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Structural Optimization Using Multi-Objective Modified Adaptive Symbiotic Organisms Search
Abstract

Multiple objective structural optimization is a challenging problem in which suitable optimization methods are
needed to find optimal solutions. Therefore, to answer such problems effectively, a multi-objective modified
adaptive symbiotic organisms search (MOMASOS) with two modified phases is planned for designing of
structures. The proposed algorithm consists of two separate improved phases including adaptive mutualism and
modified parasitism phases. The probabilistic nature of mutualism phase of MOSOS lets design variables to
have higher exploration and higher exploitation simultaneously. As search advances, a stability between the
global search and a local search has a significant effect on the solutions. Therefore, an adaptive mutualism phase
is added to the offer MOASOS. Also, the parasitism phase of MOSOS offers over exploration which is a major
issue of this phase. The over exploration results in higher computational cost since the majority of the new
solutions gets rejected due to inferior objective fmﬁ'onal values. In consideration of this issue, the parasitism
phase is upgraded to a modified parasitism phase to&rease the possibility of getting improved solutions. In
addition, the proposed changes are comparatively simple and do not need an extra parameter setting for
MOSOS.

For the truss problems, mass minimization and maximization of nodal deflection are considered as objective
functions, elemental stresses are considered as behavior constramts and (discrete) elemental sections are
considered as side constraints. Five truss optimization problems valﬁle the applicability of the considered
meta-heuristics to solve complex engineering. Also, four constrained benchmark engineering design problems
are solved to demonstrate the effectiveness of MOMASOS. The results confirmed that the proposed adaptive
mutualism phase and modified parasitism phase provide superior and competitive results than the former

obtained results.

Keywords: Adaptive mechanism; Structural optimization; Meta-heuristics; Discrete variables: Constrained

problems

1. Introduction

Optimal truss design is among the hottest research challenge of structural engineering. Recently during each
year, hundreds of papers related to the topic were published. Truss structures can be viewed as a set of 2-node
links interconnected by spherical joints. They have been used in several engineering applications with the
advantages in that they are simple to construct, low cost, easy to design and less difficult to construct in difficult-
to-access regions (Pholdee & Bureerat, 2013b). The applications include a bridge, a tower, a transmission tower,
and a billboard structure. In designing a truss structure, engineering will define its topology, shape, and
elements’ sizes. Usually, a trial-and-error approach can be applied. Nevertheless, for large trusses, such an

approach is not efficient and effective.




Therefore, the application of an optimization technique is a better choice. The tradition truss optimization is
used to get the best suitable topology, shape, and sizes to minimize weight or cost subject to structural safety
constraints. Gradient-based opti&zers can be used in cases of continuous design variables (Allwood & Chung,
1984; Fleury, 1980). However, over the last few decades, the use of meta-heuristics (MHs) are the main focus
due to their simplicity to use, code, and implement. Unlike its gradient counterpart, MHs can be applied to
answer almost any type of design variables. The combination of several types of design variables for one
optimization run is possible. This aid makes MHs more popular than gradient-based optimization methods for
truss optimization. Moreover, some MHs can explore a Pareto front, in cases of multi-objective optimization

(MO), within on simulation run.

The use of MHs for single-objective optimization has been commonplace. Over the years, there have been
numerous MHs newly invented. ﬁlﬁ of the popular techniques for truss design include a genetic algorithm
(GA) (Lingyun ef al., 2005; Zuﬁ al, 2011; Wei et al., 2011), particle swarm optimizﬁn (PSO) (Gomes,
2011), cuckoo search (Gandomi ef al., 2012). krill herd algorithm (Gandomi ef al., 2013), differential evolution
(DE). teaching-learning based optimization (Camp & Farshchin, 2014; Degertekin & Hayalioglu, 2013; Savsani
et al., 2016: Tejani ef al., 2016b), Ray optimization (Kaveh & Khayatazad, 2013), colliding body algorithm
(Kaveh & Mahdavi, 2014), Parameter-less population pyramid (Gandomi & Goldman, 2018), and grey wolf
optimizer (GWO) (Kaveh & Zakian, 2017, Panagant & Bureerat, 2018). Later, some of those baseline
algorithms have been modified or improved leading to more advanced versions e.g. adaptive DE (Bureerat &
Pholdee, 2015), modified symbiotic organisms search (Tejani ef al., 2017; 2018¢; Kumar ef al, 2018). The
performance enhancement can also be achieved by means of hybridization such as hybridized passing vehicle
search & simulated annealing (Tejani ef al., 2018b). and hybrid GWO & self-adaptive DE (Panagant & Bureerat,
2018). Recently, the performance test of a number of self-adaptive MHs on solving truss optimization has been
investigated. It 1s found that most of CEC (Congress on Evolutionary Computation) competition winners are

some of the top MHs for truss optimization (Pholdee & Bureerat. 2017).

Once more than one design objectives are posed, the optimization problem is called MO. It is furthermore called
many-objective optimization in cases of a problem having more than three objective functions in order to state
its difficulty to explore the entire Pareto front. The use of multi-objective meta-heuristics (MOMHs) for truss
optimization has been studied for a decade. It is well recognized that a designer always needs for optimizing
many objective functions at the same time and those objectives will always be ﬁﬂicting with each other. The
solutions for such a design problem are countless, and its solution set 1s termed a Pareto optimal set (or a Pareto
front) if viewed as per the objective function domain. The main reason for MOMHs pallarity in MO is that
MOMHs is capable to get a Pareto front in a single %The pioneering MOMHs were a multi-objective genetic
algorithm (MOGA) (Fonseca & Fleming, 1993), a SPEA2 (Zitzler ef al., 2001), and a NSGA-II (Deb et al.,
2002). Later there have been a great variety of improved versions of existing algorithms (Bureerat &
Srisomporn, 2010; Kaveh & Laknejadi, 2011: Pholdee & Bureerat, 2012, 2013a, 2013b; Zitzler ef al., 2002)
and newly invented methods such as DE for MO (Robi¢ & Filipi¢, 2005). Some of them were upgraded for




solving many-objective optimization such as a non-dominated sorting genetic algorithm (NSGAIII) (Deb &

Jain, 2014; Jain & Deb, 2014), Two-arch (Wang ef al., 2015), and knee-point optimizer (Zhang ef al., 2015).

