Multiobjeclive adaplive symbiotic organisms search for (russ optimization problems

Abstract

This paper presents a multiohjective adaptive symbiotic organisms search (MOASOS) and its
two-archive lechnique for solving truss Upllmiwliurﬁrublcms. The SOS algorithm considers
the symbictic relationship among varicus species, such as mutualism, coamensalism, and
paragitism, to live in nature. The heuristic characteristics of the mutualism phase permits the
scarch to jump into not visited sections (named an exploration) and allovaa local search of
visited sections (named an exploitation) of the search region. As search progresses. a good
balance between an exploration and exploitation has a greater impact on the solutions. Thus.
adaptive control is now incorporated Lo propose MOASOS. In addition. two-archive approach
is applied in MOASOS to maintain population diversity which is a major issue in

multiobjective meta-heuristics.

For the design problems, minimization of the truss” mass and maximization of nodal
displacement are objectives whereas elemental stress and discrete cross-sectional areas are
assumed to be behaviour and side constraints respectively. The lﬁulness of these methods to
solve complex problems is validated by five truswoblems (i.e. 10-bar truss, 25-bar truss, 60-
bar truss, 72-bar truss, and 942-bar truss) with discrete desig@fariables. The results of the
proposed algorithms have demonstrated that adaptive control is able to provide a better and

competitive solutions when compared against the previous studies.

Keywords: Meta-heuristic: Structural optimization: Archive technique: Discrete design:

Constraint problem

1. Introduction
Over the last few decades, investigation on truss design optimization has been one of the main

issues in structural design. A truss is a special kind of engineering structure constructed by
using a number of 2-node members interconnected with revolute joints. This implies that the
structural elements will ideally experience only tension or compression. There have been many
research aspects for truss optimization since it was first studied. Truss optimization problems
can be categorized as topology. shape, and sizing optimization dependingﬁ the design
variables assigned. Sizing design variables are usually assigned to find optimal cross-sectional

areas of truss members whereas shape design variables will alter the nodal positions from their




original places. Topological design varables, on the other hand, are set o find an initial
structural layout or configuration given that a designer may not know it a-priory. The
combination of two or even three types of design variables for one optimization runs can be
achieved. The combination of shape and sizing variables leads to a shape and sizing
optimization problem which has been proven to give better design results than merely
performing optimal truss sizing. The simultaneous operation of topology. shape. and sizing
design for one run, sometimes called aulomﬁd design. is arguably (he best design strategy.
The design problems can also be labelled as small- medium- and large-scale optimization

problems depending on the total number of design variables being used.

Based on the number of objective functionséuss design problem can be single-objective or
multiobjective optimization. A typical truss design problem is posed to minimize its mass or
weight subject to stress, displacement, and buckling constraints. Nevertheless, some recent
work has been devoted to mass minimization with natural frequency constraints. For
multiobjective cases, the first objective is usually structural cost or weight while other
objectives may be used to measure structural performance. As already known that mass
minimization subject to structural safety constraints always results in a design solution that is
in the boarder-line of safety and failure, it is therefore not practical without further
modification. The use of factors of safety is one of the ways to alleviate such a problem. On
the other hand, designers may add another objective function to a design problem where such
an objective function should be an indicator for structural reliability e.g. displacement
minimization, compliance minimization, natural frequency maximization, frequency response
function minimization, etc. With two or more objectives, the design problems become more

difficult and has a set of countless optimal results.

Another aspect of truss optimization is development of an optimizer or optimization method.
Normally. there arc two types of optimiscrs uscd for truss optimization, gradicnt-bascd
methods and meta-heuristics (MHs). The former has been proven effective but, with its
complication, derivative dependence. and other limitations, it is less popular. The latter is
probably thc most Epularly uscd algorithm for solving truss optimization, MHs arc
advantageous in that they are simple to code. create, and understand. The methods are more
flexible, and designers can modify them or even introduce a new algorithm or concept. Since
they arc derivative-free, almost any kind of dcsign problems can be solved by using such
optimizers. Most of them are efficient for solving global optimization. In cases of truss design.

a feasible region may be highly non-convex such as some cases of natural frequency




constraints, therefore, using MHs can be a better choice. Nevertheless, it iﬁlways recognized
that the convergence rate of MHs is poor and one run requires a huge number of function

evaluations. Thus, improving the performance of MHs is always an issue.

For single-objective MHs, some recently developed methods are, for example, Vortex Search
Algorithm (Dogan and Olmez, 2015), Search Group Algorithm (Gongalves, 2015), and sine-
cosine optimization (Mirjalili, 2016). Other types of recent development for MHs are self-
adaptive algorithms such as LSHADE (Tanabe and Fukunaga. 2014) and NSaDE-WEE
(Wansaseub et al., 2017). For multiobjective optimization which is often called multiobjective
evolutionary algorithms (MOEAs). there have been numerous MH optimisers proposed in
literature. Non-dominated sorting gﬁtic algorithm which now have had three versions is
arguably the best-known algorithm (Srinivas and Deb. 1995: Deb et al.. 2002: Deb and Jain.
2013). The others wellﬁown algorithms include multi-objective immune algorithm (Luh and
Chuch, 2004).&\-’brid Multi-Objective Particle Swarm Optirﬁation (Kaveh and Laknejadi,
2011), MOEA based on Decomposition (Zhang and Li, 2007), Multi-Objective Particle Swarm
Optimization (Reyes-Sierra and Coello, 2006), and SPEA (Zitzler, 2002). One of the recently
proposed MOEAs is multiobjective symbiotic organisms search (MSOS) (Cheng et al., 2015
Panda and Pani, 2016; Tran et al., 2016; 2017), which is found to be an efficient optimizer.

