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A Self-tuning Least Squares Support Vector Machine for Estimating
the Pavement Rutting Behavior of Asphalt Mixtures

Abstract: The present study proposes a new self-tuning ast squares support
vector machine, called MSOS-SVM, for modeling w pavement rutting behavior
of asphalt mixtures. MSOS-SVM combines the least squares support vector
machine (LS-SVM), the symbiotic organisms sea:ﬂl (S08), and chaotic maps. In
this system, the LS-SVM 1s used to establish the relationship model between the
flow number obtained from laboratory tests and the parameters specified in the
asphalt-mix design. SOS is used to find the best LS-SVM tuning parameters.
Meanwhile, chaotic system iSﬂscd to enhance the exploration and exploitation
process of SOS. A total of 118 historical cases were used to establish the
intelligence-prediction model. The results validate the ability of SOS-SVM to
model the pavement rutting behavior of asphalt mixtures to a relatiﬁly high level
of accuracy as measured using four error indicators. The present study
demonstrates that the proposed computational intelligence system is a highly

beneficial decision-making tool for road designers and engineers.

Ke_vwordbf\sphall Mixtures: Computational Intelligence; Prediction: Rutting

Behavior; Least Squares Support Vector Machine; Symbiotic Organisms Search

1. Introduction

The ficld of pavement engineering has focused increasing attention on the pavement
rutting behavior of asphalt mixtures in recent decades. Vch'élc load cycles are
positively related to rutting in asphalt pavements, which degrades the service life of this
type of pavement and creates hazardous conditions for roadway users [1]. Furthermore,
this rutting reduces pavement thickness and reduces useful pavement life through
fatiguc cracking, decrcased drainage capacity, water pooling, and uncven road surfaces.
Repetitive vehicle traffic has been shown to be a main cause of pavement rutting anc&)f
the permanent deformation of asphalt roadways [2]. Therefore, understanding the
permanent deformation behavior of asphalt mixtures under repeated loading and
formulating proper asphalt mixtures prior to installation on roadways are critical to

crcating asphalt road surfaccs that offer optimal durability and safety for roadway users




[3]- The dynamic creep test is one of the best methods currently knOB’l for assessing the
permanent deformation potential &‘ asphalt mixtures [4]. The “flow number”. the
number of loading cycles at which permanent deformation starts [5], is a good indicator
of the rutting resistance of a given asphalt mixture. However, the complexity and cost of
the dynamic creep test make this test infeasible for widespread. frequent use. Tﬁrefore_
a relationship model. which uses historical data and matches the flow numbers obtained
from the dynamic creep test to the related parameters obtained from the asphalt mix
design, was developed to provide a significantly less expensive, less time consuming,

and sufficiently accurate alternative to the dynamic creep test.

Predicting the performance of asphalt mixtures is a critical part of roadway planning
and construction. Howcver.ﬁuilding a relationship model that accurately describes
asphalt mixture performance has traditionally been a complicated task as the permanent
deformation of asphalt mixtures is influenced by several factors that are complex and
highly nonlinear. Conventional approaches, such as linear regression and decision tress,
are inadequate in lcws of accuracy and computational cost for building a satisfactory
model. Advanced artificial intelligence (AI) approaches have been reportedato
outperform the conventional approaches based on their excellent learning features in a
wide variety of research fields [6-9], including pﬁement design and engineering [10-
12]. Nevertheless, only few studies have used Al to predict the flow number of asphalt
mixtures [3,13,14].

The primary objective of the present research work is to build an accurate prediction
model for permanent deformation that uses advanced Al methods to cnﬁncc the
analysis of pavement rutting behavior. A new technique, the modified symbiotic
organisms search-least squares support vector machine (MSOS-SVM). is&oposcd for
this purpose. The MSOS-SVM combines a prediction technique, the least squares
support vector machine (LS-SVM) [15], with an optimization tool, symbiotiwganisms
search (SOS) [16], and a pseudo-randomness element of a chaotic system. To the best
of our knowledge, this paper is the first to study the integration between three Al
elements. chaotic system. SOS, and LS-SVM., for predicting pavement rutting behavior.
LS-SVM is used to create a prediction taodel to find the relationship between rutting
behavior and asphalt mixtures, SOS is used to optimize the hyperparameters of LS-
SVM to increase the prediction accuracy. and chaotic system is used to enhance the

exploration and exploitation process of SOS.
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The proposed model is investigated alongside other prediction methods in terms of its

efficacy as arhaccurate prediction model for pavement rutting in asphalt mixtures.
Furthermoreaa cross-validation technique is used to validate the training and (test
process and four different measures of accuracy are used to evaluate the performance of

each prediction method.