The use of MOMHs for truss optimization will provide benefit in that a designer can have many solutions for
decision making (Kaveh & Mahdavi, 2018; Noilublao & Bureerat, 2011, 2013; Pholdee & Bureerat, 2012,
2013a, 2013b). Moreover, they can be used for reliability optimization of trusses (Ho-Huu ef al., 2018; Techasen
atal., 2018). Several MOMHs were used to tackle multi-objective truss design in (Noilublao & Bureerat, 2011,
2013). The use of the so-called approximate gradient as a local search to enhance the performance of MOEAs
was presented in Pholdee & Bureerat (2012, 2013a). Other work with MO of trusses can be found in (Angelo
etal, 2012; . Greiner & Hajela, 2012; Hosseini ef al., 2015; Kaveh & Laknejadi, 2013 Kaveh & Mahdavi,
2018; Mousa ef al., 2012: Richardson ef al., 2012, Su et al., 2011: Tejani et al., 2018c¢). It has been shown from

the literature that a study on using MOMHs for truss design is much more advantageous.

As a result, this paper deals with modification and improvement of symbiotic organisms search for truss MO.
Since it was first invented by Cheng & Prayogo, in 2014, the optimizer has been implemented on a number of
applications while many modified versions have been additionally proposed (Secui, 2016; Zhang et al., 2016,
Ayala et al., 2017; Ezugwu & Adewumi, 2017; Ezugwu ef al., 2017; Prayogo et al., 2018; Guha ef al., 2017:
Celik & Oztirk, 2017; Celik & Durgut, 2017; 2018). SOS was then being upgraded for MO (Tran et al., 2016;
2017) leading to multi-objective symbiotic organisms search (MOSOS). Investigation on improving the
performance of MOSOS for truss design 1s interesting since 1t 1s a new method that should be tested with this
popular research topic. In this work, the main contribution is an incorporation of the random migration based
Earch along with adaptive benefit factors (BFs) into MOSOS. These techniques are used to set better stability
between exploration and to improve exploitation during mutualism phase, and to improve exploration during
parasitism phase of MOSOS. A number of multi-objective truss design are used to validate the new algorithms
while several state-of-the-art MOMHs are used to compare with the new MOSOS. The results show that our

proposed method is powerful for truss optimization.

Because the optimizer has just been proposed, there is room for further development and investigation, as a
consequence, this study is proposed to enhance the effectiveness of the MOSOS by incorporating a modified
parasitism system. MOASOS and MOMASOS are employed to answer multi-objective truss design problems
while the objectives comprise truss mass minimization and nodal deflection maximization. The solutions

received from various optimizers are examined and presented.

2. The symbiotic organisms search (SOS) algorithm

Cheng & Prayogo (2014) developed SOS to serve as a continuous-based MH algorithm and a population-
oriented searching technique; the technique finds global optimum solutions by retaining a set of possible ones
called a population. SOS is focused upon symbiosis, which is the process by which organisms in an ecosystem
possess biological interdependence with one another which allows them to grow and survive. Due to its excellent

performance over the benchmark algorithms, SOS has been applied to numerous research fields since its




introduction (Cheng et al., 2014, Tran et al., 2016, Cheng et al., 2016, Abdullahi ef al., 2016, Panda & Pani,

2016; Tejani ef al., 2016a; 2017; 2018a, Yu ef al., 2017; Guha ef al., 2017, Celik & Oztirk, 2017; Prayogo &
Susanto, 2018, Cheng ef al., 2018, Prayogo et al., 2018: Celik & Durgut, 2017; 2018).

The first step performed by the SOS algorithm is the initialization of the specific population in an ecosystem.
Following this is a process by which the algorithm evaluates organisms’ locations by computing the particular
objectives’, such that the organisms with the best solution is elected as ‘Xpeg’. This action takes place in
iterations. finding the global best solution by updating to the most recently available solution until the solution
is found. For this instance, three fundamentals of symbiosis, mutualism, commensalism, and parasitism inspired
the principle rules used by the algorithm. These rules were used to update the positions of new organisms. Once
the algorithm reaches the maxilﬂm number of function evaluations, termination of the loops is implemented.
Below is an explanation of how mutualism, commensalism, and parasitism come into play in the MH.

1 Mutualism phase

This phase involves an association by which both parties positively benefit. In the relationship between a flower
and a pollinator, the pollinator benefits from the food it can take from the flower, while the flower can turn into
fruit from its contact with the pollinator. Due to this twofold positive benefit, the relationship can be deemed as

a mutually beneficial symbiosis.

For mutualism phase. organism °i’ is assigned as a solution (Y;) to interact with the secondary solution chosen
via randomized selection (X3) (in this instance. k # 1). This symbiotic relationship positively impacts both
solutions. The BFs and a mutual vector (M7} dictate new solutions. BF; and BF; are determined via randomized
selection between 1 or 2 (see Egs. 4 and 5). Because of this, either BF demonstrates an example of a solution
experiencing positive benefits somewhat or entirely through symbiosis. The best solution (Xi..) 1s an additional
variable which solutions can be impacted by: it is selected through a random search from the Pareto set of non-
dominated sorting. Meanwhile, a greedy selection is utilized in order to determine the fitter solutions. The

following is the mathematical formulation behind the mutualism phase.

X] =X; +rand(0,1) * (Xpesy — MV * BF;) (1)
Xi = Xi + rand(0,1) * (Xpp5¢ — MV = BF,) (2)
My =Tk (3)
BF, = round[rand(0,1)] + 1 (4)
BF; = round[rand(0,1)] + 1 (5)

where, i,k € (1,2,...,n); i # k

2.2 Commensalism phase




Commensalism involves a single organism receiving benefit from a symbiotic relationship while another is
completely unaffected positively or negatively. One example of this includes the shark and remora fish, in which
the fish suctions under the shark and gains access to the nutrients the shark does not eat. Meanwhile, the shark
is not impacted by the exchange in any way. Commensalism is mimicked by the algorithm based on this

fundamental.

For the commensalism phase, two solutions interact with one another (X;and Xi) (in this instance, & # 7). While
solution ‘7’ 1s positively benefited from the other solution, solution *k” experiences no impact. The best solution
(Xpesr) 18 an additional variable which solutions can be impacted by; it is selected through a random search from
the Pareto set of non-dominated sorting. Meanwhile, the greedy selection is utilized in order to determine the

fitter solutions. The following is the mathematical formulation behind the commensalism phase.
Xi = Xi +rand(=1,1) * (Xpest — Xi) (6)

where, i,k € (1,2,...,n); i # k

2.3 Parasitism phase

This parasitism phase requires one organism to be negatively affected to the benefit of a second organism.
Humans and mosquitoes demonstrate this symbiotic relationship, in which the mosquito’s bite releases a
parasite into the human. Growing inside the body, the parasite can cause harm or kill the host if the situation
becomes severe enough. One can identify the parasitic nature of this relationship in the fact that an organism is
helped while the second 1s hurt.