SOS has superior performance over a number of algorithms available since it was first
published and has been in solving many optimization problems (Cheng and Prayogo. 2015).
The SOS algorithm has been examined for constrained and unconstrained benchmark
engineering problera and proved to be better performer with other MHs (Cheng and Prayogo.
2014; Cheng ct al., 2015). Cheng et al. (2015) proposed a discrete SOS algorithm to optimize
multiple-resources levelling problems. Abdullahi et al. (2016) used a discrete SOS in efficient
task scheduling in cloud computing. Tran et al. (2016 2017) used MOSOS to do optimization
of timc—cost—labour utilization problems in construction projccts. Panda and Pani (2016) used
an adaptive penalty function in MOSOS to handle equality and inequality constrains. Do and
Lee (2017) used a modified SOS in pin-jointed structures with discrete design variables. Yu et
al. (2017) uscd SOS for optimization thec capacitatcd vchicle routing problem as a discreic

optimization problem.

Capability of SOS in the field of structural optim'&ation is still under research; however, Tejani
et al. (2016; 2017; 2018), Yu et al. (2017), and Cheng and Prayogo (2014) have inves'ﬁated

SOS for some structural optimization problems in single objective optimization. SOS works




on three phases viz. the mutualism phase, commensalism phase, and parasitism phase. In the
basic SOS algorithm, the benefit factor is decided through heuristic step and it can be either
one or two. which means organism gets partially or fully benefits from the interaction.
However, in real practice 01'ganisuu’uay get benefit in any proportion. Morecover, Tejani ct al.
(2016) proposed an adaph’x-'e SOS algorithm with the use of adaptive control mechanism (viz.
adaptive benefit factor). Automatically driven teaching factor has improved the performance
of the SOS algorithm in order to set a good balance between exploration and exploitation of
the search space and to enhance the diversity of the population. Adaptive controlling is
proposed in few studies of MOEAs: Zhu et al. (2016) presented an adaptive hybrid crossover
operator for multiobjective evolutionary algorithm to enhance the search capability. Daryani et
al. (2016) applied an adaptive group search oplimizﬁion multiobjective optimization problem
to precise algorithms’ convergence characteristic. This paper intends to investigate a good
balance between exploration and exploitation of the search space. Therefore. we proposed two
new versions of ﬂﬁ basic SOS algorithm by considering adaptive benefit factor and two-
archive technique in the basic SOS algorithm. It is also observed from the literature that
MOSOS has not been investigated&)r structural optimization so far. Moreover, modification
of MOSOS is still under research. These motives encouraged us to propose three variants of

the SOS algorithm and to investigate its effect on structural optimization problems.

The SOS algorithm has even shown unique characteristics including: (1) no need for parameter
adjustments since the algorithm is completely parameter-free; (2) Excellent capabilities for
exploration with both mutualism and commensalism: (3) exploitation capabilities gained by
cloning and mutating within the parasitism phase; (4) inferior solutions can be eliminated
completely during the parasitism phase. With these four benefits. it is clear to see how the SOS
algorithm excels. Compared with other metaheuristic algorithms, there are very few that
possess all four of the properties above and this leads to more accurate results and reliable

processes.

Since the method has just been developed. there is room for further development. therefore, in
this work wec proposc to improve the performance of the algorithm by intcgrating a sclf-
ﬁaplive strategy and a two-archive technique. The new MOASOS and MOASOS2arc
algorithms are then used to solve a number of multiobjective truss optimization test problems
while the objective functions includc structural mass and maximum nodal displaccment. The

results obtained from using several optimisers are compared and discussed.




The symbiotic organisms search (SOS) algorithm

SOS was introduced by Cheng and Prayogo (2014) as a continuous-based meta-heuristic
algorithm that utilizes a population-based search strategy by maintaining a population of
potential solutions when finding global optimum solutions to a given problem. The algorithm
is motivated by the relationship among numerous organisms surviving together within an
ecosystem. Generally, organisms have biological interdependence with others to grow or

survive together within natural ecosystem. This phenomenon is called as ‘symbiosis’.

&the beginning, the SOS algorithm starts with the initialization of the ecosystem population.
After the initialization process. then the algorithm generates and evaluates each organism
positions by calculating their respective objective function values, such that the organism with
the best objective value is selected as X},.5.. The process is repeated iteratively by updating the
current solution until the global best solution is discovered. In this situation. the SOS algorithm
applied the principle of three fundamental symbiosis in living organisms; m ulualisxb
commensalism, and parasitism: to update the new organism’s position. The algorithm loop 1s
terminated when the maximum number of fitness evaluation is met. The details of these natural
symbiosis encoded in the SOS algorithm based on the three fundamental relationships

structures are presented.
2.1 Mutualism phase

In this phase, both organisms experience advantages from the symbiotic relationship. For
example, mutualism is found in flower and pouinalor. After collecting food from the flower,
the pollinator helps the flowers to become fruit. In this way. this symbiotic connotation benefits
both individuals from the exchange. Therefore. this association is called a mutually

advantageous symbiotic.

i

In the mutualism phase, the design variables (Xi) or solution ‘1" sets relationship with a
randomly selected design variables (Xk) or solution “k™ (k # & The relationship between these
populations outcomes to individual benefits. New solutions are governed by a Mutual Vector
(MV) and Benefit Factors (E& and BFz). The MV implies the mutual relationship between
solutions ‘i’ and ‘k” shown in Equation 3. The benefit factors are governed by a random integer
number with an equal chance as either 1 or 2. shown in Equations 4 and 5. Therefore. the BF,
and BF:indicate two situations where solutions get an adﬁ'mlagc partly or completely from the
relationship respectively. Populations are also affected by the best solution (Xpew). The best

solution is randomly selected from the first non-dominated sorting. The fitter solutions are




selected as per greedy selection. The mathematical formulation of this phase is specified as

below:

X{ = X; +rand(0,1) * (Xpos, — MV * BF,) 1)
X = Xy +rand(0,1) * (Xpesr — MV * BF;) 2)
My =22k (3)
BF; = round [rand(0,1)] + 1 4)
BF> = round [rand(0,1)] + 1 )

where, i, k€ (1,2,..,n); kK #i
2.2 Commensalism phase

In this phase. only one organism experiences advantage while the other does not gain or lose
anything. The rclationship between shark and remora fish is a key cxample with remora fish
attaching themselves behind the shark’s body. The fish manages to consume leftover food

while the shark does not gain or lose anything from the behaviour.

