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Risk-based maintenance strategy for deteriorating bridges using a hybrid
computational intelligence technique: a case study
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ABSTRACT
The current bridge inspection and maintenance protocol that is used in most countries focuses primar-
ily on the visible aspects of bridge fitness and underestimates the invisible aspects, such as resistance
to scouring and earthquake hazards. To help transportation authorities to better consider both
aspects, the present study developed a new computational intelligence system, the so-called risk-
based evaluation model for bridge life-cycle maintenance strategy (REMBMS). This model considers
the three main risk factors of component deterioration, scouring and earthquakes in order to minimise
the expected life-cycle cost of bridge maintenance. Monte Carlo simulation is used to estimate the
probability of bridge maintenance. The evolutionary support vector machine inference model (ESIM)
was applied to estimate the risk-related maintenance cost using historical data from the Taiwan Bridge
Management System (TBMS) database. The time-influenced expected costs were obtained by multiply-
ing each maintenance probability with its associated cost. Finally, the symbiotic organisms search
(SOS) algorithm is used to identify the bridge maintenance schedule that optimises the life-cycle main-
tenance cost. The present study provides to bridge management authorities an effective approach for
determining the optimal timing and budget for maintaining transportation bridges.
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1. Introduction

Frequent earthquakes, typhoons and heavy rains regularly
challenge the structural integrity of bridges and seriously
deteriorate bridge components in Taiwan and the many
other countries with similar climatic and tectonic condi-
tions. In Taiwan, flooding and mudflows are particularly
serious threats to bridges during the typhoon season, which
typically lasts from summer through early autumn.
Additionally, Taiwan’s location in a complex tectonic area
makes earthquakes fairly common. A particularly serious 7.3
magnitude earthquake that hit Taiwan in 1999 collapsed
over 20 bridges. Furthermore, age-related deterioration is an
issue that affects all bridges. Taiwan currently lists more
than 4000 bridges that are over 30 years old, with 2500 of
these dating from the 1970s, a period of heavy government
investment in the national infrastructure (Liao &
Yau, 2011).

The number of bridges that have deteriorated beyond
their designed safety thresholds continues to increase world-
wide. Furthermore, the expenditures that will be necessary
to maintain, repair and rehabilitate these bridges greatly
exceed the budgetary allocations for these purposes (Goyal,
Whelan, & Cavalline, 2017). As daily traffic loads and nat-
ural stresses continue to deteriorate the conditions of
bridges, proper bridge maintenance has become an increas-
ingly crucial task for bridge-management agencies.

Therefore, an updated approach to the management of
bridges that optimises the available resources under condi-
tions of uncertainty and of multiple, conflicting objectives is
necessary to enhance bridge lifespans (Frangopol, Kong, &
Gharaibeh, 2001; Hu, Daganzo, & Madanat, 2015).

Bridges may face serious multi-hazard risks such as nat-
ural ageing, scouring and earthquakes (seismic events) dur-
ing the long-time operation. Researchers have studied the
behaviour of bridges in dealing with the inevitable deterior-
ation or natural hazards. Simon, Bracci, and Gardoni (2010)
investigated the impact of corrosion on the seismic fragility
and response of deteriorated bridges. Gardoni and
Rosowsky (2011) proposed seismic fragility increment func-
tions to estimate the deformation-shear fragility of deterio-
rating bridges, without requiring a traditional reliability
analysis. Zanini, Pellegrino, Morbin, and Modena (2013)
studied the effect of degradation phenomena on the seismic
vulnerability of bridges. The seismic degradation of highway
bridges was investigated by Kumar and Gardoni (2014) by
using the nonlinear time history analysis. It was presented
that the degradation in reinforced concrete columns may
give a significant impact on the seismic vulnerability of the
bridges. Similar to earthquakes, scouring can induce serious
damage or even collapse to many bridges as reported by
Zampieri, Zanini, Faleschini, Hofer, and Pellegrino (2017) in
their failure analysis of masonry arch bridges. Therefore,
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there is a need for efficient maintenance strategy to reduce
such crucial risks.

Significant research time and energy has invested in
developing effective maintenance and restoration strategies
for bridges (Frangopol & Bocchini, 2012; Furuta, Kameda,
Nakahara, Takahashi, & Frangopol, 2006; Yadollahi, Abd
Majid, & Mohamad Zin, 2015; Zanini, Faleschini, &
Pellegrino, 2016). Roberts and Shepard (2001) developed the
bridge health index (BHI), which relates to the ratio of the
current element value and the proposed total element value
(Frangopol et al., 2001; Roberts & Shepard, 2001). Huang
(2003) used neural networks to model the deterioration of
concrete bridge decks and came to conclusions that differed
significantly from Roberts and Shepard using the Markov
process in the bridge management system. Huang’s study
demonstrated that deterioration does not relate exclusively
to the age of a bridge but also to its maintenance and his-
tory overlay. Huang and Mao (2010) used single-component
deterioration to estimate the life-cycle cost of a bridge.
However, his estimates focussed exclusively on the bridge
deck slab. Tserng and Chung (2007) utilised Huang’s
approach in combination with the new performance index
(NPI) to assess when preventive maintenance should be exe-
cuted. However, this approach did not consider mainten-
ance costs.

In addition, Bucher and Frangopol (2006) have developed
lifetime maintenance strategies that cover time-based main-
tenance and performance-based maintenance. However,
some invisible risks such as scour and earthquake were still
not taken into account. Finally, the several studies that have
analysed the effectiveness of various strategies in guiding
bridge maintenance revealed that little offers a methodology
to account for the maintenance costs over the life cycle of a
bridge and that most of the visible and invisible risks related
to this life cycle are not addressed.

The Taiwan Bridge Management System (TBMS) is a
national bridge-management system that the transportation-
related agencies of the Taiwan government use to direct vis-
ual inspections of more than a thousand bridges annually.
TBMS provides the methodology to inspect the visible risk
that is attributable to component deterioration using the
bridge condition index (CI). Bridge CI values are calculated
based on the visual inspection results, with these index val-
ues providing an indication of the overall condition of indi-
vidual bridges, which is used to specify the relevant
maintenance-service level of each bridge. Thus, the CI value
helps decision makers in these agencies to perform a proper
bridge maintenance. After a bridge is inspected, mainten-
ance is scheduled only if the CI value falls below a spe-
cific threshold.

Nevertheless, using CI as a solely indicator for determin-
ing the maintenance decision may be misleading, as CI con-
siders only component deterioration that is visible and
detected during the inspection process (Liao & Yau, 2011).
The invisible risks associated with natural hazards such as
floods and earthquakes may also significantly deteriorate the
bridge. Because the invisible risks attributable to scouring
and earthquakes are not taken into consideration in the

TBMS or in previous studies, the present research proposes
an alternative bridge maintenance strategy: risk-based evalu-
ation model for bridge life-cycle maintenance strategy
(REMBMS). This strategy addresses both the visible and
invisible risks in a more advanced bridge manage-
ment system.

In the first stage, REMBMS uses Monte Carlo to simulate
the probability of bridge maintenance using historical data.
In the second stage, a hybrid artificial intelligence (AI)
model called the evolutionary support vector machine infer-
ence model (ESIM) is used to estimate the impact of the
various risk factors on costs. Next, the bridge maintenance
probability is multiplied with the associated costs to calcu-
late the expected cost. Finally, REMBMS utilises the symbi-
otic organisms search (SOS) algorithm to obtain an estimate
of minimum cost. This advanced strategy is expected to
yield a bridge maintenance strategy that generates optimal
timing and budget estimates that bridge-maintenance plan-
ners may use to minimise life-cycle maintenance costs.