The solution X} takes queues from the Anopheles mosquito, constructing Parasite Vector (PV) which mimics
the behaviors of the parasite. The formation of PV requires regeneration of parts of the solution *#* which are
chosen via partially randomized selection using specific boundaries (LB and UB) as shown in Eq. 7. Meanwhile,
Xy is derived from a solution chosen via randomized selection (note that & # i) and serves as the host of the
parasite. Should the fitness value of solution “&” be surpassed by PV, the host will die, and the PV will take its

place.

PV = [ X!f" if rand(0,1) < rand(0,1) @

LB + rand(0,1) « (UB — LB) Otherwise
where, j € (1,2,..,m); k € (1,2, ...,n);/ signifies design variables.
3. Modifications in Multi-Objective Symbiotic Organisms Search (MOSOS)

Performance of MHs largely depends on the stability in the exploratierﬁ the exploitation. The exploration
characterizes the global search capacity of the MHs and decides the accuracy of obtained solutions. The
exploitation characterizes the local search capacity of the MHs and plays a significant part in the rapid

convergence. As discussed earlier, the application of an adaptive controlling mechanism on the various MHs




set a stability between the global search and a local search. Thus, adaptive BFs are proposed in the mutualism

phase of MOSOS. Also, the parasitism phase of MOSOS is upgraded leading to a modified parasitism phase to
address the 1ssue regarding population diversity. The detailed discussion of the proposed improvements on the

MOSOS algorithm is presented in the subsequent sections.
3.1 Multi-Objective Adaptive Symbiotic Organisms Search (MOASOS)

In the mutualism phase of MOSOS, the two organisms of different species result from interactive learners into
personal benefit of the symbiotic collaboration. Thus, the BFs (BF, and BF2) are main components which
defines the effect of MV. BFs aze definite by a heuristically. and their values are one or two. This step outcomes
in the state where populations/organisms X; and ‘X; benefit partly or completely from MV. Therefore. in the
mutualism phase the populations progress only with two possibilities. However, in the original mutualism, BF
should not be at end positions only, but it can be in-between these limits also. Given this fact, Tejani ef al.
(2018c) upgraded this phase to adaptive mutualism phase by incorporating adaptive benefit factors (ABF; and
ABF:) to advance search capacity of the MHs, defined by the following equations:

fa(Xi)/fa(Xbest)- [f fa(Xbest) # 0

1 + round[rand(0,1)), if fo(Xpese) =0 ®)

ABF, = [

2,if ABF, > 2 ©

1,if ABF, < 1
BF, = [
ABEF,, otherwise

where,a=1& 2

The design variables (X;) may get small and largeﬂsplacement from their positions as various factors govern
it during mutualism phase. These displacements of the design variables influence the exploration and the
exploration. Hence, smaller value of BF lets the fine/local search in tiny moves but then results in faster
convergence and bigger value of BF lets global search but then results in slower convergence. The ‘ABF,” and
‘ABF>’ affects the exploration capability of the optimizer when a solution (XX;’ or ‘X}’) i1s away from the best
solution ( Xpes ). The adaptive mutualism phase sets good exploitation when a solution is the neighbor of the
resulting solution. Multi-objective adaptive SOS (MOASOS) purposes to efficiently incorporate the local and

global search characteristic by using an adaptive mutualism phase.

3.2 Multi-Objective Modified Adaptive Symbiotic Organisms Search (MOMASOS)

Furthermore, a parasitism phase is upgraded to a modified parasitism phase which leads MOASOS (Tejani er
al., 2018¢) to a new algorithm called multi-objective modified adaptive symbiotic organisms search
(MOMASOS). Theparasitism phase of MOSOS performances a significant role in upgrading the exploration
ability of MOSOS. However, it is also observed that over exploration resultan higher computational cost as a

majority of the new solutions generated by the parasitism phase gets rejected due to inferior objective functional




values compared to previous one (Do & Lee, 2017). Therefore, parasitism phase is improved with a modified

parasitism phase of MOSOS.

In the original parasitism phase, a parasitism vector (PV), X/, is generated by mutating/altering values of few
heuristically chosen design variables of the population X;’, the Anopheles mosquito. Thus, the PV is a blend of
%X;” and random values within its bounds. The graphical representation of the parasitism phase is presented in
Fig. 1. Let, 2X;” is the current solution with two design variables (x;, y;) as shown in Fig. 1(a). Therefore, the
updated solution (X;) or PV can either get a position within dotted lines (if single variable changes) as shown
in Fig. 1(c—d) or it holds its position (see Fig. 1(b)) or it may move any random point within its bounds (if both
variables change) with an equal probability. Hence, the original parasitism phase offers too explorative search

which generates a large number of inferior solutions and consumes higher unnecessary computational cost,

In the modified parasitism phase, a modified parasitism vector (MPV), X/, is generated by migrating values of
few heuristically chosen design variables of the population, X}, to the heuristically selected solution X}’ (where
k # i, selected randomly from non-dominated archive), or the Anopheles mosquito, to the current solution X;’,
a human host. Thus, MPV is a blend of design variables “X;” and randomly selected solution ‘X}". The graphical
representation of the modified parasitism phase is presented in Fig. 2. As discussed earlier randomly selected
design variables of the solution (X) miﬁtes to a current solution (X;). Let, X;"1s the current solution and X}’
is randomly selected solution with two design variables (xi. y1) and (X2, y2). Thus, the updated solution (X}) or
MPV can acquire a corner position of a dotted rectangle as shown in Fig. 2(b—e) with equal probability. Thus,
this modification advances the exploration of search and also provides better the exploitation which offers a
large number of acceptable solutions, and it also reduces computational cost. The following is the mathematical

formulation of MPV behind the parasitism phase.

ng if rand(0,1) < rand(0,1)

MPV,X{ =
‘ A otherwise

(10)

where, i,k € (1,2,..,n); j€ (1,2,...,m); i # k

Solutions are growing to a better form only if newer fitness is better than the previous one. Thus, the current
solutions “X;" and X;" are to be changed directly by the newer solutions ‘Xj ' and ‘X]’, respectively. Else. the
X{ " and "X;’ will be incorporated to the advanced solution for choosing the next iteration ecosystem. Thus,
these MIs are able to converge better by keeping good diversity among solutions. Since MIs may advance few

significant data from dominated solutions in future update.