This phase simulates the commensalism between two living organisms with one benefitting
and the other seeing no change at all. The design variables (X;) sets relationship with another
design variables (Xi) where & # /. The relationship between these solutions leads to the
individual advantage of solution ‘i” but does not affect solution ‘k’. Solutions are also affected
by the best solution (Xp.«), randomly selected for the current set of non-dominated solutions.
The fitter solutions are selected as per greedy selection. The mathematical formulation of this

phase is specified as below:

X =X +rand(—1,1) * (Xpase — X) (6)
where, Lk € (1,2,...,n); k£i

2.3 Parasitism phase

In this phase, one organism is eliminated from the ecosystem completely while the other gain
an advantage. 'I'he most common example would be humans and mosquitos. After biting the
human, the mosquito creates a parasite within the body. As the germs reproduce with bacteria,

this leads to disease and even death when untreated or if the immune system is not strong




enough o eliminate the parasite. This phase simulates parasilism between two living organisms

1s simulated with one benefitting and the other being harmed.

Like the anopheles mosquito, the design variable (X) creates an artificial parasite known as
Parasite Vector (PV). PV is created by regenerating some randomly selected elements of
solution ‘i” within their bounds, therefore. PV is a being a clone of the original elements of
solution "1". A randomly selected solution Xy for & # i 1s assumed to be a human. If PV has
better functional value compared to solution ‘k’, the parasite PV will kill and replace solution
k.

3. The multiobjective adaptive symbiotic organisms search (MOASQS) algorithm and a

two-archive technique in MOASOS

In the mutualism phase of SOS, the benefit factors are key considerations to decide the
‘aﬂuence of MV. Benefit factors are decided as per random choice as 1 or 2 in the basic SOS.
This wctice corresponds to the situation where populations get benefit partially or fully from
MV. Thus. during the course of optimizﬁ'on, the organisms update only with these two
possibilities. In the optimization algorithm, lower value of benefit factor allows the fine search
in small steps but causes slow convergence and larger value of benefit factor speeds up the
search. Moreover. in an actual mutualism phenomenon, these beﬁefit factors may not always
at its end state but varies in between also. By this motivation, the benefit factors (BF; and BF:)
are changed to adaptive benefit factors (ABF; and ABF;) aiming for search performance

enhancement, defined by the following equations:

fl(Xf)/f1 (Xpest) if f1(Xpest) = 0

L= T
s {1 + round [rand(0,1)],if f,(Xpest) # 0 ™

1,if ABF, < 1

ABF; ={ 2,if ABFy; > 2 (8)
ABF,, otherwise

fg(Xi)/fg(Xbest) if fz(Xbest) #0

1 + round [rand(0,1)],if f,(Xpese) # 0 ®

ABF, = [

1,if ABF, < 1
ABF, :[ 2,if ABF, > 2 (10
ABF,, otherwise
It should be noted that the ABF: and ABF- are used for minimization of objective functions.

In this mutualism phase of SOS, the design variables may have small and large move its




locations as it works on various factors, The small and large movements of the design variables
respectively impact the exploration and exploration of a search spacen'[he ABF) and ABF: let
strong exploration competence when a population (7 "or ‘&) is away from the best population.
The ABF; and ABF; sect good exploitation when a population is ﬁm‘b}-‘ the best population.
Multiobjective adaptive symbiotic organisms search (MOASQS) aims to effectively add the
robust and global search features of the adaptive benefits factors.

Populations are evolving to a fitter version only if their new fitness dominates their pre-

interaction fitness. In this case, the old X; and X will be replaced immediately by X; (Xi new)
and Xj (Xj new), respectively. The X; and X; will be moved into advanced population.
Otherwise, the X{ and X;j will be added into advanced population for sclecting the next
generation ecosystem. In this way. the proposed algorithm can converge faster while
maintaining good diversity. Since algorithm may gain some important information from

dominated the solution in latter sorting.

Furthermore, a two-archive technique is embedded to MOASOS leading to a new algorithm
termed MOASOS2arc. The main concept of using the two-archive approach 1s that another
tvpe of external archive will be gencrated based on a sharing function. The new archive is
proposed to handle population diversity which is a common issue in multiobjective meta-
heuristic. In the population reproduction of MOASOS2arc, Xpest can be selected from both
archives at random. To find the second archive, new objective functions are calculated and
non-dominated solutions according to the new objective functions are evaluated. For an
individual, the first new objective function is the reciprocal of the sum of distances between it
and other solutions in a population while the second objective is the weighted sum of the
original objective functions. For an individual X which having realﬂjective function f = {f1,

2}, the new functions for the second archive denoted as, fu1 and fn2. can be expressed as:

1

fu = m:}f = 4; (11)
And
faz=wii+ A -w)f; {12)

where # is a population size while w) is a uniform random number in the range [0.1].

Xbest will be randomly selected from the second archive if a random number in [0.1] lower than
a threshold values (rand((.1) < Arch2,) where the threshold values (drch2,) is iteratively




adapted. Otherwise, Xpeq is tandomly selected from the first non-dominated archive. The term

of Arch2; can be iteratively adaptive based on the following function:

Arch2,(t) =R x et (13)

gz ln[Arcthf)—ln(Arcths) '14)
rmﬂx_l

Arch2y,s ¥

R =22 (15)

Arch2ps and Arch2,r are the starting and ending values of Arch2, which set to be 0.1 and 0.5,
respectively. The concept of using the second archive is to provide more diversity in the final
stage of an optimisation run, however, based on Equation (10), the second archive will be less

used in the early stage of the run. This idea was successfully used in (Nuaeckaew et al.., 2017).