2. Literature review

2.1. Bridge inspection in Taiwan

Visual inspection is one of the common methods used to
investigate the bridge condition (Quirk, Matos, Murphy, &
Pakrashi, 2017; Yeum & Dyke, 2015). In Taiwan, the
Taiwan Bridge Management System (TMBS) is used to
manage the inventory and inspection data for thousands of
domestic bridges. The TBMS, first developed in 2000 (Liao
& Yau, 2011), is used by transportation-related government
agencies to guide ongoing bridge inspection and mainten-
ance efforts. Current regulations mandate that all bridges in
the TMBS database be inspected visually at least once every
two years and that special inspections are performed after
extremely heavy rains and severe earthquakes. Special
inspections are quick and simple inspections for obvious
damage and regular inspections investigate a checklist of 20
bridge components. Trained inspectors perform the regular
inspections using their eyes and portable tools only. These
inspectors approach the target bridges on foot, by boat or in
special vehicles.

In Taiwan, the methodology used to conduct these regu-
lar bridge inspections and evaluations is known as DER&U.
DER&U mandates the inspection of 20 unique bridge com-
ponents (Tserng & Chung, 2007), with four indices used to
evaluate the conditions of these components: ‘D’ represents
degree of deterioration; ‘E’ represents extent of the deterior-
ation; ‘R’ represents the relationship between the deterior-
ation and the safety of the bridge and ‘U’ represents the
urgency of repair. All of these indexes are numerically rated
on an integer scale from 0 to 4. An index value of 0 means
either that the component does not exist or that the
inspector was unable to make the inspection. Index values
ranging from 1 to 4 correlate positively with deterioration
status, with a 1 indicating good condition (no/minimal
deterioration) and a 4 indicating extremely poor condition
(serious deterioration).
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The DER&U ratings are obtained for calculating the CI
of a bridge. First, a component condition index Icij is calcu-
lated based on the evaluated integers of D, E and R for each
component. The calculation is based on a point-deduction
mechanism, i.e. deficiencies in a component deduct points
from a perfect score of 100. Equation (1) shows the formula
for calculating an Icij value for the ‘j’ item of component ‘i’.
Notably, the value of ‘a’, an integer in this equation usually
set as 1, may be set by the user.

After the inspection is completed, the sub-item condition
index (Icij) for each sub-item of the 20 main items is calcu-
lated as follows:

Icij ¼ 100�100� Dþ Eð Þ � Ra

4þ 4ð Þ � 4a
(1)

where I¼ 1� 20, j¼ 1�n (number of sub-items), and
parameter ‘a’ relate to the importance of the bridge, with
a¼ 1 for a highway bridge, a¼ 2 for a freeway bridge. Next,
the condition index for each of the 20 main items is calcu-
lated as follows:

Ici ¼
Pn

j¼1 Icij
n

(2)

Finally, the CI of the bridge is calculated using Ici and its
corresponding weighting wi, as follows:

CI ¼
P20

i¼1 Ici � wiP20
i¼1 wi

(3)

The values of wi are adopted from Tserng and Chung
(2007) as reported in Table 1. The level of component
deterioration of a bridge may be measured by its CI, which
is calculated based on the DER&U inspection results.

The scouring stability index (SSI) may be used to meas-
ure the scouring stability of a bridge. The SSI of a bridge is
calculated in a manner that is similar to CI, but uses only
the several components in the DER&U inspection that are
normally affected by scouring. These components include:
Waterway (3), Abutment foundations (5), Abutments (6),
Scouring protection of piers (12), Pier foundations (13) and

Piers and columns (14). Equation (4) shows the formula
used to calculate SSI:

SSI ¼ Ic3 � w3 þ Ic5 � w5 þ Ic6 � w6 þ Ic12 � w12 þ Ic13 � w13 þ Ic14 � w14

w3 þ w5 þ w6 þ w12 þ w13 þ w14

(4)

Regarding seismic risk, the pushover method is employed
to carry out the assessment to obtain the yield acceleration
(Ay) and collapse acceleration (Ac). To measure the damage
state of bridges, this study adopts the seismic damage index
from Chiu, Lyu, and Jean (2014). Due to the uncertainty in
predicting the time at which an earthquake will occur,
Monte Carlo Simulation is applied to simulate these two
ground accelerations with seismic damage index to estimate
the earthquake maintenance probability.

2.2. Evolutionary support vector machine
inference model

Over the past years, many studies reveal that AI techniques
have surpassed the traditional methods in terms of perform-
ance and accuracy as a result of their excellent learning fea-
tures (Cheng & Prayogo, 2014; Cheng, Prayogo, & Wu,
2014; Cheng, Prayogo, Ju, Wu, & Sutanto, 2016; Cheng,
Wibowo, Prayogo, & Roy, 2015). The ESIM is a hybrid AI
method developed by Cheng and Wu (Cheng & Wu, 2009)
that fuses two different AI techniques, namely support vec-
tor machine (SVM) and fast messy genetic algorithm
(fmGA). In this complementary system, SVM acts as a
supervised learning tool to handle input-output mapping
and fmGA works to optimise SVM parameters.

SVM is a recent AI paradigm developed by Vapnik
(1995) that has been used in a wide range of applications.
This paradigm is a supervised learning tool that was
designed to solve classification and regression problems.
SVM works by mapping input vectors into a higher dimen-
sional feature space. The optimal hyperplane is identified
within this feature space with the help of a kernel function.
This inner product in the feature space attempts to make
training data linearly separable. Several admissible kernel
functions that are used today include the polynomial kernel,
the radial basis function (RBF) kernel, and the sigmoid ker-
nel. However, the RBF kernel has been recommended for
general users as a first choice due to its ability to analyse
higher-dimension data, its ability to conduct searches using
only one hyper parameter, and its relatively few numerical
difficulties (Chang & Lin, 2011). Therefore, the generalisa-
tion ability and predictive accuracy of SVM are determined
in the present study using the optimal penalty and kernel
parameters (C and c parameters).

Determining the SVM parameters C and c is a compli-
cated and problem-oriented process. Improper parameter
settings lead to poor accuracy in the resultant prediction/
classification model. It is noted that fmGA has previously
been employed to simplify and increase the effectiveness of
the SVM parameter-setting process. The version of fmGA
that has been proposed by Goldberg, Deb, Kargupta, and
Harik (1993) is a relatively recently developed optimisation

Table 1. Bridge elements and their weighting values (wi).

Index Element Weighting value wi

1 Approach embankments 3
2 Approach quardrails 2
3 Waterway 4
4 Approach embankments protection works 3
5 Abutment foundation 7
6 Abutment 6
7 Wing/retaining wall 5
8 Surface/wearing coat 3
9 Superstructure drainage 4
10 Curb/sidewalk 2
11 Parapet 3
12 Pier protection work 6
13 Pier foundation 8
14 Pier and column 7
15 Bearing 5
16 Earthquake stopper/restrainer 5
17 Expansion joint 6
18 Girder 8
19 Diaphragm 6
20 Deck slab 7
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tool that is based on a genetic algorithm approach. Also,
note that fmGA represents an improvement over the messy
genetic algorithm (mGA), which was initially developed to
overcome the simple genetic algorithm (sGA) linkage prob-
lem resulting from a parameter-coding problem that gener-
ated suboptimal solutions.

