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Abstract
The present study proposes a new self-tuning least squares support vector machine, called MSOS-SVM, for modeling the
pavement rutting behavior of asphalt mixtures. MSOS-SVM combines the least squares support vector machine (LS-SVM),
the symbiotic organisms search (SOS), and chaotic maps. In this system, the LS-SVM is used to establish the relationship
model between the flow number obtained from laboratory tests and the parameters specified in the asphalt mix design. SOS
is used to find the best LS-SVM tuning parameters. Meanwhile, chaotic system is used to enhance the exploration and
exploitation process of SOS. A total of 118 historical cases were used to establish the intelligence-prediction model. The
results validate the ability of MSOS-SVM to model the pavement rutting behavior of asphalt mixtures to a relatively high
level of accuracy as measured using four error indicators. The present study demonstrates that the proposed computational
intelligence system is a highly beneficial decision-making tool for road designers and engineers.

Keywords Asphalt mixtures · Computational intelligence · Prediction · Rutting behavior · Least squares support vector
machine · Symbiotic organisms search

1 Introduction

The field of pavement engineering has focused increasing
attention on the pavement rutting behavior of asphalt mix-
tures in recent decades. Vehicle load cycles are positively
related to rutting in asphalt pavements, which degrades the
service life of this type of pavement and creates hazardous
conditions for roadway users (Sousa et al. 1991). Further-
more, this rutting reduces pavement thickness and reduces
useful pavement life through fatigue cracking, decreased
drainage capacity, water pooling, and uneven road surfaces.
Repetitive vehicle traffic has been shown to be a main cause
of pavement rutting and of the permanent deformation of
asphalt roadways (Kaloush 2001). Therefore, understand-
ing the permanent deformation behavior of asphalt mixtures
under repeated loading and formulating proper asphalt mix-
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tures prior to installation on roadways are critical to creating
asphalt road surfaces that offer optimal durability and safety
for roadway users (Alavi et al. 2011). The dynamic creep
test is one of the best methods currently known for assess-
ing the permanent deformation potential of asphalt mixtures
(Kaloush et al. 2002). The “flow number”, the number
of loading cycles at which permanent deformation starts
(Witczak et al. 2002), is a good indicator of the rutting resis-
tance of a given asphalt mixture. However, the complexity
and cost of the dynamic creep testmake this test infeasible for
widespread, frequent use. Therefore, a relationship model,
which uses historical data and matches the flow numbers
obtained from the dynamic creep test to the related param-
eters obtained from the asphalt mix design, was developed
to provide a significantly less expensive, less time consum-
ing, and sufficiently accurate alternative to the dynamic creep
test.

Predicting the performance of asphalt mixtures is a critical
part of roadway planning and construction. However, build-
ing a relationship model that accurately describes asphalt
mixture performance has traditionally been a complicated
task as the permanent deformation of asphalt mixtures is
influenced by several factors that are complex and highly
nonlinear. Conventional approaches, such as linear regres-
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sion and decision tress, are inadequate in terms of accuracy
and computational cost for building a satisfactory model.
Advanced artificial intelligence (AI) approaches have been
reported to outperform the conventional approaches based on
their excellent learning features in a wide variety of research
fields (Kartelj et al. 2014; Cheng et al. 2014a; Cheng and
Prayogo 2016; Sartakhti et al. 2017), including pavement
design and engineering (Ahmed et al. 2017; Gu et al. 2018;
Amin and Amador-Jiménez 2017). Nevertheless, only few
studies have used AI to predict the flow number of asphalt
mixtures (Alavi et al. 2011; Gandomi et al. 2010; Mirzahos-
seini et al. 2011).

The primary objective of the present research work is to
build an accurate prediction model for permanent deforma-
tion that uses advanced AI methods to enhance the analysis
of pavement rutting behavior. A new technique, the modi-
fied symbiotic organisms search-least squares support vector
machine (MSOS-SVM), is proposed for this purpose. The
MSOS-SVM combines a prediction technique, the least
squares support vector machine (LS-SVM) (Suykens and
Vandewalle 1999), with an optimization tool, symbiotic
organisms search (SOS) (Cheng et al. 2014b), and a pseudo-
randomness element of a chaotic system. To the best of our
knowledge, this paper is the first to study the integration
between three AI elements, chaotic system, SOS, and LS-
SVM, for predicting pavement rutting behavior. LS-SVM
is used to create a prediction model to find the relationship
between rutting behavior and asphalt mixtures, SOS is used
to optimize the hyperparameters of LS-SVM to increase the
prediction accuracy, and chaotic system is used to enhance
the exploration and exploitation process of SOS.

The proposed model is investigated alongside other pre-
diction methods in terms of its efficacy as an accurate
prediction model for pavement rutting in asphalt mixtures.
Furthermore, a cross-validation technique is used to validate
the training and test process and four different measures of
accuracy are used to evaluate the performance of each pre-
diction method.