7]
MOSOS. MOASOS. and MOASOS2arch simulate three phases such as "mutualial phase’.

‘commensalism phase’, and ‘parasitism phase’. It presents various steps of these algorithms
like initialization, mutualism phase. commensalism phase, parasitism phase, and termination
criteria. Detailed steps of MOSOS. MOASOS., and MOASOS2arch are explained as below:

Initialize popuiation size {n), Number of design variables (m), limits on design variables (L, U), stopping criteria {"FEnas' or

& /*E@tialization /*

Xij=Lij+Ryj* (UE.J'—LU)J forvi€|[ln], forv)€|[lm] /R E|0O 1]/ /*Initialize population /*

Evaluate the population and arrange the population in ascending order — FE = n

ldentify the best population of the ecosystem.

while (g < Gmax and FE < FEy,4, ) do /* Initialize optimization loop /*
fori=1tonde

Xi+X £ o L
My = Lt ¥k is o rondomly selected population, k=i /*

2
%% if the 5 algorithm then
=1+ round [rand(0,1)] /* The mutualism phase /*

BF; = 1+ round (rand(0,1)]
X; = X; + rand(0,1) * (Xppee — MV = BF)) /* X, .., is randomly selected from the first non-dominated rank /*
X, = X, +rand(0,1) * (Xpes; — MV * BF,)
%% if the MOASOS algorithm then
if fifXoese) 2 0 — ABFy = fi (X)) F1 (Koes)
if ABF1<1 — ABFi=1
if ABF1>2 — ABF;=2
X{ = X; + rand(0,1) * (Xpase — MV = ABF}) /* Xpyos is randemly selected from either the first
or second archives in cases of MOASOS2arc/*
If folXpest) 20 = ABF> = f; (X)/ f (Kpest)
if ABFx<1 — ABF3=1
if ABF3>2 — ABF,=2
X; = X, EBand(0,1) + (Xpese — MV = ABF,) %%
Buate (X0 £, & £-(6): (83 = FE = FE +2

F(X{)<F(X) o X, =X{ /* Greedy selection/*

FXp) < F(Xi) & X = Xy, /* Greedy selection/*

X{ = X+ rand(=1,1) * (Xpest — Xi) /* The commensalism phase /*
Evaluate F{X]) = FE = FE+1 /* k' is u randomly selected populaiion, k =i /*
@BH)<rud e Xxi=x /* Greedy selection/*

Parasite_Vector /* Parasite vector is a fusion of design variables of the population ‘I’ and randemly generated
design variables within its bound /* /* The parasitism phase /*
(Parasite Vector) < F(Xy) < X, — Parasite_Vector /* Greedy selection/*




end for /* Population loop ends /*
end while /* Optimization loop ends /*

The flowchart of the MOSOS. MOASOS, and MOASOS2arc algorithms is shown in Figure
1.

4. Problem definition

A typical multiobjective truss optimization problem is modeled to f%element sizes which
minimize truss mass and maximum nodal deflection subject to stress constraints. The

optimization problem can be writien as:

Findt A= {AlJAZt"tAm} (16)

to minimize, mass of truss and maximum elemental deflection

L) = Z Aipi Ly and f,(A) = max(lé}l)

i=1
Subjected to:

Behavior constraints:

g(A): Stress constraints, |o;]| = g™ <0
Side constrainis:

Cross — sectional area constraints, A" < 4; < AP

where,i = 1,2,..,m; j=12,..,n

Where, A; p; Ly, E;, and o; stand for design variable. mass density, element length. Young
modules, and clement stress, on the element 7" respectively. d; is displacement node j’
respectively. The superscripts ‘max’ and ‘min’ denote maximum allowable limit, minimum

allowable limit respectively.

4.1 Penalty function

Assuming each objective function distinctly and its minimization subject to q

constraints, the penalty function of a given solution can be written as:

FE)+ L+ + O, =5, G, G=[1-2 (17)

i




Where, p; is the level of constraint violation having the bound as p;. The parameter ¢ is a
number of active constrainis. The variables €, and &, are W-determined by the user. In this
study, the values of both £, and =, are set as 3, which were obtained from experimenting their

effect on the balance of the exploitation-exploration balance (Tejani et al., 2016; 2017; 2018).
4.2 The proposed methodology

The brief stepwise discussion of the proposed methodology is as below:

Step I.Beﬁne the basic configuration of the truss structure.

Step 2. Assign material properiies, loadings, and boundary conditions. a
Step 3. Go to the multiobjective optimization algorithm: define objective functions, population
size, design variablﬁ bounds. and a termination criterion.

Step 4. Initialize a randomly generated set of trusses (1.e.. population) within its upper and
lower bounds.

Step 5. a) to truss configurations: generate trusses as per the basic truss structure.

Step 6. Perform finite element analysis using the matrix method of structural analysis of a
truss.

Step 7. Compute the global stiffness matrix.

Step 8. Compute a force vector, solve the boundary conditions, and then solve for nodal
displacement.

Step 9. Cﬂmpute element stresses.

Step 10. Go to a penalty function and check for constraint violations. If there exist constraint
violations. assign penalty \'aluE as per Equation 17: otherwise. compute the total mass and
maximum nodal displacement of the truss.

Step 11. Go to multiobjective optimization algorithm: assign functional values.

Step 12. ladate a Pareto archive using a non-dominated sorting algorithm.

Step 13. Check the termination criterion. If it is not fulfilled, generate new trusses (i.e..
solutions) as per reproduction of the employed algorithm. Go to step 5. If the criterion is met,
go to step 14.

Step 14. Output: Pareto optimal truss structures with the total mass and maximum nodal

displacement.
Graphical illustration of the proposed methodology is presented in Figure 2.