2.3. The SOS algorithm

The SOS algorithm is a new metaheuristic algorithm that was
developed by Cheng and Prayogo (2014). It was inspired by
the biological dependency-based interaction or symbiosis seen
among organisms in nature. Similar to most population-based
metaheuristic algorithms, SOS uses a population of organisms
which contains candidate solutions to seek the global solution
within a search space; has special operators that use the candi-
date solutions to guide the search process; uses a selection
mechanism to preserve the better solutions; requires proper
setting of common control parameters such as population size
and maximum number of evaluations. Furthermore, SOS has
been proven to successfully solve various problems in different
fields of research (Cheng et al., 2014; Kamankesh, Agelidis, &
Kavousi-Fard, 2016; Panda & Pani, 2016; Secui, 2016; Tran,

Cheng, & Prayogo, 2016; Vincent, Redi, Yang, Ruskartina, &
Santosa, 2017).

In the initial stage, a random ecosystem (population)
matrix is created, with each row representing a candidate
solution to the corresponding problem. The user predeter-
mines the number of organisms in the ecosystem, which is
the size of the ecosystem. As with other metaheuristic algo-
rithms, the rows in the matrix are called organisms. Each
virtual organism represents a candidate solution to the cor-
responding problem/objective. The search begins after the
initial ecosystem has been generated. During the search pro-
cess, each organism benefits from continuous interaction
with others in three different ways:

1. Mutualism Phase: In this phase, an organism develops a
mutually beneficial relationship with another organism.
The relationship between bees and flowers is a classic
example of mutualism.

2. Commensalism Phase: In this phase, an organism devel-
ops a relationship with another organism that benefits
itself but does not impact upon the other organism. An
example of commensalism is the relationship between
remora fish and sharks.

Figure 1. Flowchart of main research steps.
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3. Parasitism Phase: In this phase, an organism develops a
relationship with another organism that benefits itself
and harms the other organism. An example of parasit-
ism is the plasmodium parasite, which uses its relation-
ship with the anopheles mosquito to transfer between
human hosts.

These three phases reflect the most common symbioses
used by organisms to increase their fitness and survival
advantage over the long term. During an interaction event,
the one that receives a benefit will evolve into a fitter organ-
ism, while the one that is harmed will perish. The mecha-
nisms for updating the best organism are conducted after an
organism has completed its three phases. The phases are
repeated until the stopping criterion is achieved.

3. Proposed risk-based evaluation model for bridge
life-cycle maintenance strategy

This section describes the newly proposed REMBMS in
detail. Risk-based approach presents an applicable strategy
to determine the optimal design involving such uncertainties
(Barone & Frangopol, 2014; Beaurepaire, Jensen, Schu€eller,
& Valdebenito, 2013; Beconcini, Croce, Marsili, Muzzi, &
Rosso, 2016; Frangopol & Bocchini, 2012; Zhu & Frangopol,
2012). There are four main stages in the proposed model.
The objective of the REMBMS is to minimise the total cost
of maintenance related to both visible and invisible
risk factors.

Three main AI techniques are involved in the last three
stages. After completing the risk evaluation model in the
first stage, a Monte Carlo Simulation is employed in the
second stage to estimate the bridge maintenance and
rebuilding probabilities, which will be used to calculate the
expected future maintenance and rebuilding costs. In the
third stage, ESIM is used to establish accurate bridge main-
tenance cost models that are based on historical data. In the
final stage, SOS is used as the core optimiser in the
REMBMS model to identify the lowest total-expected main-
tenance cost for the bridges. Figure 1 describes the overall
operational architecture of the proposed algorithm.

The first stage of the proposed REMBMS identifies and
categorised the risk involved in a bridge and to establish a
bridge risk evaluation model by determining the bridge syn-
thesised capacity index that will be used for further analysis

in the subsequent stages. The present study adopted expect-
ancy value theory (EVT) to address all of the three risk fac-
tors that were identified and evaluated in the previous stage
(component deterioration, scour and earthquake). The
objective was to estimate the total expected cost of mainten-
ance by synthesising all of the risk factors involved in each
bridge (see Figure 2). The expected cost considers the bridge
maintenance and/or rebuilding strategy.

In the maintenance strategy, all three risks are considered
to influence the expected maintenance cost. Alternatively,
decision makers who do not perform necessary maintenance
on bridges face much higher risks of bridge collapse due to
scouring and earthquake damage and thus should consider
the expected costs of rebuilding in their strategy. The fol-
lowing equations were used to represent the relationship
between the expected cost and the risks factors:

E Costð Þ ¼ E MCð Þ þ E RCð Þ (5)

E MCð Þ ¼
X100
i¼1

PMDi � CMDi þ
X100
i¼1

PMSi � CMSi þ
X100
i¼1

PMEi � CMEi

 !

(6)

E RCð Þ ¼
X100
i¼1

PSi � CRSi þ
X100
i¼1

PEi � CREi

 !
(7)

where:

� E(Cost) is expected cost, E(MC) is expected maintenance
cost and E(RC) is expected rebuilding cost.

� PMD is the probability of deterioration-related mainten-
ance, PMS is the probability of scour-related maintenance
and PME is the probability of earthquake-related
maintenance.

Bridge 

Risk 

Factor

Visible Risk

Invisible 

Risk

Component 

Deterioration

Scour

Earthquake

CI (DER&U)

SSI (DER&U)

Structure 

Seismic Capacity 

(Ay, Ac)

Monte Carlo 

simulation

Monte Carlo 

simulation

Monte Carlo Simulation

Damage Condition 

Estimation Model

Risk Category Risk Factor Risk Index Risk Assessment

Figure 2. Bridge risk evaluation diagram.

Table 2. Bridge classifications in Taiwan.

Type Quantity

Truss bridge 63
Box bridge 1388
Cable-stayed bridge 62
Beam/Girder bridge 31,778
Simple supported beam 130
Strut-frame bridge 115
Slab beam 8319
Arch bridge 289
Frame bridge 243
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Figure 3. Decline in CI over time (beam/girder type bridges).

Table 3. The statistical analysis of the slope of beam/girder bridge.

Type Distance from the sea (m) Traffic loading (car/day) Average of slope Variance of the slope

Beam/girder <300 <6000 �0.230 0.047
<300 6000� 12,000 �0.056 0.001
<300 >12,000 �0.405 0.000

300� 1000 <6000 �0.229 0.094
300� 1000 6000� 12,000 �0.060 0.001
300� 1000 >12,000 �0.405 0.000
1000� 3000 <6000 �0.201 0.096
1000� 3000 6000� 12,000 �0.048 0.001
1000� 3000 >12,000 �0.405 0.000

>3000 <6000 �0.275 0.552
>3000 6000� 12,000 �0.242 0.053
>3000 >12,000 �0.284 0.048

Table 4. Bridge information.

Bridge number Bridge name Design year Length (m) Width (m) Number of spans

B04-0030-217A Jiaxin bridge 1973 15.6 18 2
B04-0030-217B Maoluo river bridge 1995 950 17.25 23
B04-0030-217C Xinjia bridge 1956 6.3 22.4 1
B04-0030-217D Xinjie bridge 2002 90 22 3
B04-0030-220A Huzaikeng bridge 1955 40.2 22.6 2

Figure 4. Photographic documentation for each bridge obtained from TBMS database.
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� CMD is the maintenance cost attributable to deterior-
ation, CMS is the maintenance cost attributable to scour-
ing and CME is the maintenance cost attributable to
earthquake damage.