2. Literature Review

Numerous studies in the field of pavement engineering have in recent decades proposed
approaches for modeling the rutting/permanent deformation potential of asphalt mixes.
Conventional permanent-deformation models have primarily used empirical moﬁs.
which have limited material characterization abilitics that Icad to poor correlations with
the actual performance of aspl&lt mixes in the field. There are three categories of
rutting-evaluation methods: (1) mechanistic-empirical modeling, (2) advanced
constitutive modeling, and (3) simple tests performed during the design phase to
evaluate the fundamental engineering properties and responses of mixture materials
[17]. Several studies have aimed to identify the most effective models [2,18,19,20].
However, the accuracy of mechanistic-empirical rutting models is directly correlated to
the quality and quantity of the empirical data employed inéhe calibration. Another
significant area of research on this topic has focused on the viscoelastic, viscoplastic,
and damage response comporE'Lts impacting the behavior of asphalt concrete directly.
As a result of these efforts, three-dimensional, nonlinear, finite element codes were
created [21]. However, this finite, element-based approach has certain limitations; e.g.,
its highéase-to-case variability results in poor generalizability. Additionally, a high
level of prior knowledge about the nature of a relationship between variables is required

by this approach.

The dynamic creep test is one of the best methods currently available to aaess the
rutting potential of asphalt mixtures [4]. This test employs data from a few thousand
repetitions of a repeated load test to record the cumulative permanent deformation.
Permanent deformation is the main cause of rutting on asphalt mixtmﬁ As shown in
Fig. 1. according to Witczak et al. [5]. and illustrated in Fig. 1, the flow number is
defined as the number of loading cycles at which pennﬁnt (tertiary) deformation
begins. Thus. the flow number can be used to measure the resistance of the mixture to

permanent deformations [22].
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Fig. 1. Plot of accumulated strain versus number of loading cycles
Moreover, each test-experimental site report presents all of the repeated load permanent

deformation data. allowing comparisons to be made between these parameters and
rutting. In summary, of E many mixture-response parameters that correlate well with
ae measured rut depths. flow number was the highest-ranked test parameter, comparing
well with the measured epths for all projects and test sections. Hence, a model
evaluating the relationship between the flow number acquired from the dynamic creep
test and the parameters obtained from mixture designs enables designers and road

engineers to evaluate pavement rutting behavior efficiently. considering cost and time.

In one of the earliat studies conducted to measure the rutting potential of asphalt
mixtures., Gandomi et al. [13] used flow number as the target output predictor. The Al
gene expression programming (GEP) method was used to build an accurate prediction
model using a total of 118 samples from a real-world historical dataset. This model was
subsequently benchmarked using multivariate least squares regression (MLSR) analysis,
with results supporting the model as an effective tool for measuring the flow number

based on the asphalt pavement mixture designs.
Using the same historical dataset, Alavi et al. [3] used the hybrid genetic programming

and simulated annealing (GP/SA) method to build a prediction model for asphalt

mixture performance. The datasct was randomly divided, with 89 data points (75%)




used as training set and 29&&1 points (25%) used as test set. Sensitivity analysis was

used to evaluate the effects of the variables on the flow number.

To assess the rutting potential of dense asphalt-aggregatilmixrures._ Mirzahosseini et al.
[14] employed two artificial neural network models, multi-expression programming
(MEP). and multilayer perceptron (MLP). Subsequently, MLSR analysis was usedéo
benchmark these two models. Morcover, Yan ct al. [23] investigated the capacity of the
support vector machine (SVM) for predict the flow number based on the asphalt
pavement mixture designs. The results were compared with results acquired by MLSR

and GEP.

Previous studies in this area have made limited use of Al techniques. Furthermore, these
studies have used only a simple. random division of training and test sets in the
validation process. A more advanced validation method is necessary to eliminate the
potential for bias in dividing ﬁla points between these two sets. Thus, more reliable and

advanced models are needed to predict the flow number of asphalt mixtures.
3. Methodology

3.1. Prediction Method: LS-SVM

LS-SVM ga modified version of SVM [15] and LS-SVM is a statistical learning theory
that adopts a least squares linear systemﬁ a loss function rather than as a quadratic
program as in original SVM [24]. The LS-SVM is a new machine learning method
offering numerous advanced features for fast computation and good generalization. As
confirmed by empirical studies, LS-SVM is at least equally as accurate as conventional
SVM: nonetheless. the computing efficiency of LS-SVM is higher [25]. Furthermore,
an LS-SVM in a machine learning model uses training samples and not the
identification of supporting vectors as does conventional SVM. The following formula

expresses the optimization problem and the constraints for LS-SVM:

8
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where e € R are error variables and ¥ > 0 denotes a regularization constant.