The original version of MOSOS exploited the elitism strategy in combination with the crowd
comparison for selection of the next generation population. This numerical strategy was successfully employed

in NSGAII and some other MOEAs. The method works by using the dominance level of solutions being




selectedéi\-'en a set of design solutions, non-dominated solutions are those who have dominance level being

1. If the non-dominated solutions are removed from the set, solutions having dominance level as 2 will be non-
dominated solutions and so on. The idea is to choose solutions with lowest dominance levels for the next
generation population. In cases that the number of solutions with lowest dominance levels exceeds the
predefined population size, some of the solutions with the highest dominance level in the set who have lower
cuboids are removed from the set. In this&sion of MOMASOS, a similar strategy 1s used but the normal line
technique [Bureerat, Sujin, and Sungkom Srisomporn. "Optimum plate-fin heat sinks by using a multi-objective
evolutionary algorithm." Engineering Optimization 42.4 (2010): 305-323.] is used instead of the crowd
comparison when some solutions are to be removed. The normal line method was originally proposed as an
archiving technique for multiobjective population-based incremental learning (MPBIL). The method is
illustrated in Fig. 3 where there are 5 solutions (circle markers) having dominance level as 1. 4 solutions
(diamond markers) having dominance level as 2, and 10 solutions (square markers) having dominance level as
3. If the predefined population size is 15, it means the optimizer will keep all solutions with dominance levels
1 and 2 while, for the dominance level as 3, 4 solutions will be deleted from the population. The normal line
method works, in cases of two objective functions, by identifying the anchor points who currently give the
minimum values for f; and f;. Then, the so-called Utopia line is drawn connecting the two anchoggThe normal
lines are those who are perpendicular to the Utopia line and equally placed along the line. The number of the
normal lines 15 equal to the number of solutions require from those with the dominance level being 3, which for
this example is 6 lines. The 6 selected solutions whose dominance level is 3 are those who are the closet solutions
to their corresponding lines. In Fig. 3. the 6 selected solutions are inside the dashed circles.

The proposed MHs simulates initialization, mutualism phase (or adaptive mutualism phase).

commensalism phase, parasitism phase (or ﬁodified parasitism phase), and stopping criteria. The combined

flowchart of the proposed MHs is presented in Fig. 4.

4. Problem definition

A multi-objective truss design problem is defined to find discrete elemental cross-sections (design variables) to
minimize truss mass and maximize deflection of nodes subject to elemental stress constraints. The truss

optimum design problem is stated as:

Find, A= {Ay, Az ... Ap) (11)

to minimize mass and maximize nodal deflection of truss

() = )" Aipi Ly and £,(4) = max([8])
i=1




Subject to:

Behavior constraints:

g(A): Stress constraints, lo;| — "™ <0
Side constraints:

Discrete cross — sectional areas, AT < A; < A
42
where,i = 1,2,...m; j=12,..,n
Where, A; p; L;, E;, and o; represent design variables (elements’ cross-sections), density, elemental length,
voung’s modules, and elemental stress of the ‘i-th’ the element respectively. *§;” is a deflection of the j-i#’

node. The superseripts ‘max” and ‘min’ stands for upper and lower allowable bounds respectively.
4.1 Dynamic Penalty function

Considering both objective functions differently and it is to minimize objectives subject to “p’ limitations, the
dynamic penalty function is stated as:
OO (1 x O, = 24 G C= 1 - (12)

i
Where, g; signifies constraint violation with respect to the limit q; . The parameter p signifies a count of live
constraints. The variables “£,” and “&,” are can be assumed by considering the problem characteristics. In this

investigation, both ‘&, and ‘&, are assumed as 3, as per investigation of their effect on exploitation and
exploration equilibrium (Tejani et al,, 2016a; 2017; 2018a; 2018b).

5. Truss design problems and discussions

Five truss problems from Angelo ef al. (2012; 2015) and Tejani ef al. (2018¢) are considered to test the
effectiveness of the proposed MHs. For fair comparison, the similar parameters (Angelo et al,, 2015; Tejani et
al., 2018c¢) are followed in this study. Thus, all the problems were perfonne(h\-'ith the population (organism)
size of 100 and 50000 functional evaluations. The proposed MITs are tested for 100 discrete runs. The front-
hypervolume (HV) & front spacing-to-extent ﬁ' E) tests are considered for the assessment. The mean value of
the HV of each MH 1s chosen to quantify the convergence rate of the MH and the standard deviation (STD) of
HV 1s considered to quantify the search reliability. Also, a front spacing (S) measure (Schott, 1995) is considered
to test comparative distance between successive populations in the non-dominated set. The spacing of the front

can be calculated as:

Spacing = \Pl;—lzlizll(d‘l -a)° 13)

where |P|is count of associates. d; is the Euclidian distance of objective *i” to its adjacent solution. d is the mean

result of d;’




The front extension is considered as:
Extent = 3, |f™* — fmin| (14)

The smaller value of Spacing shows the superior Pareto front while, in contrast to the higher values of Extent is
the superior. The simﬁl«mcous consideration of spacing and extent excels a new evaluation metric which

simultaneously exams spacing and extent together, which is presented as the ratio of spacing to the extent,

STE = Spacing/Extent (15)

where the smaller value of STE shows the superior non-dominated front.

In addition, Friedman’s rank test, a statistical mea%‘e, is employed to rank the MHs based on the solutions

found by the various optimizers. The five structural problems are addressed in the following units.
5.1 A 10-bar truss

Fig. 5 presents the 10-bar truss which is a simplest and widely used truss problem compare to others. The truss
properties and constraints are presented in Table 1. Fig. 5 also presents the length of each element, loading
conditions, and support conditions of this truss. The discrete design variables (i.e. elemental cross-sectional
areas) are assumed from forty-two discrete sections as 1.62, 1.8, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09,
3.13,3.38,3.47,3.55,3.63,3.84, 3.87,3.88,4.18,4.22, 449,459, 48,497, 512,574,7.22,797.11.5,13.5,
13.9, 14.2, 15.5, 16, 16.9, 18.8, 19.9, 22, 22.9, 26.5, 30, and 33.5 in® as per the previous studies (Angelo et al.,
2012; 2015; Tejam et al., 2018¢).