� PS is the bridge collapse probability attributable to scour-
ing, PE is the bridge collapse probability attributable to
earthquake, CRS is the rebuilding cost attributable to
scouring and CRE is the rebuilding cost attributable to
earthquake damage.

The following sections calculate the probabilities of
bridge maintenance and rebuilding.

4. Estimating the bridge maintenance probability

This section describes the stepwise procedures that were
used in the present study to calculate the bridge mainten-
ance probability for all three identified risk factors. The
bridge is composed of many different members, with each
member having a distinct function. Conducting a risk
assessment of an entire bridge structure is very difficult and
prone to wide margins of error. However, using the previ-
ous identification and evaluation model, the risk factors that
affect bridges may be distinguished into visible deterioration
and invisible hazards.

Visible deterioration is represented by component deteri-
oration, while invisible hazards are distinguished into two

categories: scouring damage and earthquake damage. Thus,
the aim of this stage is to obtain the bridge maintenance
probability for each of the involved factors. The following
subsection describes the steps used to achieve this goal.

4.1. Component deterioration (CI)

4.1.1. Step 1: Bridge classification
Bridges of the same type (design approach), similar traffic
loading status, and similar distance from the sea are pre-
sumed to share similar deterioration conditions. The more
than 40,000 bridges in Taiwan have been categorised into 10
types, summarised below in Table 2.

4.1.2. Step 2: Statistical analysis
In this step, the CI for each bridge was collected from the
TBMS. The relationship between the age of a bridge and its
CI was then plotted based on the historical data. Figure 3
shows an example plot, with the CI declining over time.
Further, regression analysis was conducted to assess the
relationship between bridge age and the CI. By obtaining
the linear formula, the declining slope of the bridge CI may
be determined for use in the next step. Figure 3 displays the
slope of the bridge as �0.3813. Furthermore, applying
regression analysis to all of the bridges of each type allowed
the average and variance of the related slopes to be

Table 5. Annualised bridge maintenance probability attributable to component deterioration (PMD), Bridges B04-0030-217A to B04-0030-220A (%).

Bridge number

Years

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B04-0030-217A 0 0 0 0 0 0 0 0 0 1.7 36.8 97 100 100 100 100 100 100 100 100
B04-0030-217B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B04-0030-217C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B04-0030-217D 0 0 0 0 0 0 0 0 0 2.3 39.1 97.1 100 100 100 100 100 100 100 100
B04-0030-220A 0 0 0 0 0 0 0 0 0 1.7 37.4 97.1 100 100 100 100 100 100 100 100

Table 6. Flood return period for Taiwan’s main rivers, corresponding to the SSI slope index.

Main river

Flood return period

1-year 2-year 5-year 10-year 20-year 50-year 100-year 200-year

Tamsui �1 �1 �2 �2 �3 �3 �3 �4
Fengshan �1 �1 �7 �9 �11 �14 �17 �19
Touqian �1 �1 �2 �3 �4 �5 �6 �7
Zhonggang �2 �3 �4 �5 �6 �8 �9 �9
Houlong �1 �1 �2 �2 �3 �3 �4 �5
Da-an �1 �3 �5 �7 �10 �13 �16 �20
Dajia �1 �3 �5 �7 �8 �10 �12 �13
Wu �1 �1 �2 �2 �3 �3 �4 �5
Zhuoshui �1 �7 �12 �15 �18 �22 �27 �30
Beigang �1 �4 �6 �7 �9 �11 �12 �12
Puzi �1 �2 �4 �5 �6 �7 �8 �9
Bazhang �1 �2 �3 �4 �4 �5 �5 �6
Jishui �1 �1 �2 �2 �3 �4 �5 �5
Cengwen �1 �1 �2 �2 �2 �3 �3 �3
Yanshui �1 �2 �4 �4 �5 �6 �6 �6
Erren �1 �1 �1 �2 �3 �2 �2 �4
Gaoping �1 �1 �2 �2 �3 �3 �3 �3
Donggang �1 �3 �4 �5 �5 �6 �7 �8
Sicong �1 �3 �4 �5 �6 �7 �7 �8
Beinan �1 �1 �1 �2 �2 �2 �3 �3
Xiuguluan �1 �2 �3 �4 �4 �5 �5 �6
Hualien �1 �3 �4 �5 �5 �6 �7 �7
Heping �1 �1 �2 �3 �3 �4 �5 �5
Lanyang �1 �2 �2 �3 �3 �4 �5 �6
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calculated. Table 3 shows the average and variance of the
slope for the bridges of the beam/girder type.

4.1.3. Step 3: Determine CI threshold
The goal of this step was to identify the CI maintenance
threshold. CI values below this threshold indicate that a
bridge requires maintenance. After a review of relevant
documents, interviews and historical information, the
threshold was identified as varying between 75 and 85.

4.1.4. Step 4: Monte Carlo simulation
After obtaining the average and variance for each CI slope
in step 3, statistical declining CI curves for each were estab-
lished using the Monte Carlo Simulation. The maintenance
probability was calculated by counting the number of times
that the CI fell below the threshold during the simulation.

4.1.5. Step 5: Obtain maintenance probability attributable
to component deterioration (PMD)
The annual probability of maintenance attributable to com-
ponent deterioration (PMD) may be calculated after complet-
ing the Monte Carlo Simulation. To illustrate the example
of the proposed methodology, five bridges were included in
this study. The information for each bridge is shown in
Table 4. The photographic documentation for each bridge,
which is obtained from TBMS database, is shown in Figure
4. Table 5 lists the annualised probability of maintenance
for several of the bridges. For example, in bridge number
B04-0030-217A, the PMD value after 10 years is equal to
1.7%. It means that the 10-year CI fell below the threshold
about 170 times out of every 10,000 simulations.

4.2. Scouring (SSI)

4.2.1. Step 1: Bridge classification
This step is similar to the approach used to classify bridges
in the Component Deterioration section (see Section 4.1,

Step 1). However, the bridges in the current section are clas-
sified by the river that they cross rather than by distance
from the sea, traffic loading conditions, and structural type.

4.2.2. Step 2: Statistical analysis
Table 6 aligns the SSI slope index with the average flood
return period for various main rivers in Taiwan. Statistical
analysis may thus be used to obtain declining curve values
for CI. As shown in Table 6, bridges that cross the Tamsui
River have an expected average annual SSI decline of:
1�(�1) þ 0.5�(�1) þ 0.2�(�2) þ 0.1�(�2) þ 0.05�(�3) þ
0.02�(�3) þ 0.01�(�3) þ 0.005�(�4) = �2.36.

4.2.3. Step 3: Determine SSI threshold
The default SSI threshold value for maintenance was deter-
mined to be 75.

4.2.4. Step 4: Monte Carlo simulation
Based on the flood return period and the SSI slope index
information obtained in Table 6, the Monte Carlo
Simulation may be used to establish the statistically declin-
ing SSI curves for each bridge. Further, probability of main-
tenance values may be calculated by counting the number
of times that the SSI fell below the threshold during the
simulation. This step is similar to the Monte Carlo
Simulation previously described in the Component
Deterioration section (see Section 4.1, Step 4).

4.2.5. Step 5: Obtain the probability of scour-related
maintenance (PMS)
An annualised estimate of PMS may be obtained after com-
pleting the Monte Carlo Simulation. Table 7 illustrates sev-
eral examples of bridge maintenance probability over time.

Table 7. Probability of scour-related maintenance over time (PMS), Bridges B04-0030-217A to B04-0030-220A (%).