2 Literature review

Numerous studies in the field of pavement engineering
have in recent decades proposed approaches for model-
ing the rutting/permanent deformation potential of asphalt
mixes. Conventional permanent deformation models have
primarily used empirical models, which have limited mate-
rial characterization abilities that lead to poor correlations
with the actual performance of asphalt mixes in the field.
There are three categories of rutting evaluation methods:
(1) mechanistic-empirical modeling, (2) advanced consti-
tutive modeling, and (3) simple tests performed during the
design phase to evaluate the fundamental engineering proper-
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Fig. 1 Plot of accumulated strain versus number of loading cycles

ties and responses of mixture materials (Kim 2008). Several
studies have aimed to identify the most effective models
(Kaloush 2001; Kenis 1977; NCHRP 2004; Kannemeyer
and Visser 1995). However, the accuracy of mechanistic-
empirical rutting models is directly correlated with the
quality and quantity of the empirical data employed in the
calibration. Another significant area of research on this topic
has focused on the viscoelastic, viscoplastic, and damage
response components impacting the behavior of asphalt con-
crete directly. As a result of these efforts, three-dimensional,
nonlinear, finite element codes were created (Gibson 2006).
However, this finite, element-based approach has certain lim-
itations, e.g., its high case-to-case variability results in poor
generalizability. Additionally, a high level of prior knowl-
edge about the nature of a relationship between variables is
required by this approach.

Thedynamic creep test is one of the bestmethods currently
available to assess the rutting potential of asphalt mixtures
(Kaloush et al. 2002). This test employs data from a few
thousand repetitions of a repeated load test to record the
cumulative permanent deformation. Permanent deformation
is the main cause of rutting on asphalt mixtures. As shown
in Fig. 1, according to Witczak et al. (2002), and illustrated
in Fig. 1, the flow number is defined as the number of load-
ing cycles at which permanent (tertiary) deformation begins.
Thus, the flow number can be used to measure the resistance
of the mixture to permanent deformations (Christopher et al.
2007).

Moreover, each test-experimental site report presents all
of the repeated load permanent deformation data, allowing
comparisons to be made between these parameters and rut-
ting. In summary, of the many mixture-response parameters
that correlate well with themeasured rut depths, flow number
was the highest-ranked test parameter, comparing well with
the measured rut depths for all projects and test sections.
Hence, a model evaluating the relationship between the flow
number acquired from the dynamic creep test and the param-
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eters obtained from mixture designs enables designers and
road engineers to evaluate pavement rutting behavior effi-
ciently, considering cost and time.

In one of the earliest studies conducted to measure the
rutting potential of asphalt mixtures, Gandomi et al. (2010)
used flow number as the target output predictor. The AI
gene expression programming (GEP) method was used to
build an accurate prediction model using a total of 118 sam-
ples from a real-world historical dataset. This model was
subsequently benchmarked using multivariate least squares
regression (MLSR) analysis, with results supporting the
model as an effective tool for measuring the flow number
based on the asphalt pavement mixture designs.

Using the same historical dataset, Alavi et al. (2011) used
the hybrid genetic programming and simulated annealing
(GP/SA) method to build a prediction model for asphalt mix-
ture performance. The dataset was randomly divided, with
89 data points (75%) used as training set and 29 data points
(25%) used as test set. Sensitivity analysis was used to eval-
uate the effects of the variables on the flow number.

To assess the rutting potential of dense asphalt-aggregate
mixtures, Mirzahosseini et al. (2011) employed two artifi-
cial neural network models, multi-expression programming
(MEP) and multilayer perceptron (MLP). Subsequently,
MLSR analysis was used to benchmark these two models.
Moreover, Yan et al. (2014) investigated the capacity of the
support vector machine (SVM) for predicting the flow num-
ber based on the asphalt pavement mixture designs. The
results were compared with results acquired by MLSR and
GEP.

Previous studies in this area have made limited use of AI
techniques. Furthermore, these studies have used only a sim-
ple, random division of training and test sets in the validation
process. A more advanced validation method is necessary
to eliminate the potential for bias in dividing data points
between these two sets. Thus, more reliable and advanced
models are needed to predict the flow number of asphalt mix-
tures.

3 Methodology

3.1 Predictionmethod: LS-SVM

LS-SVM is amodified version of SVM (Suykens and Vande-
walle 1999), and LS-SVM is a statistical learning theory that
adopts a least squares linear system as a loss function rather
than as a quadratic program as in original SVM (Kulkrni
et al. 2011). The LS-SVM is a newmachine learning method
offering numerous advanced features for fast computation
and good generalization. As confirmed by empirical stud-
ies, LS-SVM is at least equally as accurate as conventional
SVM; nonetheless, the computing efficiency of LS-SVM is

higher (van Gestel et al. 2004). Furthermore, an LS-SVM
in a machine learning model uses training samples and not
the identification of supporting vectors as does conventional
SVM. The following formula expresses the optimization
problem and the constraints for LS-SVM:

Minimize Jp(w, e) � 1

2
wTw + γ

1

2

N∑

k�1

e2k , (1)

Subjected to yk � wTφ(xk) + b + ek, k � 1, . . . , N , (2)

where ek ∈R are error variables and γ >0 denotes a regular-
ization constant.

The resulting LS-SVMmodel for function estimationmay
be expressed as:

y(x) �
N∑

k�1

αk K (xk, xl) + b, (3)

where αk and b are the solutions to the linear system (4).
The radial basis function (RBF) kernel is the kernel func-

tion that is most frequently used. The RBFmay be expressed
as:

K (xk, xl) � exp

(
−

∥∥xk − x2l
∥∥

2σ 2

)
, (4)

where σ is the kernel function parameter.