Table 2 presentﬁhe HV values for 100 optimization runs of this truss. The best, mean, and STD values of HV
are considered to measure the effectiveness of the considered MHs statistically. The best mean solutions
obtained by MOAS, MOACS, MOSOS, MOASOS, and MOMASOS are 50902.21, 53639.77, 56055.02,
56220.00, and 56389.83 respectively. Also, the STD obtained using MOAS. MOACS, MOSOS, MOASOS, and
MOMASOS are 1294.12, 307.79, 191.00, 195.67, and 166.10 respectively. It is found from the results that
MOMASOS performs the best followed by MOASOS and MOSOS as per the measure of search consistency.
The Friedman’s rank test is used to compare different MHs based on the ranks. According to the Friedman’s
rank test at 95% significant level, MOMASOS performs the best among the implemented MHs followed by
MOASOS and MOSOS. Also, the results show that both versions of MOSOS are better than its basic version
and previous studies. The results from the Friedman’s rank test also indicates the significant difference among
the considered MHs.

The front STE metric is considered, and the solutions are shown in Table 3. According to the Friedman’s rank
at 95 % significant level, MOAS beats other MHs followed by MOMASOS and MOASOS, and similar results
expressed as per mean of front STE. Also, MOMASOS and MOASOS perform superior than MOSOS.

Fig. 6 illustrates the best Pareto fronts of the considered MHs. It should be noted that best Pareto fronts obtained
using MOAS and MOACS are discontinuous. On the contrary, Pareto fronts obtained using the proposed MHs




are continuous, smooth, and have a wide range of diverse results, and the results are well distributed. Overall,
these tests validate that MOMASOS 1s better performer followed by MOASOS and considered improvements
upgrade the efticiency of MOSOS.

5.2 A 25-bar space truss

The 25-bar truss is illustrated in Fig, 7. The truss properties and constraints are presented in Table 1. Loading
1s assumed as Py = 1KIb, Py, = P,y = Pyy = P,y = —10KIb,Py3 = 0.5KIb, P,s = 0.6 KIb. Twenty-
five elements are clubbed into eight groups as per symmetry ghout x—z and y-z planes (Angelo ef al., 2012;
2015; Tejani ef al., 2018c). The discrete design variables (i.e. elemental cross-sections) are taken from thirty
discrete sections as .1,.2,.3, 4,5, 6,.7, 8,9 1,1.1,1.2,13,14,15,16,17,18,19,2,21,22,23,24,

2.5,2.6,28,3,3.2,and 3.4 in®.
Table 4 compares the HV values for 100 independent nptiﬂ'zalion runs found from this work. The best, mean,

and STD values of HV are given and will be considered to measure the performance of the considered MHs
statistically. The best mean results reported by MOAS, MOACS, MOSOS, MOASOS, and MOMASOS are
1878.74, 1890.61, 1939.42, 1939.84, and 1945.61 respectively. Also, the STD obtained using MOAS, MOACS,
MOSOS, MOASOS, and MOMASOS are 9.77, 14.39, 0.54, 0.51, and 0.45 respectively. It is found from the
results that MOMASOS gives the finest convergence and consistency followed by MOASOS. Based on the
Friedman’s rank test at 95% significant measure, MOMASOS & MOASOS are the best & second-best players.
Here also results show that both the versions of MOSOS are better than its basic version and previously used
algorithms such as MOAS and MOACS; and MOMASOS variant is better than all the implemented MITs. The

results from the Friedman’s rank test also indicates the significant difference among the considered algorithms.

e front STE is tested for the truss and the findings are presentedgn Table 5. According to the Friedman’s rank
at 95% significant level, MOMASOS, MOSOS, and MOASOS rank first, second, and third respectively and

mean of front STE values obtain similar results. Also, MOMASOS outperforms its basic version.

Fig. 8 presents the best Pareto fronts of the considered MHs. It should be noted that best Pareto fronts obtained
using MOAS and MOACS are slightly discontinuous. On the contrary, Pareto fronts obtained using the
proposed MHs are continuous, smooth, and have a wide range of diverse results, and the results are well
distributed. Overall, these tests validate that MOMASOS is a fairly superior performer compare to others like
the10-bar truss and these improvements elevate the efficacy of MOSOS.

5.3 A 60-bar ring truss
The 60-bar ring truss is illustrated in Fig. 9. The mechanical properties and limits are presented in Table 1. Sixty

elements are grouped into twenty-five in view of symmetry similar to previous studies (Angelo ef al., 2012;
2015; Tejani e al., 2018c). Multiple loading is assumed as load case 1: P,y = —10 Kib and P,; = 9 Klb, load
case 2: Pyy5 = Pyyg = —8KIb and Pyy5 = Pyyg = 3KIb, and load case 3: Py, = —20 Klb and Py;, =




10 Klb. The discrete design variables (i.e. elemental cross-sections) are chosen from forty-five discrete sections

as[.3,.6.7,...4.9]in®.

Table 6 pregents the HV obtained for the truss. The best, mean, and STD values of HV are specified and will be
considered to measure the performance of the considered MHs statistically. The best mean results reported by
MOAS, MOACS, MOSOS, MOASOS, and MOMASOS are 3179.88, 3106.68, 4293.25, 4297.03, and 4311.69
respectively. Also, the STD obtained using MOAS, MOACS, MOSOS, MOASOS, and MOMASOS are 166.65,
74.18, 5.92, 2.81, and 2.30 respectively. This is observed from the assessment that the best convergence and
search consistency are obtained for MOMASOS while the second-best is MOASOS. The Friedman’s rank test
1s used to compare different algorithms based on the ranks. According to the Friedman’s rank test at 95%
significant level, MOMASOS performs the best among the considered MHs followed by MOASOS and
MOSOS. Moreover, the results show that both the versions of MOSOS are better than its basic version and
previous studies such as MOAS and MOACS. MOMASOS still obtains the maximum HV for this truss. The
results Frie%’m’s rank test also indicates the significant difference among the considered algorithms. The
conclusion based on the Friedman's rank test is that MOMASOS and MOASOS are again the top two

performers.

The front STE is considered for the truss and the findings are illustrated in Table 7. According to the Friedman’s
rank test at 95% significant level, MOMASOS beats other MHs followed by MOSOS and MOASOS and similar
outcomes are obtained as per mean of front STE. Also, MOMASOS performs the better compared to its basic

version.
1o. 10 shows the best Pareto fronts for all the proposed MHs. It is observed that the best Pareto fronts obtained

using MOAS and MOACS are discontinuous and the results are distributed in a small region. On the contrary,
Pareto fronts obtained using the proposed MHs are continuous, stable. and have a wide range of diverse results,
and the results are well distributed. Overall, it is determined that MOMASOS is slightly better performer

compare to the other MHs and considered improvements upsurges efficacy of MOSOS.