Bridge number

Years

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B04-0030-217A 0 0 0 0 0 0 0 0 0.2 0.6 0.8 0.7 0.4 0.5 0.7 0.7 3 1.5 1.8 1.6
B04-0030-217B 0 0 0 0 0 0 0 0 0.4 0.4 0.6 0.3 0.4 0.7 0.3 1 1.8 1.6 1.6 2
B04-0030-217C 0 0 0 0 0 0 0 0 0.3 0.8 0.6 0.5 0.5 0.4 0.4 0.6 1.9 2.2 1.9 1.6
B04-0030-217D 6.3 5.7 5.7 5.5 5.6 5 18.5 16.8 19.6 20.5 20.4 20.4 18.5 19.6 20.5 21.1 20.2 22.6 19.4 21.5
B04-0030-220A 0 0 0 0 0 0 0 0 0.7 0.2 0.8 0.7 0.8 0.6 0.2 0.4 2.1 2.8 1.5 1.5

Table 8. Probability of earthquake-related bridge maintenance over time (PME), Bridges B04-0030-217A to B04-0030-220A (%).

Bridge number

Years

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B04-0030-217A 1 6.5 13 16.5 18.5 19.5 20 23.5 24.5 27.8 28.8 28.8 30.5 31.3 32 32.8 34.8 35.5 35.5 37.8
B04-0030-217B 1 1.25 2.25 2.75 3.75 4 5.25 6 6.5 7.5 8 9 9.75 11.3 11.8 13 14 14.5 15.5 18.8
B04-0030-217C 0.5 1.75 2 2.5 3.5 4.25 5.75 7 8.5 9.5 10.3 10.8 11.3 12.8 13 14 14.5 15 15.5 16.3
B04-0030-217D 9.5 16 28 32.8 34 35.5 39 40.5 44.5 49.3 50.5 50.8 53.3 55.8 59.3 62 63.3 65.8 67.8 71.5
B04-0030-220A 1.75 9.5 14.3 16.8 20.5 23.8 24.5 25.5 26.5 27.8 28.8 29.8 33.3 34.5 34.5 36.3 36.3 36.3 36.3 36.3
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4.2.6. Step 6: Obtain the probability of rebuilding due to
scouring (PRs)
Annualised estimate of the probability of rebuilding due to
scouring (PRs) may be obtained after completing the Monte
Carlo Simulation. This probability is calculated by counting
the number of 100-year floods that occurred during the
simulation period. The PRs should equal 1%, which is the
equivalent of a 100-year probability.

4.3. Earthquake hazard

4.3.1. Step 1 – Step 3: Conduct the potential earthquake
analysis model, the ground vibration analysis model, and
the bridge seismic hazard assessment
These three steps were adopted from Chiu et al. (2014) and
Das, Gupta, and Srimahavishnu (2007). The goal of these
steps is to apply a ground vibrations analysis model in order
to calculate two ground acceleration values for each bridge
location: the yield acceleration (Ay) value and collapse accel-
eration (Ac) value.

To obtain Ay and Ac, the pushover method is
employed. The purpose of the pushover analysis is to
evaluate the expected performance of a structural system
by estimating its strength and deformation demands in
design earthquakes by means of a static-inelastic analysis,
and comparing these demands to available capacities at
the performance levels of interest. The 1999 Chi-Chi
Earthquake and other ground motions are used to obtain
the structural performance under peak ground acceler-
ation (PGA). Furthermore, the seismic damage index is

Table 9. Statistical description of historical data used to estimate the maintenance cost attributable to component deterioration (CMD).

Influencing factors Minimum Maximum Average Standard deviation

X1: CI 68 100 95.92 5.21
X2: Construction cost index 77.52 124.25 105.16 11.86
X3: Last maintenance (year) 2002 2011 2007.21 2.41
X4: Bridge area (m2) 40 72,682 5008.28 11,312.25
X5: Bridge height (m) 1.2 29 6.32 4.30
X6: Structural type beam, arch, cantilever, box girder, truss
X7: Distance from sea (m) 7.70 57,979.15 20,447.31 15,136.13
X8: Average daily traffic (ADT) 207.75 24,142.25 4001.61 5289.56
X9: Location (mountain or not mountain?) 0 ¼ not mountain, 1 ¼ mountain
Y: Bridge maintenance cost (CMD) (in NTD) 2590 23,289,363 1,845,238 3,541,901

Figure 5. Distribution of influencing factors.

Table 10. ESIM training and testing results.

Normalised RMSE ESIM parameters

Fold Training Testing C c

1 0.0857 0.0976 192 0.6673
2 0.0712 0.1582 198 0.8821
3 0.1210 0.0934 66 0.1177
4 0.1220 0.0465 7 0.5356
5 0.1157 0.0630 50 0.2501
6 0.1404 0.1068 28 0.0358
7 0.1093 0.1728 24 0.2761
8 0.0845 0.0745 126 0.9991
9 0.0902 0.0827 140 0.5713
10 0.0798 0.1212 200 0.9501
Average 0.10198 0.10167
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adopted from Chiu et al. (2014) to measure the damage
state of bridges. The seismic damage index corresponding
to each earthquake event can be estimated while consider-
ing the occurrence time and PGAs of earthquakes for a
bridge within a specific period. The Monte Carlo
Simulation will then be used to specify the exceedance
probability of a specified damage state.

4.3.2. Step 4: Conduct the Monte Carlo simulation
In this step, the earthquake events that were obtained
from local historical data are simulated using the Monte
Carlo Simulation approach. The goal of these simulations
is to estimate the earthquake maintenance probability
(PME). PME may be calculated by counting the number of
occurrences of earthquakes larger than the threshold val-
ues for Ay and Ac during the simulation period. The
threshold values for Ay and Ac were set to 0.2 g and
0.24 g, respectively.

4.3.3. Step 5: Obtain the probability of earthquake-related
maintenance (PME)
An annualised estimate of PME may be obtained after
completing the Monte Carlo Simulation. Table 8 illus-
trates several examples of bridge maintenance probability
over time.

4.3.4. Step 6: Obtain the probability of rebuilding due to
earthquake damage (PRE)
The annual probability of rebuilding due to earthquake
damage (PRE) may be found using the results of the Monte
Carlo Simulation by counting the number of earthquake
incidents of peak ground acceleration magnitude greater
than 0.24 g.

5. Estimating the maintenance and rebuilding cost

After acquiring all of the probability factors required for
each risk factor in Section 4, this section explains the step-
wise procedures that were used to calculate the maintenance
and rebuilding costs for the three risk factors. The AI

Table 11. Bridge maintenance cost attributable to component deterioration (CMD) by year, Bridges B04-0030-217A to B04-0030-220A (in New Taiwan
Dollars/NTD).

Bridge number

Years

1 2 3 4 5 6 7 8 9 10

B04-0030-217A 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327
B04-0030-217B 518,158 426,196 320,167 200,228 66,307 81,353 242,970 418,419 607,865 810,986
B04-0030-217C 751,985 652,901 539,671 412,192 270,438 114,565 55,610 239,671 437,862 649,824
B04-0030-217D 69,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327
B04-0030-220A 47,688 286,148 568,542 889,987 1,268,394 1,690,465 2,155,155 2,684,238 3,231,054 3,815,305

11 12 13 14 15 16 17 18 19 20
B04-0030-217A 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327
B04-0030-217B 1,027,954 1,258,565 1,502,612 1,760,181 2,031,273 2,315,774 2,613,132 2,923,737 3,246,854 3,583,088
B04-0030-217C 876,045 1,116,318 1,370,070 1,637,835 1,919,359 2,214,250 2,522,517 2,843,734 3,178,572 3,526,268
B04-0030-217D 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327 769,327
B04-0030-220A 4,448,906 5,128,277 5,854,979 6,621,112 7,429,297 8,267,156 9,135,507 10,022,185 10,964,802 11,912,463

Table 12. Historical data used to estimate the maintenance cost attributable to scouring (CMS).