3.2 Optimizationmethod: modified SOS

3.2.1 Basic symbiotic organisms search

SOS is a newly promising metaheuristic algorithm first pro-
posed by Cheng et al. (2014b) and that has been used
extensively to solve many types of engineering problems
(Prayogo et al. 2017; Tran et al. 2016; Cheng et al. 2016;
Yu et al. 2017). As shown in Fig. 2, SOS simulates three
symbiotic interactions through the iterative moving of an
ecosystem (population) of organisms (candidate solutions)
toward better areas during the process of finding the optimal
global solution. All organisms have a certain fitness value.
The fitness value reflects the objective value, which corre-
sponds to the candidate solution.

The following explains the three phases of mutualism
symbiosis, commensalism symbiosis, and parasitism sym-
biosis, which simulate the three types of symbiotic interac-
tions that occur in the real world.
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Initialize an ecosystem of organisms x
while the stopping criterion is not satisfied

for i = 1 to ecosystem size do
  Update the current best solution xbest

Simulate mutualism symbiosis between xi and xii
Simulate commensalism symbiosis between xi and xii
Simulate parasitism symbiosis between xi and xii

end for
end while

Fig. 2 Pseudo-code of the SOS algorithm

In the mutualism symbiosis phase, the interactions of an
organismwith another organism aremutually beneficial. The
following equation expresses this phase:

xi new � xi + rand (0, 1)

∗
[
xbest −

( xi + xii
2

)
∗ (1 + round (rand (0, 1)))

]
,

(5)

xii new � xii + rand (0, 1)

∗
[
xbest −

( xi + xii
2

)
∗ (1 + round (rand (0, 1)))

]
,

(6)

(7)xi �
{
xi f (xi ) ≤ f (xi new)

xi new f (xi ) > f (xi new)
,

(8)xii �
{
xii f (xii ) ≤ f (xii new)

xii new f (xii ) > f (xii new)
,

where xi is the ith organism vector of the ecosystem, xii is the
iith organism vector of the ecosystem in which ii �� i, xbest
represents the best organism in the current generation, xi new
and xii new represent the respective candidate solutions for xi
and xii after their interaction, f (xi) is the fitness value of xi,
f (xii) is the fitness value of xii, f (xi new) is the fitness value
of xi new, and f (xii new) is the fitness value of xii new.

In the commensalism symbiosis phase, the interactions of
an organismwith another organism benefit that organism and
have no effect on the other organism. The following equation
expresses this phase:

xi new � xi + rand(−1, 1) ∗ (xbest − xii ), (9)

xi �
{
xi f (xi ) ≤ f (xi new)

xi new f (xi ) > f (xi new)
, (10)

where xi is the ith organism vector of the ecosystem, xii is the
iith organism vector of the ecosystem in which ii �� i, xbest
represents the best organism in the current generation, xi new
represents the candidate solutions for xi after the interaction,

f (xi) is the fitness value of xi, and f (xi new) is the fitness value
of xi new.

In the parasitism symbiosis phase, the interactions of an
organism with another organism benefit that organism and
harm the other organism. The following equation expresses
this phase:

xparasite

�
{
xi if rand (0, 1) ≤ rand (0, 1)
LB + rand (0, 1) ∗ (UB − LB) if rand (0, 1) > rand (0, 1)

,

(11)

(12)xii �
{
xii f (xii ) ≤ f

(
xparasite

)

xparasite f (xii ) > f
(
xparasite

) ,

where xi is the ith organism vector of the ecosystem, xii is the
iith organism vector of the ecosystem in which ii �� i, xparasite
is the artificial parasite organism created to compete with the
host organism xii, f (xii) is the fitness value of xii, f (xparasite)
is the fitness value of xparasite, LB is the lower bound of the
problem, and UB is the upper bound of the problem.

3.2.2 Chaotic maps for manipulating the exploitation
and exploration of SOS

Due to the stochastic nature of metaheuristic algorithms,
it is not possible to set a clear boundary between explo-
ration and exploitation during the search process. There is
a possibility of metaheuristic algorithms to be trapped in
local optima with a lack of adequate balance between explo-
ration and exploitation. Accordingly, an increasing number
of studies have aimed to enhance the performance of meta-
heuristic algorithms through the improvement of exploration
and exploitation.

The past decade has seen increasing interest in the
application of chaotic system to improve exploration and
exploitation ofmetaheuristic algorithms.A chaosmap is a set
of functions that describe some sort of random and chaotic
behavior, but not necessarily random. Thus, a chaos map
proves that a deterministic system can also exhibit random
behavior (Saremi et al. 2014). Zhenyu et al. (2006) applied a
chaotic mutation factor to enhance the performance of differ-
ential evolution (DE). In the study of Gandomi et al. (2013),
the global search of the firefly algorithm (FA) was increased
by using chaotic maps instead of parameters of FA. More-
over, the chaoticmapswere integrated by Saremi et al. (2014)
into the selection, emigration, and mutation probabilities of
biogeography-based optimization (BBO).