5. Design problems, results, and discussions




Five benchmark (russes [rom Angelo et al. (2012; 2015) are used Lo investigate the performance
of the proposed algorithms. The MOSOS, MOASOS. and MOASOS2arc algorithms are
performed for 100 independent runs. The front hypervolume and spacing-to-extent indicators
arc used for performance investigation. 'Tllmveragc value of the hypervolume from 100
independent runs (Avg.) of each method is used to measure theﬁarch convergence of the
algorithm while the standard deviation (SD) of hypervolume is used to measure the search
@usislency, In addition, a [ront spacing (S) matric (Schott. 1995) is used 1o measure relative
distance between consecutive solutions in the obtained non-dominated set. Given that a sct of
non-dominated front P having M objective functions is obtained from a particular optimization
method. the spacing of such a front can be compuied as:

Spacing = == ¥\ (d; - @)’ (18)

' i ebes

where |P| is the number of members in the set P. d; is the Euclidian distance of the vector of
objective functions / to its nearest neighbor. d is the mean value of d;.

The measure of front extension can be determined as:

tent = EM, |fmex — fmin) (19)

20

where ™" and f™** are the minimum and maximum values for the i-th objective function of
all members in P. The lower Spacing the better front while the higher Extent the better. The
combination of both indicators leads to a new performance metric which measures both front
spacing and front extent, which is defined as the ratio of spacing to extent,

Spacing-to-Fxtent = Spacing/Fxtent (20)

where the lower Spacing-to-Extent the better non-dominated front.

Aisu.dlc two-step statistical tests called Friedman test and Nemenyi test (DemsSar, 2006) are
used to rank the algoritlﬁ based on the experimental results. The five truss optimization

problems can be detailed in the subsequent sections.

5.1 A 10-bar truss
5]

The fist problem., the 10-bar truss is presented in Figure 3. The material properties are as density
is 0.1 1b/in® and modulus of elasti@ is 10* ksi. Elements 2 and 4 are subjected to vertical
download forces as 100 kips. The tensile and compressive stresses are limited to 25 ksi. The
elemental cross-sections are selected from 42 discrete values as 1.62, 1.80, 1.99, 2.13, 2.38,
2.62.2.63.2.88.2.93.3.09.3.13.3.38.3.47.3.55.3.63. 3.84. 3.87.3.88. 4.18, 4.22.4 49, 459,
4.80,4.97,5.12, 5.74, 7.22.7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90.
22.00, 22.90, 26.50, 30.00, and 33.50 in®.




This problem was run with population size of 50 and number of gencrations 100 thus it
consumes 15000 FEs. After perEning 100 optimisation runs for all optimisers. the
hypervelume values are presented in Table 1. The best method based on the Avg. value is
MOASOS2arc while the second best is MOASOS. For the measure of search consistency, the
best performer is MOASOS while the second best is MOASOS2arc. The maximum and
hypervalume values is obtained by MOASOS2arc. For the comparison based on the Friedman
test and Nemenyi test are at 95% signilicant level, the MOASOS2aic and MOASOS algorithms
are the best and second best performer similar to the measurement based on Avg. of

hypervolume values.

The front Spacing-to-Extent performance metrics are calculated for this problem and the resulis
are presented in Table 2. As per the Friedman test and Nemenvi test at 95% significant level.
the MOASOS2arc outperforms other algorithms and similar results expressed as per Avg. and
SD of front Spacing-to-Extent values. Also, the MOASOS2arc and MOASOS algorithms
performs better compare to its basic version. Friedman test and Nemenyi test are shown nearly

similar results

Figures 4 and 5 show the best obtained Pareto fronts of all the proposed algorithms and the
Pareto fronts at median run. It is observed that MOASOS2arc is slightly better than oth(ﬁ
algorithms. It is also observed from the Pareto fronts of MOASOS and MOASOS2arc that a
wide range of distinct solutions is obtained. and the solutions arc well disiributed along the
obtained non-dominated fronts. Overall, these results demonstrate that MOASOS2arc is the
best performer and proposed modifications advance effectiveness of the basic MOSOS

algorithm.

5.2 A 25-bar truss

éhe second problem. the 23-bar truss is presented in Figure 6. The material properties are as
density is 0.1 1b/in® and modulus of clasticity is 10 ksi. Loading is considered as Py =
1Klb, Py, = Pz§ Py, = P,; = —10Klb,Pys = 0.5 Klb,Pys = 0.6 Klb. The tensile
and compressive stresses are limited to 40 ksi. The elemental cross-sections are selected from
42 discrete values as 0.1, 0.2, 0.3,0.4, 0.5, 0.6,0.7,0.8,09,1.0,1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,
18,19,20,21,22,23,24,25.25,28,30,32, and 3.4in”.

For the 25-bar truss, the problem was run with the population size of 100 and the number of
generations 167, thus, it takes 50.000 FEs. After performing 100 optimisation runs for all

optimisers, the hypervolume values arc presented in Table 3. The best for convergence and




consistency is MOASOS2arc while the second best is MOASOS. The maximum hypervolume
is obtained by MOASQS2arc. Based on the Friedman test and Nemenyi test, MOASOS2arc
and MOASOS are still the best and second best performers.

The front Spacing-to-Extent performance metrics are examined for this problem and the results
are shown in Table 4. As per the Friedman test and Nemenyi test at 95% significant level, the
MOASOS2arc, MOASOS, and MOSOS rank first. second, and third respectively and similar
results are obtained by Avg. and SD of front Spacing-to-Extent values. In addition, the
MOASOS2arc and MOASOS algorithms performs better compare to its basic version.

Friedman test and Nemenyi test are shown nearly similar results.