No SSI
Construction
cost index

Year of last
maintenance Bridge area (m2) Bridge height (m) Structural type

Location
(mountain or
not mountain)

Bridge
maintenance
cost (CMS)

1 99 93.24 2005 9956 11.3 Beam 0 1502
2 99 116.86 2010 1200 4.2 Beam 0 1711
3 99 100.00 2006 1500 3.5 Beam 0 3000
4 99 100.00 2006 1500 3.5 Beam 0 3000
5 99 81.14 2003 6900 5.5 Beam 0 3697
6 98 113.24 2009 3979 8 Beam 0 3974
7 99 113.24 2009 3979 8 Beam 0 3974
… … … … … … … … …
222 50 93.24 2005 1188 6.5 Beam 0 9,750,107
223 81 124.25 2008 2530 25 Box Girder 0 10,068,410
224 77 92.60 2004 846 5.7 Beam 0 10,893,683
225 80 113.24 2009 11400 20 Beam 0 11,406,937
226 80 113.24 2009 11400 20 Beam 0 11,406,937
227 80 113.24 2009 39627 4.6 Beam 0 11,710,030
228 80 93.24 2005 34452 10.33 Beam 0 12,947,501

Table 13. ESIM training and testing results.

Fold

Normalised RMSE ESIM parameters

Training Testing C c

1 0.0943 0.0989 200 0.4001
2 0.0955 0.0542 185 0.8705
3 0.0917 0.1013 120 0.6001
4 0.0875 0.1160 126 0.8881
5 0.0938 0.0819 192 0.5221
6 0.0993 0.0909 16 0.9592
7 0.1083 0.1434 0 0.7057
8 0.1158 0.1214 0 0.4705
9 0.0937 0.0675 189 0.8141
10 0.0898 0.0982 192 0.9571
Average 0.09697 0.09737
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inference model ESIM is employed to build the prediction
model to accurately estimate the costs. The datasets were
obtained from the TBMS and the data were collected by the
Directorate General of Highways (MOTC). The following
subsection describes the stepwise procedures that were used.

5.1. Component deterioration

5.1.1. Step 1: Determine the factors that influence compo-
nent deterioration
The factors that influence component deterioration include 9
inputs: CI, the Construction Cost Index, year of last mainten-
ance, bridge area, bridge height, structural type, distance from
sea and location. The output factor is bridge maintenance cost.

5.1.2. Step 2: Establish historical cases
A total of 160 cases were used to establish the dataset that
was subsequently used to build the prediction model. Table 9
displays the statistical description of historical data that was
used in the present study to estimate the cost of maintenance
that is attributable to component deterioration. Additionaly,
Figure 5 illustrates the distribution of each influencing factor.

5.1.3. Step 3: Develop AI-based prediction model for
maintenance cost
ESIM was used to develop the prediction model. The iter-
ation was set to 100 and the range for C and c were set to
0–200 and 0.0001–1, respectively. Ten-fold cross validation
was used in data partitioning in order to minimise the bias
associated with the random sampling of training and testing
data cases. Table 10 displays the training and testing results
obtained using ESIM. Root mean square error (RMSE) was
used to measure the performance. The data were normalised

to range: 0–1. The graph shows that the average RMSE
training and testing errors were minimal: 0.10198 and
0.10167, respectively. These errors were small enough to jus-
tify the model as good for predicting the new cases.

5.1.4. Step 4: Predict the maintenance cost attributable to
component deterioration (CMD)
The maintenance cost attributable to component deterior-
ation (CMD) was predicted after all runs of the ESIM had
been completed. Table 11 shows the final results of several
examples of bridge maintenance costs over time.

5.2. Scouring

5.2.1. Step 1: Determine the factors that influ-
ence scouring
The factors that influence scouring include 9 inputs: SSI, the
Construction Cost Index, year of last maintenance, bridge
area, bridge height, structural type, distance from sea and
location. The output factor is the cost of bridge maintenance
attributable to scouring.

5.2.2. Step 2: Establish historical cases
A total of 228 cases were used to establish the dataset that
was used to build the prediction model. Table 12 displays
the historical data used in the present study to estimate the
maintenance cost that is attributable to scouring.

5.2.3. Step 3: Develop AI-based prediction model for
maintenance cost
This step is similar with the Section 5.1, Step 3. Table 13
depicts the training and testing results obtained by ESIM.
The graphic shows that the average RMSE training and test-
ing errors were minimal: 0.09697 and 0.09737, respectively.
These errors were small enough to justify the model as good
for predicting the new cases.

5.2.4. Step 4: Predict the maintenance cost attributable to
scouring (CMS)
The maintenance cost attributable to scouring (CMS) was
predicted after all runs of the ESIM had been completed.
Table 14 presents the final results of several examples of
bridge maintenance costs over time.

Table 14. Bridge maintenance cost attributable to scouring (CMS) by year, BridgesB04-0030-217A to B04-0030-220A (in NTD).

Bridge number

Years

1 2 3 4 5 6 7 8 9 10

B04-0030-217A 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471
B04-0030-217B 223,618 115,391 43,521 40,759 153,388 259,237 357,112 444,700 594,138 700,062
B04-0030-217C 529,977 438,355 382,116 307,305 233,041 136,315 71,107 13,532 102,462 217,098
B04-0030-217D 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471
B04-0030-220A 2728 152,986 259,548 425,425 568,759 729,117 889,111 1,006,588 1,181,400 1,372,786

11 12 13 14 15 16 17 18 19 20
B04-0030-217A 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471
B04-0030-217B 806,704 916,970 1,043,477 1,200,898 1,295,841 1,436,030 1,516,496 1,671,207 1,798,494 1,920,305
B04-0030-217C 280,433 370,874 501,534 618,916 696,968 819,749 939,350 1,062,485 1,143,094 1,241,048
B04-0030-217D 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471 1,588,471
B04-0030-220A 1,538,706 1,672,951 1,877,533 2,068,785 2,203,953 2,391,232 2,597,531 2,846,115 2,967,085 3,131,235

Table 15. Bridge rebuilding cost attributable to scouring damage (CRS),
Bridges B04-0030-217A to B04-0030-220A (in NTD).

Bridge number CRS
B04-0030-217A 9,547,000
B04-0030-217B 737,438,000
B04-0030-217C 4,195,000
B04-0030-217D 67,320,000
B04-0030-220A 36,341,000
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5.2.5. Step 4: Rebuilding cost attributable to scour-
ing (CRS)
In the absence of regular maintenance, bridges that are sub-
ject to scouring damage face a higher risk of bridge failure/
collapse than those bridges that are not affected by scouring.
Thus, the anticipated cost of rebuilding these bridges should
be considered in long-term bridge budget strategies. The
cost of rebuilding a bridge is the same regardless of the
cause of failure (e.g. scouring, earthquake). Table 15 lists the
estimated rebuilding costs for several bridges.