All mentioned studies confirmed the capacity to enhance
the performance ofmetaheuristic algorithms. As a result, this
study aims to manipulate the exploration and exploitation
in the standard SOS phases by applying the chaotic map-
ping operator in place of random parameters. In this study,
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Table 1 Chaotic maps

No. Chaotic maps Formulation

1 Iterative Ct+1 �
sin

(
aπ
Ct

)
, a � 0.7

2 Logistic Ct+1 �
aCt (1 − Ct ), a �
4

3 Sinusoidal Ct+1 �
aC2

t sin(πCt ), a �
2.3

the chaotic maps used are investigated and the method of
SOS performance enhancement through the chaotic maps is
further explained. Table 1 and Fig. 3 show three selected
chaotic maps (Saremi et al. 2014). All chaotic values (Ct )
were mapped in the interval between 0 and 1. Following
(Gandomi et al. 2013), 0.7 was used as the initial point for
all. It is also worth pointing out that Fig. 3 shows quite clear
chaotic behaviors, while Table 1 does not show random com-
ponents.

This study used chaoticmaps tomanipulate themutualism
and commensalism operators of the SOS algorithm. As can
be seen inEqs. (5) and (6), themodification of the organism in
the mutualism symbiosis phase is influenced by the uniform
random parameter of rand(0, 1). A large value generated by

rand(0, 1) enables the exploration of a new and promising
region, but it takes a long time for the organisms to converge.
On the other hand, a small value generated by rand(0, 1)
facilitates exploitation but it sometimes leads organisms to
prematurely converge on local optima. Chaotic maps were
used to replace the uniform random parameter as follows:

xi new � xi + Ct

∗
[
xbest −

( xi + xii
2

)
∗ (1 + round (rand (0, 1)))

]
,

(13)

xii new � xii + Ct

∗
[
xbest −

( xi + xii
2

)
∗ (1 + round (rand (0, 1)))

]
.

(14)

Similarly, according to Eq. (9), the modification of organ-
isms in the commensalism symbiosis phase is affected by
the uniform random parameter of rand(−1, 1). The chaotic
maps were used to replace the uniform random parameter as
follows:

xinew � xi + Ct ∗ (xbest − xii ). (15)

In the modified SOS algorithm, different chaotic maps for
mutualism symbiosis and commensalism symbiosis provide

Fig. 3 Illustration of chaotic
behavior for iterative, logistic,
and sinusoidal maps
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Model Selection
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Fig. 4 MSOS-SVM architecture

different searching patterns for exploration and exploitation.
A symbiotic interaction of SOS gives priority either to explo-
ration or exploitation, considering that a chaoticmap exhibits
chaotic behavior.

3.3 MSOS-SVM system integration

This study combines the several different AI techniques of
SOS, chaotic system, and LS-SVM in a hybrid AI system
called MSOS-SVM. The LS-SVM plays an important role
as a predictor that accurately maps the relationship of input
and output variables of the given dataset. The SOS and chaos
system are utilized to optimize the LS-SVM parameters γ

and σ . Figure 4 shows the architecture of MSOS-SVM.
The six main steps of the SOS-SVM are conducted across

the training and test phases and are explained below:

1. Dataset, training set, and test set: The dataset is divided
into a training set (70%) and a test set (30%). Further-
more, to avoid the situation when one or some input
variables dominate others, the datasets were scaled into
a (0,1) range (Hsu et al. 2003). The training set is fur-
ther divided into training subset and validation subset for
model selection through cross-validation. The test set is

used to measure the performance of the LS-SVM predic-
tion model.

2. Initialization of hyperparameters:
In the first iteration, the parameters are initialized ran-
domly within the boundary range using the following
formula:

x � rand(0, 1) ∗ (UB − LB) + LB, (16)

where x represents candidate solution (hyperparameters),
UB represents upper bound, and LB represents lower
bound. For the present study, the lower and upper bounds
were set to 10−10 and 1010, respectively.

3. Model selection and fitness evaluation: This step is a
critical and important step for building the accurate learn-
ing model. LS-SVM model is trained using the training
set and the initial hyperparameters with a goal to find the
accurate relationship between input and output variables.
LS-SVM requires two parameters to operate, γ and σ ,
to conduct the learning process. The training process is
conducted iteratively, and the tuning parameters are grad-
ually optimized using the MSOS algorithm. To evaluate
the accuracy of the learning system, a fitness function that
is correlated with the accuracy of the prediction model is
now developed. The combination of γ and σ parameters
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Table 2 Statistical description
of permanent deformation
analysis obtained from the
dynamic creep test

Attribute Unit Type Minimum Maximum Average SD

C/S – Input 0.58 4.5 1.8410 1.0506

FP % Input 1 10 5.5424 3.1721

BP % Input 4 7 5.5085 0.8138

VMA % Input 13.2 19.04 16.5513 1.4123

M/F – Input 0.61 4.81 2.9872 0.7425

Fn – Output 22 510 227 143.9741

Table 3 Training results by SOS and MSOS over the tenfolds

Optimizer Optimal fitness
value (average
validation
RMSE)