5.4 A 72-bar space truss

ale 72-bar truss is illustrated in Fig. 11. The truss properties and constraints are presented in Table 1. Multiple
loading is supposed as load case 1: Fy, = F;,, =5 kips and F;;, = =5 kips and load case 2: Fy, = F,; =
F;, = F,; = —5 kips. Seventy-two elements are grouped into sixteen in view of symmetry similar to previous
studies (Angelo et al., 2012; 2013; Tejani et al., 2018¢). The discrete design variables (i.e. elemental cross-

sectional areas) are assumed from twenty-five discrete sections as [.1, .2, .3,..., 2.5] in®.

Table 8 shows the HV Elucs obtained from this work. The best, mean, and STD values of HV are specified
and will be considered to measure the effectiveness of the various MHs statistically. The best mean results
reported by MOAS, MOACS, MOSOS, MOASOS, and MOMASOS are 2094.40, 2097.08, 2223 .81, 2227.73,
and 2233.05 respectively. Also, the STD obtained using MOAS, MOACS, MOSOS, MOASOS, and




MOMASOS are 10,01, 18.78, 1.81, 1.38, and 1.05 respectively. It is found from the results that MOMASOS
performs the best followed by MOASOS and MOSOS as per the measure of search consistency. The Friedman’s
rank test 1s used to compare different MHs based on the ranks. According to the Friedman’s rank test at 95%
significant level, MOMASOS performs the best among the considered MHs followed by MOASOS and
MOSOS. Also, the results show that both the versions of MOSOS are better than its basic version and the
previously used MHs such as MOAS, and MOACS; and MOMASOS variant 1s better than all the considered
MHs. The results obtained from using the Friedman’s rank test also indicates the significant difference among

the considered MHs.

The front STE ig.considered for the truss and the findings are shown in Table 9. It is noticed as per the
Friedman’s rank at 95% significant level. the MOMASOS, MOASOS. and MOSOS are top three performer in
this order and mean values of front STE also obtain similar results. Also, the MOMASOS and MOASOS

perform superior compare to MOSOS.

Fig. 12 shows the best Pareto fronts obtained all MHs. It is observed that the best Pareto fronts obtained using
MOAS and MOACS are discontinuous and the results are distributed in a small region. On the contrary, Pareto
fronts obtained using the proposed MHs are continuous, stable, and have a wide range of diverse results, and
the results are well distributed. Overall. it is noticed that MOMASOS is slightly better performer compare to

the other MHs and considered improvements upsurges efficacy of MOSOS,
5.5 A 942-bar tower truss

The 42-bar truss is illustrated m& 13. The mechanical properties and limits are presented in Table 1. Vertical
loading dong 7~axis is -3, -6, and -9 kips at each node in the 1¥, 2", and 3“ sections, respectively; lateral
loading ﬁong X-axis 1s 1.5 and 1.0 kips at each node on the right and left sides of the towew-uss; and Lateral
loading along Y—axis is 1 kips at each node, respectively. The discrete design variables (i.e. cross-sections) are
selected from two-hundred discrete sections as [1, 2, 3...., 200] in”. The bars are clustered into fifty -nine clusters

to see structural similarity (Angelo ef @l., 2012: 2015; Tejani et al., 2018c).

Table 10 presents tlﬁHV values calculated for the truss. The best, mean, and STD values of HV are shown and
will be considered to measure the effectiveness of the considered MHs. The best mean results obtained by
MOAS, MOACS. MOSOS, MOASOS. and MOMASOS are 51655929.40, 52288426.39, 62031040.601,
6254045251, and 80006236.39 respectively. Also, STD obtained using MOAS, MOACS, MOSOS, MOASOS,
and MOMASOS are 3380287.34, 939066.55, 575341.58, 655217.19, and 7903607.97 respectively. It 1s found
from the results that MOMASOS performs the best followed by MOASOS and MOSOS as per the measure of
search consistency. In this large-scale problem case, it is shown that, with the use of the normal line method,
MOMASOS is considerably superior to those using the crowd comparison as with NSGAII The Friedman’s
rank test is used to compare different MHs based on the ranks. According to the Friedman’s rank test at 95%
significant level, MOMASOS performs the best among the considered MHs followed by MOASOS and
MOSOS. Here also results demonstrate that both the versions of MOSOS are better than its basic version and




previous studies such as MOAS, and MOACS; and MOMASOS variant is better optimizer compare to other
MHs. The results obtained from the Friedman’s rank test also indicates the significant difference among the
considered MHs.

The front STE are tested for the truss and the findings are presented in Table 11. According to the Friedman’s
rank at 95% significant level, MOMASOS, MOSOS, and MOASOS al‘eﬂ)p three performer in this order and
mean values of front STE also obtain similar results. Also, MOMASOS performs better compared to its basic

version.
1. 14 shows the best Pareto fronts found for considered MHs. It 1s observed that the best Pareto fronts obtained

using MOAS and MOACS are discontinuous and the results are distributed in a small region. On the contrary.
Pareto fronts obtained using the proposed MOMASOS, MOASOS, and MOSOS are continuous, stable, and
have a wide range of diverse results, and the results are well distributed. The Pareto fronts found using the
proposed MHs are superior compare to MOAS and MOACS. Fig. 15 presents the convergence hiﬁ)-‘ of the
truss using MOSOS and MOMASOS. The higher hypervolume value the better the Pareto front. It has been
found that MOMASOS has very good convergence rate compared to MOSOS and thus owns better convergence

characteristics for the truss problems.

Overall, it can be observed that MOMASOS performs superior than the other considered MHs and proposed

improvements lead to better efficacy of MOSOS.
6. Engineering benchmark problems

In this section, four well-known engineering design optimization problems (Mirjalili et al., 2017) are employed
to validate the efficiency of MOMASOS. The first design problem is speed reducer design to minimize weight
and stress of the speed reducer subjat to eleven behavior constraints and seven side constraints. The second
design problem is disk brake design to minimize stopping time and mass of the brake subject to fiyg behavior
constraints and four side constraints. The third design problem is welded beam design to minimizcgbrication
cost and deflection of the beam subject to four behavior constraints and four side constraints. And the last design
problem is cantilever beam design to minimize weight and end deflection of a cantilever beam subject to two
behavior constraints and two side constraints. The details of the considered problems can be studies from Ray
& Liew, 2002 and Deb et al., 2015. For fair comparison, the similar parameters (Mirjalili ef al., 2017) and
constrained handling techniques are followed in this study. Thus, all the problems were performed with the
population size of 100, functional evaluations size of 10000, and an archive size of 100. The proposed
algorithms are tested for 30 independent runs. The Generational Distance (GD) (Veldhuizen & Lamont, 2000),
Maximum Spread (MS), and metric of spacing (S) (shown in Eq. 13; Schott, 1995), Inverted Generational
Distance (IGD) (Sierra & Coello, 2005), and Hypervolume. Smaller values of these measure show the superior

Pareto front except for hypervolume.