5.3. Earthquake risk

5.3.1. Step 1: Estimate the earthquake damage ratio
This research applies an estimation concept that utilises the
damage ratio to estimate the probabilities of various main-
tenance costs. Figure 6 illustrates the methodology that was
used to obtain the CME, as suggested by (Chiu et al., 2014).
Each bridge has its own future damage probability, which is
calculated during the earthquake events simulation.

5.3.2. Step 2: Earthquake maintenance cost (CME)
Table 16 presents the final result of several examples of
bridge maintenance costs for each damage ratio.

5.3.3. Step 3: Earthquake rebuilding cost (CRE)
Not performing regular maintenance on a bridge elevates
the risk of bridge collapse during an earthquake. The cost of
rebuilding is the same whether damage is attributable to an
earthquake or to scouring. Thus, as described previously,
the values of CRE and CRS are the same in the context of
the same bridge (See Table 15).

6. Establishing the bridge maintenance cost
optimisation model

This section integrates the maintenance probabilities, the
rebuilding probabilities, and the associated costs in order to
obtain the total expected cost E(Cost). Further, the SOS
algorithm is used to identify the optimal E(Cost). The
bridge maintenance and rebuilding probabilities (PMD, PMS,
PRS, PME, PRE) were previously obtained using the Monte
Carlo simulation in Section 4 and the bridge maintenance
and rebuilding costs (CMD, CMS, CRS, CME, CRE) were previ-
ously estimated using ESIM in Section 5. The formula
described in Section 3 is used to synthesise the obtained
probabilities and costs in order to obtain the E(Cost).

Step 1: optimal search with SOS algorithm method

The SOS algorithm was used to simulate different mainten-
ance strategies and to iteratively improve the best strategy
using its unique searching mechanisms. After creating an
initial group of random maintenance strategies, the so-called
‘population’, this population underwent three search phases:
mutualism, commensalism and parasitism. Each of the three

Figure 6. Method used to obtain the earthquake maintenance cost (CME).

Table 16. Earthquake maintenance cost (CME) for each damage ratio, Bridges B04-0030-217A to B04-0030-220A (in NTD).

Bridges Rebuilding cost

CME

No damage Light damage Medium damage Severe damage Entire damage

B04-0030-217A 9,547,000 0 190,940 954,700 4,773,500 9,547,000
B04-0030-217B 737,438,000 0 14,748,760 73,743,800 368,719,000 737,438,000
B04-0030-217C 4,195,000 0 83,900 419,500 2,097,500 4,195,000
B04-0030-217D 67,320,000 0 1,346,400 6,732,000 33,660,000 67,320,000
B04-0030-220A 36,341,000 0 726,820 3,634,100 18,170,500 36,341,000

E(RC)30 E(RC)40 E(RC)30

30 70 100

100

75

CI

Bridge Usage Years

E(MC)30 E(MC)40

90

CI Threshold

Figure 7. Example of maintenance strategy (30th and 70th).

STRUCTURE AND INFRASTRUCTURE ENGINEERING 345



operators stochastically updated the strategy by improving
and preserving the best strategy in population.

Figure 7 is an example of atypical maintenance strategy. In
this example, the maintenance strategy implements maintenance
activities at years 30 and 70. The chronological events of the
strategy shown in Figure 7 are explained as follows:

1. The CI curve begins at the maximum value of 100 and
declines along a path dictated by the corresponding CI

slope. Maintenance should be conducted before the CI
value drops below the CI threshold value.

2. The first maintenance was performed at year 30, after
which the CI value rises to a higher level (90). In this
event, maintenance cost [E(MC)30] and rebuilding cost
[E(RC)30] are added into the total expected cost calcula-
tion. After year 30, the CI begins declining from 90.

3. The second maintenance was performed at year 70,
after which the CI value again rises to 90. In this event,

Table 17. Expected maintenance costs attributable to component deterioration, scour, and earthquake, Bridges B04-0030-217A to B04-0030-220A (in NTD).

Maintenance
costs Bridge number

Years

1 2 3 4 5 6 7 8 9 10

PMD�CMD B04-0030-217A 2434 2434 2434 2434 2434 2434 2434 2434 2434 2434
B04-0030-217B 148,200 148,200 148,200 148,200 148,200 148,200 148,200 148,200 148,200 148,200
B04-0030-217C 983 983 983 983 983 983 983 983 983 983
B04-0030-217D 14,040 14,040 14,040 14,040 14,040 14,040 14,040 14,040 14,040 14,040
B04-0030-220A 6271 6271 6271 6271 6271 6271 6271 6271 6271 6271

PMS�CMS B04-0030-217A 0 0 0 0 0 0 0 0 3177 9531
B04-0030-217B 0 0 0 0 0 0 0 0 2377 2800
B04-0030-217C 0 0 0 0 0 0 0 0 307 1737
B04-0030-217D 100,074 90,543 90,543 87,366 88,954 79,424 293,867 266,863 311,340 325,637
B04-0030-220A 0 0 0 0 0 0 0 0 8270 2746

PME�CME B04-0030-217A 95,470 620,555 1,241,110 1,575,255 1,766,195 1,861,665 1,909,400 2,243,545 2,339,015 2,649,293
B04-0030-217B 7,374,380 9,217,975 16,592,355 20,279,545 27,653,925 29,497,520 38,715,495 44,246,280 47,933,470 55,307,850
B04-0030-217C 20,975 73,413 83,900 104,875 146,825 178,288 241,213 293,650 356,575 398,525
B04-0030-217D 6,395,400 10,771,200 18,849,600 22,047,300 22,888,800 23,898,600 26,254,800 27,264,600 29,957,400 33,155,100
B04-0030-220A 635,968 3,452,395 5,178,593 6,087,118 7,449,905 8,630,988 8,903,545 9,266,955 9,630,365 10,084,628

11 12 13 14 15 16 17 18 19 20
PMD�CMD B04-0030-217A 285,546 748,681 771,761 771,761 771,761 771,761 771,761 771,761 771,761 771,761

B04-0030-217B 148,200 148,200 148,200 148,200 148,200 148,200 148,200 148,200 148,200 148,200
B04-0030-217C 983 983 983 983 983 983 983 983 983 983
B04-0030-217D 314,847 761,057 783,367 783,367 783,367 783,367 783,367 783,367 783,367 783,367
B04-0030-220A 1,670,162 4,985,829 5,861,251 6,627,383 7,435,568 8,273,427 9,141,778 10,028,456 10,971,074 11,918,735

PMS�CMS B04-0030-217A 12,708 11,119 6,354 7,942 11,119 11,119 47,654 23,827 28,592 25,416
B04-0030-217B 4840 2,751 4,174 8,406 3,888 14,360 27,297 26,739 28,776 38,406
B04-0030-217C 1683 1854 2508 2476 2788 4918 17,848 23,375 21,719 19,857
B04-0030-217D 324,048 324,048 293,867 311,340 325,637 335,167 320,871 358,994 308,163 341,521
B04-0030-220A 12,310 11,711 15,020 12,413 4,408 9,565 54,548 79,691 44,506 46,969

PME�CME B04-0030-217A 2,744,763 2,744,763 2,911,835 2,983,438 3,055,040 3,126,643 3,317,583 3,389,185 3,389,185 3,603,993
B04-0030-217B 58,995,040 66,369,420 71,900,205 82,961,775 86,648,965 95,866,940 103,241,320 106,928,510 114,302,890 138,269,625
B04-0030-217C 429,988 450,963 471,938 534,863 545,350 587,300 608,275 629,250 650,225 681,688
B04-0030-217D 33,996,600 34,164,900 35,847,900 37,530,900 39,887,100 41,738,400 42,579,900 44,262,900 45,609,300 48,133,800
B04-0030-220A 10,448,038 10,811,448 12,083,383 12,537,645 12,537,645 13,173,613 13,173,613 13,173,613 13,173,613 13,173,613

Table 18. Expected rebuilding costs attributable to component deterioration, scour and earthquake, Bridges B04-0030-217A to B04-0030-220A (in NTD).