The Pareto fronts obtained from the best runs of all algorithms and at median position are
shown in Figures Z and 8. It 1s also noticed from the Pareto fronts of MOASOS and
MOASOS2arc that a wide range of distinct solutions is obtained, and the solutions are well
distributed along the obtained non-dominated fronts. Overall. these results reveal that
MOASOS2arc is slightly better than the other algorithms similarly to the case of thel(-bar
truss and proposed modifications upgrade effectiveness of the basic MOSOS algorithm.

5.3 A 60-bar truss

Tl'athjrd problem, the 60-bar trussed ring is presented in Figure 9. The material properties are
as density is 0.1 1b/in® and modulus of elasticity is 10* ksi. Loading is assumed as load case 1:
Py = —10 Kib and Py; = 9 Kb, load casc 2: Pyys = Peyg = —8 Klb, and Pyy5 = Pyyg =
éﬁ’!b, and load case 3: Py, = —20 Klb and Py,, = I&Klb. The tensile and compressive
stresses are limited to 40 ksi. The elemental cross-sections are selected from 45 discrete values

as [0.5,0.6.0.7, ...4.9] in®.

For the 60-bar (russ, the problem was run with the population size of 100 and the number of
generations 167, thus, it takes 50,000 FEs. Having performed 100 olﬁnisation runs for all
optimisers, the hypervolume values are presented in Table 5. The best f‘ownvergence rate is
MOASOS2arc while the second best is MOASOS similar to the cases of 10-bar truss and 25-
bar truss. For the measure of search consistency, the best performer is MOSOS while the
second hest is MOASOS. The maximum hypervolume is still obtained by MOASOS2arc for
this case. The conclusion based on the Friedman test and Nemenyi test is that MOASOS2aic

and MOASOS are still the best and the second best performers.




The front Spacing-to-Extent performance metrics are analysed flor this problem and the resulls
are illustrated in Table 6. It is observed as per the Friedman test and Nemenyi test at 95%
significant level that the MOASOS2arc. MOASOS. and MOSOS rank first. second. and third
respectively and similar results arc also obtained by Avg. and SD of front Spacing-to-Extent
values. In addition, the MOASOS2arc and MOASOS algorithms performs betier compare (o

its basic version. Friedman test and Nemenyi test are shown nearly similar results.

For this case, MOASOS2arc is said to be the overall best performer. Figures 10 and 11 show
the Pareto fronts obtained from the best runs of all the algorithms and the Pareto fronts

median runs. It is also observed from the Parcto fronts of MOASOS and MOASOS2arc that a
wide range of distinct solutions is obtained. and the solutions are well distributed along the
obtained non-dominated fronts. The Pareto fronts obtained from MOASOS2arc. MOASOS.
and MOSOS are stable compare to that obtained by using MOAS and MOACS. It can be
concluded that MOASOS2arc front is slightly better than the other algorithms and proposed

modifications advance effectiveness of the basic MOSOS algorithm.

5.4 A 72-bar truss

éhe fourth problem, the 72-bar truss is presented in Figure 12. The material properties arc as
density is 0.1 1b/in® and modulus of elasticity is 10* ksi. Loading is assumed as load case 1:
Fix = F, = 5kips and F, = —5 kips and load case 2:

11

Fi, = Fy=Fy =By ==5 k'ﬁ. The tensile and compressive stresses are limited to 25 ksi.
The elemental cross-sections are selected from 25 discrete values as [0.1,0.2,0.3...., 2.5] in’.

The bar elementals are grouped into 16 groups to consider structural similarity as per previous

studies.

For the 72-bar truss, the problem was run with population size of 100 and number of
generations 167, therefore, it consumes 50,000 FEs. Afﬁperf‘nrming 100 optimisation runs
for all optimisers, the hypervolume values are presenled in Table 7. The best algorithm based
on the Avg. value is MOASOS while the second best is MOASOS2arc. For the measure of
search consistency. the hest performer is MOSOS while the second hest is MOASQOS similar
Lo the case of 60-bar (russ. The maximum hypervolume is still obtained by MOASOSZ2arc for
this case. The conclusion based on the Friedman test and Nemenyi test is similar to the
measurement based on Avg. of the hypervolume values i.e. MOASOS is the best while
MOASOS2arc is the second best.




The front Spacing-to-Extent performance metrics are caleulated for this case and (he results are
illustrated in Table 8. It is observed as per the Friedman test and Nemenyi test at 95%
significant level that the MOASOS. MOASOS2arc. and MOSOS rank first. second. and third
respectively and similar results are also obtained by Avg. of front Spacing-to-Extent values. In
addition, the MOASOS2arc and MOASOS algorithms performs better compare to its basic

version. Friedman test and Nemeny1 test are shown nearly similar results

Figures 13 and 14 shown the best Parcto fronts obtained from the best runs and the median
results of all algorithms. It is observed that MOASOS is slightly better than the ozh%
algorithms. It is also observed from the Pareto fronts of MOASOS and MOASOS2arc that a
wide range of distinct solutions is obtained. and the solutions are well distributed along the
obtained non-dominated fronts. The Pareto fronts obtained from MOASOS2arc. MOASOS,
and MOSOS are stable compare to that obtained by using MOAS and MOACS. For this case.
the results reveal that MOASOS is the best algorithm and proposed modifications lead to

greater effectiveness of the basic MOSQOS algorithm.
5.5 A 942-bar truss

éhe fifth problem, the 942-bar truss is presented in Figure 15. The material properties are as
density is 0.1 Ib/in® and modulus of elas&city is 10* ksi. Loading is assumed as the vertical
loads along z axis are — 3 kips. — 6 kips. and —9 kips at each of the nodes in the first. second.
and third sections, respectively: the lateral loads along y axis are 1 kips at each node of the
truss; and the lateral loads along x axis ﬁ 1.5 kips and 1.0 kips at each node on the left and
right sides of the truss, respectively. The tensile and compressive siresses are limited to 235 Kksi.
The clemental cross-sections are selected from 200 discrete values as [1.2.3..... 200] in?. The
bar elementals are grouped into 59 groups to consider structural similarity as per previous

studies (Angelo et al., 2012; 2015).