Hyperparameters

Final γ Final σ 2

SOS 34.6147 1.8356E+09 4.3391E+03

MSOS1 34.5491 8.1941E+08 3.4134E+03

MSOS2 34.4811 2.2330E+08 2.1421E+03

MSOS3 34.4799 2.3992E+08 2.2888E+03

that produces the best fitness value is considered as the
most accurate prediction model. In the training process,
the potential exists for the system to fit a poor training
dataset on the new dataset, which is a problem known
as “over-fitting” (Bishop 2006). To overcome this prob-
lem, a well-known technique, k-fold cross-validation, is
incorporated in the fitness function. The dataset is now
split into k folds, which assigns the (k −1)/k portion of
the dataset for training and assigns the remaining portion
for validating the prediction model. A total of k-distinct
sets of training and validation subset are performed. The
fitness function uses root-mean-square error (RMSE) to
represent model accuracy as shown in Eq. (17):

fit_val �
∑S

k�1 RMSEval

S
, (17)

where S is the total number of folds and fit_val is the
fitness value calculated from the RMSE between the pre-
dicted and actual values for the validation set.

4. Modified SOS for parameter search: The hybrid AI sys-
tem uses MSOS to explore the various combinations
of γ and σ parameters to identify the best set of these
hyperparameters. The search process commences with
the generation of the initial population that represents the
initial candidate solution for the searched hyperparame-
ters. Asmentioned before, the population is then encoded
into continuous variables with the boundary limit set
from 0 to 1. MSOS utilizes the mutualism, commensal-
ism, and parasitism phases with the help of a chaotic

system for each iteration to gradually improve the fitness
value of each candidate solution in the population.

5. Optimal hyperparameters: The loop stops when the ter-
mination criterion is fulfilled, which implies that the
predictionmodel has identified the input/output mapping
relationship with optimal γ and σ parameters.

6. LS-SVM predicting: The optimal LS-SVM γ and σ

parameters that were obtained from the training phase
are used to establish the prediction model for predicting
the test set.

4 Experimental results

4.1 Data collection and preparation

The study used an experimental dataset acquired from Alavi
et al. (2011). A set of 118 experiment samples of dynamic
creep tests was collected from the Asphalt Mixtures and
Bitumen Research Center at the Iran University of Science
and Technology. The purpose of the uniaxial dynamic creep
test was to detect the flow number, which correlates with
the rutting performance the asphalt mixtures. The details
of aggregates, fillers, and bitumen characteristics are pro-
vided in Alavi et al. (2011). The experimental dataset of
five input variables and one output variable employed in this
study is presented in Table 2. The ratio of coarse aggregate
to fine aggregate (C/S), percentage of filler to the total aggre-
gate (FP), percentage of binder to the total aggregate (BP),
percentage of voids in mineral aggregate (VMA), ratio of
Marshall stability to Marshall flow (M/F), and flow number
(Fn) are the main attributes of the dataset. “Appendix” pro-
vides the whole dataset of the dynamic creep test samples.

4.2 Model selection and training results

In this study, the performance of threeMSOSs in selecting the
optimal hyperparameters was benchmarked with the original
SOS.Asmentioned previously, three types of chaosmaps uti-
lized by MSOSs were investigated: iterative map (MSOS1),
logistic map (MSOS2), and sinusoidal map (MSOS3). To
ensure a fair comparison, theMSOSs and SOS used the same
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Fig. 5 Convergence history of the average validation error for each algo-
rithm

settings: maximum number of iterations�20 and ecosystem
size�20. The boundary range for the γ and σ parameters
was set between 10−10 and 1010.

The tenfold cross-validation splits the training set into 10
sets of different training and validation subsets. The model
selection was performed by MSOSs and SOS using 10 sets
of training and validation subsets, and the average valida-

tion errors were used as the fitness values. Table 3 shows
the training performance of each model. Figure 5 shows the
convergence history of the model selection using MSOSs
and SOS. It can be seen from Fig. 5 and Table 3 that all vari-
ants of MSOS are able to find the lower validation error in
comparison with the original SOS. MSOS2 and MSOS3 can
yield the most optimum fitness value, slightly better than the
other models. Furthermore, Fig. 6 shows the hyperparame-
ters selection history of each model.

4.3 Prediction results

This research used four performance metrics to evaluate
the prediction accuracy of the proposed method and other
prediction techniques as follows:

1. Correlation coefficient (R)
R is a statistical measure of how well a regression line
approximates the real data points. The following equation
is used to express R:

R � n
∑

y.y′ − (∑
y
)(∑

y′)
√
n
(∑

y2
) − (

∑
y)2

√
n
(∑

y ′2) − (
∑

y′)2
.