' I (a2
GD =*— (16)

G
where *|P|” 1s count of obtained Pareto optimal solutions and d; is the Euclidean distance between the i-th Pareto

optimal solution and the adjacent neighbor true Pareto optimal solution.

MS = JZ{=1 max(d(a;, b;)) 17

where fis count of objective functions, and & counts the Euclidean distance, a; and b; are the highest and lowest

values of 1-th objective function respectively

CH)
IGD = - (18)
where °|P'|” is the true Pareto optimal solutions and d; is the Euclidean distance between the i-th true Pareto

optimal obtained solution a%thc adjacent neighbor true Pareto optimal solution. The engineering design

problems (i.e. speed reducer design, disk brake design, welded beam design, and cantilever beam design) used

in this study are stated Ray & Liew, 2002 and Deb ef al., 2015.

Tables 12—15 compare results obtained for the considered engineerjag design problems using multiple objective
particle swarm optimization (MOPSQ) (Coello & Lechuga, 2002), NSGA-II (Deb et al. 2002), Multi-Objective
Ant Lion Optimizer (MOALO) (Mirjalili ef «l., 2017), MOSOS, and MOMASOS with the various measures
such as GD, MS, S, IGD, and hypervolume obtained. As per the results shown in result tables, it can be
concluded that MOMASOS gives the best results compare to the true Pareto front and the minimum values of

D, MS, S, and IGD. Also. the hypervolume of MOMASOS seems better compare to MOSOS.
The best Pareto optimal fronts obtained by MOSOS and MOMASOS for speed reducer design problem is ghown

in Fig. 16. It is noted that Pareto optimal front obtained using MOMASOS is uniformly distributed and near to

true Pareto front compare to MOSOS.

The best Pﬁo optimal fronts attained by MOSOS and MOMASOS for disk brake design problem is shown in

Fig. 17. It can be observed that Pareto optiw front obtained using MOMASOS is widely spread compare to
MOSOS and also have majority part on the true Pareto front.

The best Pareto optimal fronts obtained by MOSOS and MOMASOS for disk brake design problem is shown
in Fig. 18. It is noted that Pareto optimal fﬁt obtained using MOMASOS is broadly distributed compare to
MOSOS and also have majority part on the true Pareto front.

The best Pareto optimal fronts obtained by MOSOS and MOMASOS for cantilever beam design problem is

shown in Fig. 19. It is noted that that both Pareto optimal fronts are nearly identical and on the true Pareto front.




Overall, ilﬂl be observed that MOMASOS performs superior than the methods that available in the previous

literature. It can be seen from the results that the proposed improvements lead to better efficacy of MOSOS.

7. Conclusions

A modified version of MOSOS is proposed in this paper. The new algorithm is modified in such a way to
improve both the exploration and exploitation of MOSOS in reproducing design solutions for multi-objective
optimization. The comparative performance studies, based on the hypervolume and spacing-to-extent indicators,
reveal that the proposed MOMASOS outperforms its original MOSOS and other multi-objective meta-heuristics
implemented in multi-objective truss optimization and engineering design optimization problems. The proposed

adaptive mutualism and modified parasitism phases significantly improve the performance of MOSOS.

Ouwr future work is to extend the proposed MOMASOS for solving reliability optimization of trusses. Once
uncertainties or random variables are taken into consideration, the truss design problem is considered robust or
reliability optimization which is more complex than deterministic optimization. The powerful MOMASOS

should positively respond to these difficulties.
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Tables

Table 1. Design considerations of the truss problems.
The 10-bar truss | The 25-bar truss | The 60-bar truss | The 72-bar truss I 042-B
_ truss
Design | ypimqn 10| A0=12..8 | Ai=12..25|4i=12..16 | 4i=12,..,59
variables 0 ' ' ' '
Constraints | g™ = 25 ksi " = 40 ksi o™ =40ksi | o™ =25ksi 6" = 25 ksi
Density p=0.1Ib/in? p=0.1Ib/in® p=0.11b/in? p=0.1Ib/in? p = 0.1 Ib/in?
Youilg E = 10" ksi E = 10* ksi E = 10" ksi E = 10 ksi E = 10" ksi
modules

Table 2. The hypervolume values of results obtained for the 10-bar truss.

Algorithms Min Max Mean STD Friedman test Friedman rank
MOAS 47788.21 53593.85 51387.36 1298 42 100 5
MOACS 5314141 54907.13 54138.00 31322 200 4
MOSOS 56160.60 57062.71 56576.20 192.71 324 3
MOASOS 56043.53 57169.98 56742.16 197.63 376 2
MOMASOS 57043.55 57637.28 57408.01 165.51 500 1

Table 3. The front Spacing-to-Extent values of results obtained for the 10-bar truss.

Algorithms Min Max Mean STD Friedman test Friedman rank
OAS 0.005387 0.024711 0.010590 | 0.003781 230 1
MOACS 0.007219 0.029625 0.014219 0.004558 382 )
MOSOS 0.007835 0.035081 0.011886 0.003791 315 +
MOASOS 0.007705 0.021266 0.011380 0.002189 304 3
MOMASOS 0.009085 0.012989 0.010773 0.000887 269 2
Table 4. The hypervolume values of results obtained for the 25-bar truss.
Algorithms Min Max Mean STD Friedman test Friedman rank
MOAS 1848.04 1902.35 1878.74 9.77 123 5
MOACS 1850.64 1918.92 1890.61 14.39 177 4
MOSOS 1937.75 1940.43 1939 42 0.54 320 3
MOASOS 1938.75 1940.75 1939 .84 0.51 371 2
MOMASOS 1941.92 1944.74 1943 20 0.55 500 1




Table 5. The front Spacing-to-Extent values of results obtained for the 25-bar truss.

Algorithms Min Max Mean STD Friedman test Friedman rank
MOAS 0.007937 | 0.058983 | 0.022595 | 0.008424 445 5
MOACS 0.005254 0.044937 0.017026 0.008361 354 4
MOSOS 0.011763 0.013790 0.013255 0.000364 294 2
MOASOS 0.012350 0.014755 0.013326 0.000332 300 3
MOMASOS 0.005299 0.007480 0.006607 0.000423 101 1

Table 6. The hypervolume values of results obtained for the 60-bar truss.

