.pone.0124672
https://doi.org/10.1016/j.eswa.2016.10.043
https://doi.org/10.1016/j.eswa.2017.01.009
https://doi.org/10.1016/j.eswa.2017.01.009
https://doi.org/10.1007/s10586-017-1693-7
https://doi.org/10.1007/s10586-017-1693-7
https://doi.org/10.1016/j.knosys.2013.08.011
https://doi.org/10.1016/j.ipm.2015.04.004
https://doi.org/10.1016/j.ipm.2015.04.004
https://doi.org/10.1016/j.procs.2016.05.124
https://doi.org/10.1016/j.procs.2016.05.124
https://doi.org/10.15680/IJIRCCE.2017
https://doi.org/10.15680/IJIRCCE.2017
https://doi.org/10.1007/s00500-016-2093-2
https://doi.org/10.1016/j.proeng.2013.02.059
https://doi.org/10.1155/2017/4135465
https://doi.org/10.1155/2017/4135465
https://doi.org/10.1007/s11047-009-9129-9
https://doi.org/10.1016/j.pnucene.2014.05.014
https://doi.org/10.1108/IMDS-1102-2018-0072
https://doi.org/10.1108/IMDS-1102-2018-0072
https://doi.org/10.1371/journal.pone.0157551
https://doi.org/10.1371/journal.pone.0157551

Cluster Computing

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

sentiment polarity prediction. In: Proceedings of IEEE Confer-
ence on Big Data and Analytics (ICBDA), pp. 68-73. Langkawi
Island, Malaysia, 21-22 November (2018)

Souza, E., Santos, D., Oliveira, G., Silva, A., Oliveira, A.L.L.:
Swarm optimization clustering methods for opinion mining. Nat.
Comput. (2018). https://doi.org/10.1007/s11047-018-9681-2
Wu, K., Zhu, Y., Li, Q., Han, G.: Algorithm and implementation
of distributed ESN using spark framework and parallel PSO.
Appl. Sci. 7(4), 353 (2017). https://doi.org/10.3390/app7040353
Szwed, P., Chmiel, W.: Multi-swarm PSO algorithm for the
quadratic assignment problem: a massive parallel implementation
on the OpenCL platform. In: arXiv:1504.05158. (2015)
Lalwani, S., Sharma, H., Satapathy, S.C., Deep, K., Bansal, J.C.:
A survey on parallel particle swarm optimization algorithms.
Arab. J. Sci. Eng. 44(4), 2899-2923 (2019). https://doi.org/10.
1007/s13369-018-03713-6

Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140
(1996). https://doi.org/10.1007/bf00058655

Menard, S.: Logistic Regression: From Introductory to Advanced
Concepts and Applications. SAGE, Los Angeles (2010)
Campbell, C., Ying, Y.: Learning with Support Vector Machines.
Morgan & Claypool, San Rafael (2011)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal
representations by error propagation. Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition vol 1,
pp- 318-362. MIT Press, Cambridge (1986)

Onan, A., Korukoglu, S., Bulut, H.: A multiobjective weighted
voting ensemble classifier based on differential evolution algo-
rithm for text sentiment classification. Expert Syst. Appl. 62,
1-16 (2016). https://doi.org/10.1016/j.eswa.2016.06.005
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In:
Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942-1948. Perth, Australia, 27 November—1
December (1995)

Kennedy, J., Eberhart, R.C.: A discrete binary version of the
particle swarm algorithm. In: Proceedings of the IEEE Interna-
tional Conference on Systems, Man & Cybernetics Computa-
tional Cybernetics & Simulation, (5), pp. 4104—4108. Orlando,
FL, USA, 12-15 October (1997)

Yang, X.S., Deb, S., Fong, S.: Accelerated Particle Swarm
Optimization and Support Vector Machine for business opti-
mization and applications. Networked Digital Technologies
(NDT2011). Commun. Comput. Inf. Sci. 136, 53-66 (2011)
Tan, Y., Zhang, J.: Magnifier particle swarm optimization. In:
Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation,
pp- 279-298. Springer, Berlin (2009)

Lynn, N., Suganthan, P.N.: Ensemble particle swarm optimizer.
Appl. Soft Comput. 55, 533-548 (2017). https://doi.org/10.1016/
j-as0c.2017.02.007

Wahyudi, M., Kristiyanti, D.A.: Sentiment analysis of smart-
phone product review using support vector machine algorithm-
based particle swarm optimization. J. Theor. Appl. Inf. Technol.
91(1), 189-201 (2016)

Kumar, S., Kumar, H.: Rapid PSO based features selection for
classification. Int. J. Adv. Res. Comput. Sci. 8(9), 682-690
(2017). https://doi.org/10.26483/ijarcs.v8i9.5173

Nazir, M., Majid-Mirza, A., Ali-Khan, S.: PSO-GA based opti-
mized feature selection using facial and clothing information for
gender classification. J. Appl. Res. Technol. 12(1), 145-152
(2014). https://doi.org/10.1016/S1665-6423(14)71614-1