For the 942-bar truss, the problem was run with the population size of 100 and thc number of

generations 167. It consequently uses 50,000 FEs. Afﬁperfonning 100 optimisation runs for
all optimisers. the hypervolume values are presented in Table 9. The best algorithm based on
the Avg. valuc is MOASOS while the second best is MOSOS. Tor the measure of scarch
consistency, the best performer is MOASOS2arc while the second best is MOASOS. The
maximum hypervolume value is obtained from MOSOS for this case. The comparison based
on the Fricdman test and Nemenyi test shows that the best performer is MOASOS while the




second best is MOASOS2arc. For this case, the results demonstrate that MOASOS 1s better

optimiser compare to other algorithms.

The front Spacing-to-Extent performance metrics are examined for this problem and the results
are illustrated in Table 10. It is observed as per the Friedman test and Nemenyi test at 95%
significant level that the MOASOS2arc. MOASOS. and MOSOS rank first. second, and third
respectively and similar results are also obtained by Avg. and SD of front Spacing-to-Extent
values. In addition, the MOASOS2arc and MOASOS algorithms performs better compare to

its basic version. Friedman test and Nemenyi test are shown nearly similar results.

Figures 16 and 17 shown the Pareto fronts obtained from the best and median runs of all
algorithms. It is observed that MOASOS2arc and MOASOS are better peiformer than the ulh%
algorithms. It 1s also observed from the Pareto fronts of MOASOS and MOASOS2arc that a
wide range of distinct solutions is obtained. and the solutions are well distributed along the
obtained non-dominated fronts. The Parcto fronts obtained from using MOASOS2arc.
MOASOS, and MOSOS are superior to that obtained by using MOAS and MOACS. For this
case. the results reveal that MOASOS2arc and MOASOS are nearly similar and better
compared to other algorithms. It iﬁlso observed that the proposed modifications improved

effectiveness of the basic MOSOS algorithm.
6. Conclusions

In this study. the MOSOS, MOASOS. and MOASOS2arc algorithms are proposed Lo optimize
five constrained benchmark ftruss problems. The basic MOSOS algorithm Hks on the
symbiotic relationship called as mutualism. commensalism. and parasitism. As Emain
contribution, this work proposes an adaptive benefit factor to handle trade-off between
exploration and exploitation of search process during the mutualism phase of the basic MOSOS
algorithm whereas two-archive approach is combined with MOASOS to handle population

diversity.

The effectiveness of the proposed algorithms is iﬁestigated to design planar trusses (i.e. 10-

bar truss and 60-bar truss) and space trusses (i.e. 25-bar truss, 60-bar truss, and 942-bar truss)
subjected to elemental stress and discrete cross-sectional arcas as behaviour and side
constraints respectively. Objective functions are minimization of the truss” mass and maximum
of nodal displacement. The MOSOS. MOASOS. and MOASOS2arc algorithms are firstly
employed in multiple objective structural optimization problem s and thus it simulates

engineering applications.




This study compared performance of the MOASOS and MOASOS2arc algorithms with the
original MOSOS and other MHs such as MOAS and MOACS. The front hypervolume and
Spacing-to-Extent matrices were employed to measure effectiveness of the algorithms. Also.
the two-step statistical tests callcddricdman test and Nemenyi test were used to rank the
algorithms. It was observed that in all the problems. the MOASOS and MOASOS2arc
algorithms has a better capability for obtaining results as compared to the results of MOSOS.
MOAS, and MOA&SA MOASOS2arc performs belter compare (o MOASOS to optimize small
trusses such as 10-bar truss, 25-bar truss, and 60-bar truss: wheﬁas MOASQOS performs better
compare to MOASOS2arc to optimize large trusses such as 72-bar truss and ‘)ﬁbar truss with
discrete design variables. Overall, the presented improvements upsurge a good balance
between exploitation and exploration, and able to maintain population diversity in the original
MOSOS algorithm,




Table(s)

Tables

Table 1. The hypervolume values of results obtained for the 10-bar truss using MOAS,

MOACS, MOSOS, MOASOS. and MOASOS2arc.

Alacih Friedman | Friedman | Nemenyvi | Nemenyi
B Min Max Avg SD test rank average rank
ms l'a]l};'—
MOAS 47302.93 | 53090.80 | 5090221 1294 12 100 5 5 3
MOACS | 52662.60 | 54305.00 | 5363977 307.79 200 4 4 4
MOSOS | 53546626 | 5647453 | 5600289 212.50 352 3 248 3
MOASO | 558350.54 | 56567.16 | 56236.08 156.33 397 2 203 2
S
MOASO | 55890.60 | 56873.05 | 5638983 196.10 451 1 1.49 1
S2arc

Table 2. The front Spacing-to-Extent values of results obtained for the 10-bar truss using

MOAS. MOACS, MOSOS, MOASQCS, and MOASOS2arc.

Aldasids Friedman | Friedman | Memenyi | Memenyi
T"_s Min Max Avg SD test rank average rank
3 rank
MOAS | 0.005387 | 0.024711 | 0.010590 | 0.003781 | 292 2 292 2
MOACS | 0.007219 | 0.029625 | 0.014219 | 0.004558 | 415 5 415 5
MOSOS | 0.007441 | 0.022216 | 0.011524 | 0.002013 | 350 ; 35 4
MU:}SU 0.007705 | 0.021266 | 0.011380 | 0.002189 | 340 3 34 3
Mé;{lrio 0004698 0.007001 0.005661 0.000460 1 103 | 1.03 1

Table 3. The hypervolume values of results obtained for the 25-bar truss using MOAS,

MOACS, MOSOS, and MOASOS.