Algorithms Min Max Mean STD Friedman test Friedman rank
MOAS 2465.08 3397.56 3179.88 166.65 173 4
MOACS 2905.27 3276.04 3106.68 74.18 127 5
MOSOS 4271.94 4304.66 4293.25 5.92 327 3
MOASOS 4290.28 4302.54 4297.03 2.81 373 2
MOMASOS 4303.67 4316.33 4311.69 2.30 500 1

Table 7. The front Spacing-to-Extent values of results obtained for the 60-bar truss.

Algorithms Min Max Mean STD Friedman test Friedman rank
MOAS 0.009977 0.133920 0.034915 0.019500 451 5
MOACS 0.007890 | 0.074504 | 0.029912 | 0.013732 436 4
MOSOS 0.010137 | 0.012876 | 0.012025 | 0.000522 248 2
MOASOS 0.010783 | 0.012879 | 0.012147 | 0.000419 265 3
MOMASOS 0.005460 | 0.007324 | 0.006247 | 0.000400 100 1

1
Table 8. The hypervolume values of results obtained for the 72-bar truss.

gorithms Min Max Mean | STD Friedman test Friedman rank
MOAS 2066.98 | 2116.65 | 2094.40 | 10.01 142 5
MOACS 2039.80 | 2129.58 | 2097.08 | 18.78 158 4
MOSOS 222029 | 2227.53 | 222381 | 1.81 303 3
MOASOS 222328 | 2231.00 | 2227.73 | 1.38 397 2

MOMASOS 2231.81 | 223581 | 223428 | 0.71 500 1




Table 9. The front Spacing-to-Extent values of results obtained for the 72-bar truss.

Algorithms Min Max Mean STD Friedman test Friedman rank
MOAS 0.010919 0.043568 0.022728 0.007183 422 4
MOACS 0.007918 0.076088 0.026837 0.013808 429 5
MOSOS 0.013350 0.015643 0.014393 0.000435 289 3
MOASOS 0.013026 0.015822 0.014224 0.000481 260 2
MOMASOS 0.005676 0.007868 0.006722 0.000443 100 1
Table 10. The hypervolume values of results obtained for the 942-bar truss.
Algorithms Min Max Mean STD Frif;i;‘lan Fﬁ;ir::an
MOAS 4455432005 | 56229920.59 [ 51063321.77 | 3290239.61 150 4
MOACS 48625640.83 | 53820107.68 | 51746210.89 | 917839.09 150 4
MOSOS 59918096.56 | 62724423.49 | 61381464.83 | 559443.13 330 3
MOASOS 60002639.33 | 63003102.92 | 61877182.75 | 637831.51 371 2
MOMASOS | 6234170721 | 64240061.15 | 6333020299 | 47205598 499 1
Table 11. The front Spacing-to-Extent values of results obtained for the 942-bar truss.
Algorithms Min Max Mean STD Frl(ta;l;?an Frg;‘lmkan
MOAS 0.014273 0.120749 0.042659 0.020981 469 )
MOACS 0.010403 0.079907 0.029013 0.014678 401 4
MOSOS 0.012192 0.016924 0.014856 0.000761 257 2
MOASOS 0.013294 0.016218 0.015050 0.000637 273 3
MOMASOS 0.003918 0.007713 0.004825 0.000515 100 1

Table 12. The results obtained for the speed reducer design optimization problem (the previous

results are adopted from Mirjalili ef al., 2017).

GD MS S IGD Hypervolume
B ean STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD
MOPSO | 0.9883 | 0.1789 | — — | 1988 | 26960 | — — — —
NSGA-II | 98437 | 70810 | — 27654 35340 | — — ==
MOALO | 11767 | 0.2327 | 0.8390 | 0.1267 | 1.7706 | 27690 | 08672 | 0.1490 | — | —
MOSOS | 16794 | 0.1358 | 04977 | 0.0082 | 39 | 42002 | 00005 | P03 | 18648 | 19141
MONAS | 08601 | 01192 | 04993 | 00112 | 14357 | 10800 | 00003 | 309 | 18332 1 18637




Table 13. The results obtained for the disk brake design optimization problem (the previous

results are adopted from Mirjalili ef al., 2017).

= GD MS S IGD Hypervolume
- 2

A'if:‘h Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD
MOPSO | 0.0244 | 0.1231 | 04604 | 0.1096 | — = = — = -
NSGA-II | 3.0771 | 0.1078 | 0.7972 | 0.0661 | — = = — = -
MOALO | 0.0011 | 0.0025 | 0.4496 | 0.0543 | 0.0421 | 0.0058 | 0.0194 | 0.0008 | — -
MOSOS | 0.0055 | 0.0005 | 0.5649 | 0.0066 | 0.1687 | 0.0121 | 0.0006 | 0.0001 | 575 | 0.04
M%N;AS 0.0028 | 0.0003 | 0.5124 | 0.0042 | 0.0404 | 0.0033 | 0.0003 3‘%;5 595 | 0.06

Table 14. The results obtained for the welded beam design optimization problem (the previous

results are adopted from Mirjalili ef al.. 2017).

GD MS S IGD Hypervolume

Algorith | Mean STD Mean STD Mean STD Mean STD Mean STD
ms

MOPSO | 03741 | 0.0422 | — — 25303 |02270 | — = = =
NSGA-I | 03601 | 0.0470 | — 23635 | 02550 | — = = =
MOALO | 0.1264 | 0.0327 | 03700 | 0.0025 | 1.1805 | 0.1440 | 0.1062 | 00152 | — =
MOALO | 0.0240 | 0.0060 | 0.4694 | 0.0506 | 0.3469 | 0.0554 | 0.0012 | 0.0012 | 131 | 023
M%“gAS 0.0124 | 0.0037 | 04475 | 0.0624 | 0.1426 | 0.0158 | 0.0010 | 0.0012 | 1.55 | 036

Table 15. The results obtained for the cantilever beam design optimization problem (the

previous results are adopted from Mirjalili ef al., 2017).

GD MS S IGD Hypervolume

Algorith | Mean | STD | Mean | SID | Mean | SID | Mean | SID | Mean | SID

ms
MOPSO | — = = = = = = = = =
NSGAI | — = = = = = = = — =
MOALO | 0.0002 l'giE' 07673 | 0.1685 | 0.0083 | 0.0020 | 0.0002 | 0.0001 | — _
MOSOS | 4 6003 1‘315]5‘ 03755 | 0.0009 | 0.0359 | 0.0036 “'%(;E‘ G‘f)%E' 0.5595 | 0.0003
MOMAS 3.61E- 333E- | 2.83E-

DRAS | 00002 | 615 | 03750 | 0.0002 | 00171 | 00010 | 72 F 105598 | 0.0001
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