Mikula, M., Machova, K.: Combined approach for sentiment
analysis in Slovak using a dictionary annotated by particle swarm
optimization. Acta Electrotech. Inf. 18(2), 27-34 (2018). https://
doi.org/10.15546/aeei-2018-0013

Gaspar, R., Pedro, C., Panagiotopoulos, P., Seibt, B.: Beyond
positive or negative: Qualitative sentiment analysis of social

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

media reactions to unexpected stressful events. Comput. Hum.
Behav. 56, 179-191 (2016). https://doi.org/10.1016/j.chb.2015.
11.040

Nelder, J.A., Wedderburn, R.-W.M.: Generalized linear models.
J. R. Stat. Soc. 135(3), 370-384 (1972). https://doi.org/10.2307/
2344614

Hastie, T., Tibshirani, R.: Generalized Additive Models. Chap-
man and Hall/CRC, Boca Raton (1990)

Dunteman, G.H., Ho, M.H.R.: Generalized linear models. In:
Dobson, A.J., Barnett, A.G. (eds.) An Introduction to Generalized
Linear Models, pp. 2—-6. SAGE Publications, Thousand Oaks
(2011)

Dobson, A.J., Barnett, A.G.: An Introduction to Generalized
Linear Models, 3rd edn. CRC Press, Boca Raton (2008)

Yu, D, Mu, Y., Jin, Y.: Rating prediction using review texts with
underlying sentiments. Inf. Process. Lett. 117, 10-18 (2017).
https://doi.org/10.1016/j.ipl.2016.08.002

Shah, Y.S., Hernandez-Garcia, L., Jahanian, H., Peltier, S.J.:
Support vector machine classification of arterial volume-weigh-
ted arterial spin tagging images. Brain Behav. 6, 1-8 (2016)
Sun, J., Fujita, H., Chen, P., Li, H.: Dynamic financial distress
prediction with concept drift based on time weighting combined
with Adaboost support vector machine ensemble. Knowl.-Based
Syst. 120, 4-14 (2017)

Chinniyan, K., Gangadharan, S., Sabanaikam, K.: Semantic
similarity based web document classification using support vector
machine. Int. Arab J. Inf. Technol. 14(3), 285-293 (2017)

Lo, S.L., Chiong, R., Cornforth, D.: Using support vector
machine ensembles for target audience classification on Twitter.
PLoS ONE 10(4), e0122855 (2015)

Lo, S.L., Cornforth, D., Chiong, R.: Identifying the high-value
social audience from Twitter through text-mining methods. In:
Proceedings of the 18th Asia Pacific Symposium on Intelligent
and Evolutionary Systems, pp. 325-339. Singapore, 10-12
November (2014)

Hur, M., Kang, P., Cho, S.: Box-office forecasting based on
sentiments of movie reviews and independent subspace method.
Inf. Sci. 372, 608-624 (2016). https://doi.org/10.1016/j.ins.2016.
08.027

Glorot, X., Bengio, Y.: Understanding the difficulty of training
deep feedforward neural networks. In: Proceedings of the 13th
International Conferenceon Artificial Intelligence and Statistics,
pp. 249-256. Sardinia, Italy, 13—15 May (2010)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimiza-
tion. CoRR abs/1412.6980 (2014)

Adipranata, R., Budhi, G.S., Setiahadi, B.: Automatic classifica-
tion of sunspot groups for space weather analysis. Int. J. Mul-
timed. Ubiquitous Eng. 8(3), 41-54 (2013)

Budhi, G.S., Adipranata, R.: Handwritten Javanese character
recognition using several artificial neural network methods.
J. ICT Res. Appl. 8(3), 195-212 (2015). https://doi.org/10.5614/
itbj.ict.res.appl.2015.8.3.2

Budhi, G.S., Adipranata, R.: Java characters recognition using
evolutionary neural network and combination of Chi2 and
backpropagation neural network. Int. J. Appl. Eng. Res. 9(22),
18025-18036 (2014)

Sangjae, L., Joon, Y.C.: Predicting the helpfulness of online
reviews using multilayer perceptron neural networks. Expert
Syst. Appl. 41(6), 3041-3046 (2014)

Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1),
81-106 (1986). https://doi.org/10.1007/bf00116251

Hunt, E.B., Marin, J., Stone, P.J.: Experiments in Induction.
Academic Press, New York (1966)

Rokach, L., Maimon, O.: Data Mining with Decision Trees:
Theory and Applications. World Scientific Publishing Company,
Singapore (2007)