(18)

Fig. 6 Hyperparameters
selection history for each
algorithm
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Table 4 Test performance of
MSOS-SVMs and other
methods

AI methods Performance indicators

R RMSE MAE MAPE

BPNN 0.9582 49.2929 32.3731 0.2500

LS-SVM 0.9459 72.5298 58.7483 0.7979

SOS-SVM 0.9712 38.7542 24.5113 0.2828

MSOS1-SVM 0.9720 38.2396 23.9216 0.2469

MSOS2-SVM 0.9724 37.9132 23.4834 0.2347

MSOS3-SVM 0.9723 38.0390 23.5934 0.2424

Table 5 Details of test results of
MSOS-SVMs and other
methods

Test Actual Deviation between actual and predicted Fn

Case Fn BPNN LS-SVM SOS-SVM MSOS1-
SVM

MSOS2-
SVM

MSOS3-
SVM

16 55 11.08 42.73 1.23 1.24 1.26 1.07

17 50 0.47 54.85 6.21 4.10 3.96 4.25

18 300 26.31 12.94 39.61 40.60 40.62 40.39

21 300 38.37 17.89 57.03 60.34 59.65 58.64

28 370 52.85 85.07 76.75 78.86 78.39 77.87

32 310 7.82 23.50 23.03 25.23 24.91 24.30

38 190 35.80 21.51 5.00 4.20 3.44 3.69

40 300 14.75 25.03 4.47 6.57 6.00 5.33

46 300 57.56 14.22 21.34 21.20 21.24 21.35

47 510 153.50 212.25 151.76 152.99 153.67 153.75

52 38 8.74 44.66 10.34 10.27 10.26 10.16

54 500 130.18 103.23 28.69 30.72 30.27 29.63

56 60 7.00 56.68 5.40 5.33 5.62 5.48

57 420 79.63 88.40 5.48 3.58 2.74 3.38

58 24 37.51 91.96 54.52 44.99 41.94 43.55

59 60 26.60 31.60 9.83 7.26 7.22 7.79

64 40 6.62 51.93 6.23 3.41 1.71 2.10

66 380 27.91 120.49 28.12 28.94 28.67 28.55

69 52 12.11 36.24 13.25 14.23 14.05 13.87

71 380 9.49 46.22 10.29 8.38 8.47 9.07

73 230 33.76 64.27 40.19 39.37 40.18 40.71

82 60 20.43 51.28 2.37 1.25 1.33 1.49

83 50 0.50 63.62 3.69 3.43 2.85 3.21

87 50 14.40 44.83 3.76 4.12 4.05 3.81

90 300 23.97 43.61 41.66 44.01 44.52 43.86

92 320 8.47 36.86 3.27 4.69 4.19 3.67

94 150 90.06 14.51 5.42 7.70 7.75 7.39

95 60 1.44 60.90 12.25 11.53 11.82 12.07

98 370 4.96 68.03 41.85 42.71 40.88 40.64

101 310 16.37 15.38 24.03 25.07 24.96 24.57

102 60 8.92 46.49 13.84 13.40 13.40 13.56

103 38 8.64 45.55 11.53 7.69 6.92 7.52

105 22 39.00 165.14 78.70 65.25 61.47 65.34

113 480 111.37 113.16 5.09 3.90 4.64 4.95

118 40 6.47 41.16 11.68 10.68 8.89 8.75
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Fig. 7 Prediction deviation of
LS-SVM, BPNN, SOS-SVM,
and MSOS-SVMs for the test set
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2. Root-mean-square error (RMSE)
RMSE is the square root of the average squared distance
between the values that are predicted by themodel and the
values that are observed. RMSEmay be used to calculate
the variation of errors in a prediction model and is very
useful when large errors are undesirable. The following
equation is used to express RMSE:

RMSE �
√
1

n

∑n

j�1
(y j − ŷ j )2, (19)

where y j is the actual value, ŷ j is the predicted value,
and n is the number of data samples.

3. Mean absolute error (MAE)
MAE is the average absolute value of the residual (error).
MAE is used tomeasure the closeness of forecasts or pre-
dictions to the actual outcomes. The following equation
is used to express MAE:

MAE � 1

n

∑n

j�1

∣∣y j − ŷ j
∣∣ (20)

4. Mean absolute percentage error (MAPE)
MAPE is used to measure prediction accuracy in terms
of prediction percentage error. Small denominators cause
problems in the MAPE value as these values generate
large MAPE values that impact overall value. The fol-
lowing equation is used to express MAPE:

MAPE � 1

n

∑n

j�1

∣∣∣∣
y j − ŷ j

y j

∣∣∣∣ × 100% (21)

To validate the performance of the developed MSOS-
SVM models, comparisons with other predictive models,
including the original LS-SVM and back-propagation neural
network (BPNN), in addition to SOS-SVM,were performed.
The comparison between MSOS-SVM and other predictive
algorithms may imply the advantages of using the optimiza-
tion method to tune the optimal parameters. BPNN settings
included: maximum hidden layers�1; number of neurons in
the hidden layer�5 (equal to the number of input variables);

and learning rate�1. Finally, the LS-SVM parameters for σ

and γ were set to 1 as suggested in Suykens and Vandewalle
(1999).

Table 4 shows the complete set of experimental results.
These results show that the three MSOS-SVM models per-
formed better in the overall measurement category. In terms
of R, RMSE,MAE, andMAPE, the MSOS-SVMs earned the
best score followed by the SOS-SVM. The LS-SVM earned
theworst scores for prediction ability.MSOS2-SVMhas pro-
duced a slightly better performance among the MSOS-SVM
models.

The detailed results for test set of the MSOS-SVMs,
SOS-SVM, LS-SVM, andBPNN, respectively, are displayed
in Table 5. Figure 7 further illustrates the test deviations
between the actual and predicted values for the three pre-
diction techniques. The three proposed MSOS-SVMmodels
produced the best data fit among the prediction techniques
that were evaluated, further supporting that the MSOS-SVM
is the most reliable algorithm for establishing the prediction
model.