Rebuilding costs Bridge number

Years

1 2 3 4 5 6 7 8 9 10

PS�CRS B04-0030-217A 0 0 0 0 0 0 0 0 571 1904
B04-0030-217B 0 0 0 0 0 0 0 0 1142 1269
B04-0030-217C 0 0 0 0 0 0 0 0 857 2539
B04-0030-217D 1999 3618 5426 6981 8885 9520 41,095 42,650 55,978 65,053
B04-0030-220A 0 0 0 0 0 0 0 0 1999 635

PE�CRE B04-0030-217A 119,000 119,000 119,000 119,000 238,000 238,000 476,000 476,000 476,000 476,000
B04-0030-217B 0 0 0 0 0 0 0 0 0 0
B04-0030-217C 0 0 0 0 0 0 0 0 0 0
B04-0030-217D 0 0 119,000 119,000 119,000 119,000 238,000 357,000 476,000 476,000
B04-0030-220A 0 0 0 0 0 0 0 0 0 119,000

11 12 13 14 15 16 17 18 19 20
PS�CRS B04-0030-217A 2793 2666 1650 2221 3332 3554 16,184 8568 10,853 10,155

B04-0030-217B 2094 1142 1650 3110 1428 5077 9710 9139 9647 12,693
B04-0030-217C 2094 1904 2063 1777 1904 3046 10,250 12,566 11,456 10,155
B04-0030-217D 71,210 77,683 76,319 87,076 97,580 107,132 108,972 129,091 116,969 136,453
B04-0030-220A 2793 2666 3300 2666 952 2031 11,329 15,994 9044 9520

PE�CRE B04-0030-217A 476,000 595,000 595,000 595,000 595,000 595,000 595,000 595,000 595,000 595,000
B04-0030-217B 0 0 0 0 0 0 0 0 0 0
B04-0030-217C 0 0 0 0 0 0 0 0 0 0
B04-0030-217D 595,000 833,000 833,000 952,000 1,190,000 1,309,000 1,428,000 1,785,000 2,023,000 2,261,000
B04-0030-220A 119,000 119,000 238,000 238,000 238,000 357,000 476,000 476,000 476,000 476,000
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Table 19. The best maintenance strategies for Bridge A02-0080-000B after SOS optimisation, using four CI threshold values between 75 and 85 (in NTD).

Maintenance year

Threshold: 75 Threshold: 76
…

Threshold: 84 Threshold: 85

CI value Expected cost CI value Expected cost … CI value Expected cost CI value Expected cost

0 100 0 100 0 … 100 0 100 0
5 – – – – … – – – –
10 – – – – … – – – –
15 – – – – … – – – –
20 – – – – … – – – –
25 – – – – … – – – –
30 – – – – … – – – –
35 – – 89.92 65.333 … 89.92 65.333 89.92 65.333
40 88.53 74.316 – – … – – – –
45 – – 86.97 14.086 … 86.97 14.086 86.97 14.086
50 86.97 14.086 – – … – – – –
55 – – 86.97 14.086 … 86.97 14.086 86.97 14.086
60 – – – – … – – – –
65 – – – – … 86.97 14.086 86.97 14.086
70 – – – – … – – – –
75 – – – – … 86.97 14.086 86.97 14.086
80 – – – – … – – – –
85 – – – – … 86.97 14.086 86.97 14.086
90 – – – – … – – – –
95 – – – – … – – – –
100 75.52 0 76.84 0 … 85.65 0 85.65 0
Total Expected Cost 88.402 93.505 … 135.764 135.764

Figure 8. CI declining curves for CI threshold values ranging from 75 to 85.
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maintenance cost [E(MC)40] and rebuilding cost
[E(RC)40] are added to the total expected cost
calculation.

4. At year 100 (the end of bridge life cycle), no mainten-
ance is performed because the CI value remains above
the CI threshold. Thus, only rebuilding cost [E(RC)40]
was added into the total expected cost calculation.

Each E(MC) and E(RC) was calculated using Equations
(5) and (6). The full E(Cost) calculation of this maintenance
strategy is:

E(Cost) = [E(MC)30 þ E(MC)40]þ [E(RC)30 þ E(RC)40
þ E(RC)30].

Step 2: Optimal life-cycle maintenance cost.

The SOS optimising procedure is repeated for different lev-
els of the CI threshold. In the present study, the CI thresh-
old is set between 75 and 85. The SOS preserves the best
strategy until the end of the optimisation procedure.

7. Results from Taiwan Bridge Management System

The study uses the 3961 entries of historical bridge data that
are included in the Taiwan Bridge Management System
(TBMS). Most of the bridges included in the TBMS are
reinforced concrete bridges and managed by Directorate
General of Highways (MOTC). The life cycle of all of these
bridges is assumed to be 100 years. REMBMS was performed
in all four of the proposed stages.

After completing the third stage, all expected mainten-
ance and rebuilding costs may be obtained by multiplying
each probability with its associated cost. Tables 17 and 18
illustrate the expected maintenance and rebuilding costs that
are attributable to component deterioration, scour and
earthquake, respectively.

In the last stage, SOS used the corresponding mainten-
ance and rebuilding costs to optimise the best strategy. The
experiment was repeated using several threshold levels in
the range of 75 to 85 to further elicit the relationship
between CI threshold and expected cost. Table 19 displays
the best result of the REMBMS strategy after the completion
of the optimisation process in detail and Figure 8 depicts

the CI declining curve for each period. Using a CI threshold
of 85, maintenance on one of the bridges should be imple-
mented during years 35, 45, 55, 65, 75, 85 and 100, with a
total expected cost of NTD 135.764 million.

Figure 9 illustrates the relationship between CI threshold
and expected cost. It is thus apparent that lower CI thresh-
old values are associated with lower expected maintenance
costs. However, it is important to remember that the model
introduced in the present study does not consider traffic
loading conditions or social costs. Therefore, the bridge
management authority must consider these two factors in
its ultimate determination of appropriate maintenance
schedules and budgets. The REMBMS is designed to assist
bridge management authorities by providing various stra-
tegic plan options for optimising the timing and budget for
bridge maintenance.

8. Conclusions

The present research introduces a novel, integrated model
called REMBMS. The solutions obtained using REMBMS
provide significantly better maintenance timing and cost
estimates than the bridge maintenance approach that is cur-
rently used by the transportation authorities in Taiwan.
Reasons for the superiority of the REMBMS include: risk-
factor identification considers scouring and earthquake
damage as well as component deterioration as main risk fac-
tors. Monte Carlo simulation is used to determine risk
probability; and ESIM is used to extrapolate estimates of
bridge maintenance cost from historical data.

The total maintenance cost (E(Cost)) is calculated by
multiplying each maintenance probability with its associated
cost. Furthermore, the SOS optimises the given objective
function to obtain the minimum E(Cost) for each bridge.
The present study provides bridge management authorities
with an effective approach for determining the optimal tim-
ing and budget for maintaining transportation bridges.
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Figure 9. Expected costs at various CI thresholds.
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