Algorithms Min S Avg: D Friedman | Friedman Nemenyi Nemenyi
test rank average rank rank
MOAS 1848.04 | 1902.35 | 187874 | 9.77 123 5 477 5
MOACS 1850.64 | 1918.92 | 189061 | 14.39 177 4 423 4
MOSOS 194237 | 1944.76 | 194360 | 0.50 344 3 2.56 3
MOASOS 1942.65 | 194498 | 194376 | 048 356 2 244 2
MOASOS2arc | 1944.13 | 1946.51 | 1945061 | 045 500 1 1 |




Table 4. The front Spacing-to-Extent values of results obtained for the 25-bar truss using

MOAS, MOACS, MOSOS, and MOASOS.

Aleorith Friedman | Friedman | Nemenyi [ Nemenvi
& Min Max Avg SD test rank average rank
ms

rank

MOAS | 0.007937 | 0.058983 | 0.022595 | 0.008424 465 3 4.65

MOACS | 0.005254 | 0.044937 | 0.017026 | 0.008361 430 1 4.3

MOSOS | 0.005219 | 0.007943 | 0.006651 | 0.000453 237 3 237

MUQSU 0.005655 | 0.007759 | 0.006601 | 0.000440 214 2 2.14 2

Mo | 0005733 | 0.006779 | 0.006362 | 0.000208 | 154 | 1.54 !

Table 5. The hypervolume values of results obtained for the 60-bar truss using MOAS,
MOACS, MOSOS, MOASOS, and MOASOS2arc.

Ngritms | M | Mox | avg s | P [ Fiodman T Newnt T onens
MOAS 2465.08 | 3397.56 | 317988 166.65 173 4 427 4
MOACS 290527 | 3276.04 | 310668 74.18 127 5 4.73 5
MOSOS 4297.11 | 4311.74 | 430474  3.06 344 3 2.56 3
MOASOS 429892 | 431327 | 4307.08 342 399 2 2.01 s
MOASOS2arc | 429915 | 4316.84 | 430975 344 457 1 1.43 |

Table 6. The front Spacing-to-Extent values of results obtained for the 6U-bar truss using
MOAS, MOACS, MOSOS, MOASOS, and MOASOS2arc.

Algeritl Friedman | Friedman | Nemenyi | Nemenyi
b Min Max Avg SD test rank average rank
ms o

MOAS | 0.009977 | 0.133920 | 0.034915 | 0.019500 460 5 46 5
MOACS | 0.007890 | 0.074504 | 0.029912 | 0.013732 440 4 4.4 4
MOSOS | 0.005487 | 0.008685 | 0.006526 | 0.000587 247 3 247 3
M(JéSO 0.005582 | 0.007388 | 0.006346 | 0.000400 230 2 2.3 2
VoS0 0005371 | 0006465 | 0.005849 | 0000202 | 123 1 1.23 1

Table 7. The hypervolume values of results obtained for the 72-bar truss using MOAS,
MOACS, MOSOS., MOASOS. and MOASOS2arc.




MOAS 2070.95 | 2120.63 | 209837 | 10.02 142 5 4.58 5
MOACS 2043.73 | 2133.54 | 210100 | 18.78 158 4 442 4
MOSOS 2223.50 | 2236.83 | 223236 | 2.19 380 3 220 3
MOASOS 222737 | 223736 | 223318 | 221 423 1 1.77 |
MOASOS2are | 222595 | 2238.24 | 223263 | 240 397 2 2.03 2

Table 8. The front Spacing-to-Extent values of results obtained for the 72-bar truss using
MOAS. MOACS. MOSOS. MOASOS. and MOASOS2arc.

Alacrith Friedman | Friedman | Nemenyi | Nemenyi
= Min Max Avg SD test rank average rank
ms
rank
MOAS 0.010919 | 0.043568 | 0.022728 | 0.007183 434 4 4.34 4
MOACS | 0.007918 | 0.076088 | 0.026837 | 0.013808 442 ] 4.42 5
MOSOS | 0.013350 | 0.015643 | 0.014393 | 0.000435 324 3 324 3
M{)é‘ s 0.004268 | 0.008528 | 0.005835 | 0.000774 108 | 1.08 1
M:;AISU 0.006503 | 0.007543 | 0.007126 | 0.000229 192 2 1.92 2
SLarc

Table 9. The hypervolume values of results obtained for the 942-bar truss using MOAS,
MOACS, MOSOS, MOASOS. and MOASOS2arc.

Algorith Friedman | Friedman | Nemenvi [ Nemenwi
%15 Min Max Avg SD test rank average rank
rank
4426853 | 5593265 | 5076823 | 3289808. "
MOAS | 995 712 663 43 150 4 e :
4832837 | 5351701 | 5144223 | 9171554 p
MOACS | 114 6.79 371 4 . ! 2 !
5924775 | 7981240 | 6163592 | 2844333.
=24
MOOS 9.94 6.08 5.25 17 3 3 M ;
MOASO | 6021640 | 6455887 | 6177035 | 617413.3 443 | 157 |
S 845 4.01 5.74 3 §
MOASO | 3972010 | 6263038 | 6145202 | 573717.8
S2are 7.25 816 045 4 3% ° a0 £

Table 10. The front Spacing-to-Extent values of results oblained for the 942-bar truss using
MOAS. MOACS, MOSOS, MOASQCS, and MOASOS2arc.

l Algarith | Min | Max | Avg, | SD | Friedman | Friedman | Nemenyi | Nemenyi




ms test rank average rank
rank
MOAS 0.014273 | 0.120749 | 0.042659 | 0.020981 473 5 4.73 3
MOACS 0.010403 | 0.079907 | 0.029013 | 0.014678 427 4 4.27 4
MOSOS 0.003170 | 0.010096 | 0.004965 | 0.001050 245 3 2.45 3
M()é\h() 0.003285 | 0.007260 | 0.004315 | 0.000515 185 2 1.85 2
MOASO 0.003226 | 0.006074 | 0.004202 | 0.000475 170 1 1.7 1

S2arc
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