4.4 Comparison with previous works

Many studies have been conducted to predict the rutting
behavior of asphalt mixtures using AI methods. As men-
tioned earlier in Sect. 2, some previous works that have
performed the rutting behavior modeling of the asphalt mix-
tures are: Gandomi et al. (2010) with the gene expression
programming (GEP); Alavi et al. (2011) with the hybrid
genetic programming and simulated annealing (GP/SA)
method; and Mirzahosseini et al. (2011) with the multi-
expression programming (MEP). Table 6 compares the test
performance between the MSOS-SVM and other predictive
techniques. It is worth noting that the data partitioning for
training and test sets might be different between the present
study and the past work because the data partitioning is often
not shown in the past literature. As shown in Table 6, all
MSOS-SVMmodels perform better in different performance
metrics.
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Table 6 Test performance of MSOS-SVMs and other methods

AI methods Ref Performance metrics

R RMSE MAE

MEP Mirzahosseini
et al.
(2011)

0.956 46.23 32.509

GP/SA Alavi et al.
(2011)

0.948 46.06 33.842

GEP Gandomi
et al.
(2010)

0.891 67.63 48.218

MSOS1-
SVM

Present
study

0.9720 38.2396 23.9216

MSOS2-
SVM

Present
study

0.9724 37.9132 23.4834

MSOS3-
SVM

Present
study

0.9723 38.0390 23.5934

Bold indicates best performance

5 Conclusion

The present study developed a new self-tuning prediction
method called themodified symbiotic organisms search-least
squares support vector machine (MSOS-SVM) to predict
permanent deformation in asphalt mixtures. SOS is a very
promising metaheuristic algorithm that offers important
advantages over traditional metaheuristic algorithms, includ-
ing less control parameters. The three unique phases of SOS
were shown to cover the search space of the hyperparam-
eters effectively, which reduced the risk of entrapment in
local optima. The chaoticmaps are utilized to further enhance
the SOS performance in searching the optimal hyperparam-
eters. Furthermore, three prediction methods, SOS-SVM,
LS-SVM, and BPNN, were used as a benchmark for the
MSOS-SVM. The experimental dataset was acquired from a
prior dynamic creep test of 118 samples.

Furthermore, four performance metrics (MAPE, MAE,
RMSE, and R) were used to additionally compare the
proposed MSOS-SVM for performance outcomes to quan-
titatively compare in detail various predictive techniques.
According to the results, the most accurate performance
measure is the proposed MSOS-SVM, with the SOS-SVM,
BPNN, and LS-SVM achieving the second-, third-, and
fourth-best overall accuracies, respectively. It is obvious
that the original LS-SVM was outperformed by the hybrid
MSOS-SVM because of the success of the MSOS in finding
parameters of better fit than the default parameter settings in
the LS-SVM. The superiority of MSOS-SVM over BPNN
indicates that the proposed methods perform better than
other, currently prevalent prediction methods. Meanwhile,
the superiority of the MSOS-SVM over SOS-SVM reveals

the success of chaos maps in improving the exploration and
exploitation of the basic SOS.

This study conclusively established that the newpredictive
model, MSOS-SVM, enables road planners and engineers
to resolve a crucial problem of pavement rutting in asphalt
mixtures. The innovative model predicts precisely the proper
flow number of asphalt mixtures, and accordingly designers
are enabled to choose mixtures that meet specifications. The
findings proved that the MSOS-SVM is the optimal model
for developing asphalt mixtures with particular permanent
deformation characteristics.

Compliance with ethical standards

Conflict of interest No potential conflict of interest was reported by the
authors.

Appendix

See Table 7.

Table 7 Dynamic creep test conducted on the asphalt mix samples

No. Input Output

C/S FP (%) BP (%) VMA
(%)

M/F Fn

1 1.45 7 5 15.12 3.39 340

2 2.27 2 5.5 16.38 3.37 50

3 1.16 6 5.5 17.38 3.68 230

4 1.45 7 4 16.3 3.59 260

5 2.27 2 6.5 17.51 2.84 60

6 1.45 7 4 16.16 3.27 350

7 0.88 10 5.5 16.69 4.17 440

8 4.5 1 4.5 13.7 2.35 37

9 1.16 6 7 18.32 2.68 240

10 2.43 4 5.5 15.43 2.33 180

11 1.16 6 6.5 17.74 3.28 260

12 0.58 10 6.5 17.88 4.33 400

13 2.43 4 5.5 15.13 2.49 200

14 0.58 10 7 18.82 2.56 350

15 1.16 6 5 17.96 2.97 160

16 2.27 2 6 17.05 2.86 55

17 2.27 2 5.5 16.36 2.45 50

18 1.45 7 4.5 15.45 3.41 300

19 1.16 6 6 17.08 3.58 270

20 0.58 10 5.5 18.24 2.41 380

21 0.58 10 5.5 18.15 2.32 300

22 2.43 4 4 14.05 3.51 170
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Table 7 continued

No. Input Output

C/S FP (%) BP (%) VMA
(%)