@ Springer

https://doi.org/10.1007/s11047-018-9681-2
https://doi.org/10.3390/app7040353
https://doi.org/10.1007/s13369-018-03713-6
https://doi.org/10.1007/s13369-018-03713-6
https://doi.org/10.1007/bf00058655
https://doi.org/10.1016/j.eswa.2016.06.005
https://doi.org/10.1016/j.asoc.2017.02.007
https://doi.org/10.1016/j.asoc.2017.02.007
https://doi.org/10.26483/ijarcs.v8i9.5173
https://doi.org/10.1016/S1665-6423(14)71614-1
https://doi.org/10.15546/aeei-2018-0013
https://doi.org/10.15546/aeei-2018-0013
https://doi.org/10.1016/j.chb.2015.11.040
https://doi.org/10.1016/j.chb.2015.11.040
https://doi.org/10.2307/2344614
https://doi.org/10.2307/2344614
https://doi.org/10.1016/j.ipl.2016.08.002
https://doi.org/10.1016/j.ins.2016.08.027
https://doi.org/10.1016/j.ins.2016.08.027
https://doi.org/10.5614/itbj.ict.res.appl.2015.8.3.2
https://doi.org/10.5614/itbj.ict.res.appl.2015.8.3.2
https://doi.org/10.1007/bf00116251

Cluster Computing

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

Luo, B., Zeng, J., Duan, J.: Emotion space model for classifying
opinions in stock message board. Expert Syst. Appl. 44, 138-146
(2016). https://doi.org/10.1016/j.eswa.2015.08.023

Xu, Z., Li, P., Wang, Y.: Text classifier based on an improved
SVM decision tree. Phys. Procedia 33, 1986-1991 (2012)
Abhishek, S., Sugumaran, V., Devasenapati, S.B.: Misfire
detection in an IC engine using vibration signal and decision tree
algorithms. Measurement 50, 370-380 (2014)

Izydorczyk, B., Wojciechowski, B.: Differential diagnosis of
eating disorders with the use of classification trees (decision
algorithm). Arch. Psychiatry Psychother. 18(4), 53-62 (2016)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001).
https://doi.org/10.1023/a:1010933404324

Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees.
Mach. Learn. 63(1), 3-42 (2006)

Bramer, M.: Nearest neighbour classification. In: Principles of
Data Mining. pp. 31-38. Springer, London (2007)

Pan, Z., Wang, Y., Ku, W.: A new general nearest neighbor
classification based on the mutual neighborhood information.
Knowl.-Based Syst. 121, 142-152 (2017)

Friedman, J.H.: Greedy function approximation: a gradient
boosting machine. Ann. Stat. 29(5), 1189-1232 (2001)

Zhu, J., Zou, H., Rosset, S., Hastie, T.: Multi-class adaboost. Stat.
Interface 2, 349-360 (2009)

Yelp: Yelp dataset challenge: Round 13. https://www.yelp.com/
dataset/challenge (2019). Accessed Dec 27 2019

Scikit-learn: API Reference. https://scikit-learn.org/stable/mod
ules/classes.html (2019). Accessed Mar 19 2019

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Gregorius Satia Budhi is cur-
rently a Ph.D. candidate with
the School of Electrical Engi-
neering and Computing, The
University of Newecastle, Aus-
tralia. He is also an academic
staff member of Petra Christian
University in Indonesia. His
research interests include senti-
ment analysis and machine
learning prediction.

@ Springer

Raymond Chiong is a tenured
academic staff member at the
University of Newcastle, Aus-
tralia. He is also a guest
research professor with the
Centre for Modern Information
Management at Huazhong
University of Science and
Technology, Wuhan, China, a
Minjiang Scholar with the
School of Economics and Man-
agement at Fuzhou University,
Fuzhou, China, and a visiting
scholar with the Department of
Automation, Tsinghua Univer-
sity, Beijing, China. His research interests include data analytics,
optimisation, evolutionary game theory, and modelling of complex
adaptive systems. He has published over 180 papers in these areas. He
is the Editor-in-Chief of the Journal of Systems and Information
Technology, an Editor of Engineering Applications of Artificial
Intelligence, and an Associate Editor of the IEEE Computational
Intelligence Magazine.

Sandeep Dhakal obtained his
B.Sc. from Swinburne Univer-
sity of Technology, Australia,
and his M.Sc. degree from the
University of St. Andrews,
Scotland. He 1is currently a
Ph.D. student at the University
of Newcastle, Australia. His
research interests include mod-
elling of complex adaptive sys-
tems, evolutionary game theory,
and optical character recogni-
tion. He has more than 10 pub-
lications to date in these areas,
and has reviewed papers for the
IEEE Computational Intelligence Magazine, IEEE Transactions on
Evolutionary Computation, and Engineering Applications of Artificial
Intelligence.

S

https://doi.org/10.1016/j.eswa.2015.08.023
https://doi.org/10.1023/a:1010933404324
https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/modules/classes.html

	Multi-level particle swarm optimisation and its parallel version for parameter optimisation of ensemble models: a case of sentiment polarity prediction
	Abstract
	Introduction
	Background
	Methods
	Particle swarm optimisation
	Classifiers
	Multi-level PSO
	Parallel multi-level PSO

	Experiments and results
	Experiments on ML-PSO
	Experiments on PML-PSO
	Experiments using large-scale data

	Conclusion
	Acknowledgements
	References