M/F Fn

23 2.77 2 4.5 15.29 3.09 80

24 0.88 10 6.5 17.92 3.45 480

25 1.45 7 6 16.99 2.65 280

26 2.43 4 5 14.72 2.74 210

27 1.16 6 7 18.54 2.99 220

28 1.54 6 6 15.94 3.18 370

29 0.88 10 4.5 18.22 3.63 340

30 0.88 10 6 17.05 3.98 500

31 2.77 2 4.5 14.95 3.86 48

32 1.45 7 4.5 15.51 3.07 310

33 0.58 10 5 18.98 1.81 320

34 2.43 4 4.5 14.31 3.39 160

35 2.77 2 5.5 15.8 2.66 80

36 1.16 6 5 18.13 3.3 180

37 2.27 2 7 17.97 2.45 45

38 2.43 4 4.5 14.54 3.3 190

39 2.27 2 6 16.83 2.84 55

40 1.54 6 5 15.65 3.72 300

41 1.45 7 6 17.42 2.86 240

42 1.54 6 4.5 16.26 3.24 290

43 1.54 6 4.5 15.8 3.41 260

44 2.43 4 5 14.92 2.82 150

45 1.16 6 5.5 17.63 3.27 270

46 0.58 10 5 18.87 1.77 300

47 0.88 10 4.5 18.29 2.93 510

48 1.16 6 5 18.25 3.23 210

49 2.77 2 6.5 17.23 1.76 50

50 2.27 2 7 18.49 2.57 50

51 2.43 4 5.5 15.65 2.41 140

52 4.5 1 4.5 13.76 2.03 38

53 2.77 2 5 15.25 3.29 75

54 0.88 10 5.5 16.71 4.32 500

55 2.27 2 6.5 17.21 2.84 60

56 2.77 2 4.5 15.24 2.98 60

57 0.88 10 5 17.1 4.81 420

58 4.5 1 5.5 14.33 1.46 24

59 2.77 2 6.5 17.06 1.75 60

60 1.45 7 5.5 15.92 3.44 350

61 2.27 2 5.5 16.64 3.15 45

62 0.88 10 6 17.48 4.56 420

63 0.88 10 4.5 17.99 4.13 400

Table 7 continued

No. Input Output

C/S FP (%) BP (%) VMA
(%)

M/F Fn

64 4.5 1 4 13.56 2.29 40

65 0.58 10 5.5 18.35 2.5 340

66 1.45 7 5 14.99 4.16 380

67 0.58 10 7 18.46 2.7 360

68 1.54 6 5 15.43 3.99 340

69 2.77 2 6 16.3 2.17 52

70 2.77 2 6 16.25 2.29 65

71 0.58 10 6 17.93 3.78 380

72 0.58 10 6.5 18.46 3.47 380

73 1.54 6 4.5 16.25 4.02 230

74 2.43 4 6 17.55 1.15 160

75 1.54 6 5.5 16.14 2.77 380

76 0.88 10 5 16.86 3.99 450

77 0.88 10 5 17.03 4.07 460

78 0.88 10 6.5 17.98 3.83 440

79 4.5 1 4 13.2 1.88 38

80 2.27 2 5 16.38 3.61 40

81 1.45 7 5.5 15.1 2.95 265

82 2.27 2 6 16.55 2.9 60

83 2.27 2 5 16.22 2.88 50

84 2.43 4 4 14.19 3.27 160

85 0.58 10 5 18.94 1.85 320

86 1.54 6 6.5 17.17 2.84 280

87 2.27 2 6.5 17.59 2.62 50

88 1.16 6 6 17.13 4.06 220

89 2.43 4 6 15.09 2.79 160

90 1.16 6 6 17.49 3.16 300

91 1.54 6 6 16.82 2.75 350

92 1.45 7 5.5 15.95 2.67 320

93 0.88 10 6 16.94 3.54 450

94 2.43 4 6 15.46 2.03 150

95 2.77 2 5 15.24 3.34 60

96 2.27 2 5 16.32 2.44 45

97 2.77 2 5 15.29 2.83 65

98 0.58 10 7 19.04 2.29 370

99 2.77 2 5.5 15.72 2.82 44

100 0.58 10 6 18.19 3.25 340

101 1.45 7 5 15.54 3.05 310

102 2.77 2 5.5 15.82 2.58 60

103 4.5 1 4 13.75 2.05 38

104 1.16 6 6.5 17.79 3.01 260

105 4.5 1 6 16.22 0.61 22
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Table 7 continued

No. Input Output

C/S FP (%) BP (%) VMA
(%)

M/F Fn

106 0.58 10 6 17.99 3.52 320

107 4.5 1 5 14.9 1.79 36

108 2.77 2 6.5 17.34 1.91 44

109 1.16 6 6.5 17.81 3.45 240

110 1.54 6 6.5 17.23 2.66 320

111 0.58 10 6.5 17.86 3.89 400

112 1.54 6 5.5 15.92 3.08 370

113 0.88 10 5.5 16.25 4.41 480

114 1.16 6 7 18.89 2.77 250

115 2.43 4 5 14.52 2.63 200

116 1.45 7 6 15.5 2.37 250

117 1.54 6 5.5 16.22 3.52 380

118 4.5 1 4.5 14.2 2.26 40
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