The resulting LS-SVM model for function estimation may be expressed as:

y(x) = X¥-y axK (epr x)) + b, (€)]

where ay and b are the solutions to the linear system (4).

The radial basis function (RBF) kernel is the kernel function that is most frequently
used. The RBF may be expressed as:

K (o) = exp (— B30, @)

2a2

where ¢ is the kernel function parameter.

3.2. Optimization Method: Modified SOS

3.2.1. Basic Symbiotic Organisms Search

SOS is a newly promising metaheuristic algorithm first proposed by Cheng and Prayogo
|16] and that has been used extensively to solve many types of enginecring problems
[26-29]. As shown in Fig. 2, SOS simulates three symbiotic interactions through the
iterative moving of ﬁn ecosystem (population) of organisms (candidate solutions)
toward better arcas during the process of finding the optimal global solution. All
organisms have a certain fitness value. The fitness value reflects the objective value,

which corresponds to the candidate solution.

atializc an ecosystem of organisms x
ile the stopping criterion is not satisfied
fori =1 to ecosystem size do
Update the current best solution xses:
Simulate mutualism svmbiosis between x; and x;;
Simulate commensalism symbiosis between x; and X
Simulate parasitism svmbiosis between x; and x;;
end for
end while

Fig. 2. Pseudo-code of the SOS algorithm

The following explains the three phases of mutualism ﬁnbiosis, commensalism

symbiosis, and parasitism symbiosis, which simulate the three types of symbiotic

interactions that occur in the real world.




In the mutualism symbiosis phase, the interactions of an organism with another

organism are mutually beneficial. The following equation expresses this phase:

Xinew = X; + rand(0,1) * [xpes — (xE;x”) # (1 +round (rand (0'1))]‘- ©)]

Xii new = Xii + rand(0,1) * [Xpese — (xﬁ;“) * (14 round(rand(0,1))]. (6)
_ Xi f(xi) = f(xi new)

A= {xi new f(xi) > f(xi new)‘ (7)

i fOa) = f(Xiinew)

Yii = {xii new J(xi) > f(xiinew) v

where x; is the /-th organism vector of the ecosystem, x;; is the Ji-th organism vector of
the ecosystem in which ii # 7, Xpess represents the best organism in the current
generation, X new and X new represent the respective ciﬁlidalc solutions for x; and x;; aft

their interaction, f{x;) is the fitness v of xi, f{xi) 1s the fitness valuc of xii, f{xi new) 18

the fitness value of X; yey, and f{Xii new) 18 the fitness value of x;; yew.

In the commensalism symbiosis phase, the interactions of an organism with another
organism benefit that organism and have no effect on the other organism. The following

equation expresses this phase:

Xpnaw = %y Frand(=1,1) * (pese = Xuds )]

X = { X f(xa) = f(xl new) ([0)

Xi new f(xa) > f(xl new),

where x; is the /-th organism vector of the ecosystem, x;; is the /i-th organism vector of
the ecosystem in which ii # i, Xps represents the best organism in the current
generation, X; new represents the candidate solutions for x; after the interaction, f{x;) is the

fitness value of xi, and f{Xinew) is the fitness value of X; yew.

In the parasitism symbiosis phase. the interactions of an organism with another
organism benefit that organism and harm the other organism. The following equation

expresses this phase:

" e P X if rand(0,1) < rand(0,1)
parasite LB

+rand(0,1) * (UB — LB) if rand(0,1) > rand(0,1)’ n
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o Xii f(xii) = f(xpamsite)
= {xparasite f(xii) = f(xparasite)! ([2)

where x; is the /-th organism vector of the ecosystem, x;; is the /i-th organism vector of
the ecosystem in which i/ # 7, Xpausie 15 the artificial parasite organism created to
compete with thﬁosl organism X, f{x:) is the fitness value of Xi, [{Xparasite) 1S the fitness
value of Xparasie, LB is the lower bound of the problem, and UB is the upper bound of the

problem.

3.2.2. Chaotic maps jor manipulating the exploitation and exploration of SOS

Due to theﬁochastic nature of metaheuristic algorithms, it is not possible to set a clear
boundary between exploration and exploitation during the search process. There is a
possibility of metaheuristic algorithms to be trapped in local optima with a lack of

quate balance between exploration and exploitation. Accordingly, an increasing
number of studies have aimed to enhance the performance of metaheuristic algorithms

through the improvement of exploration and exploitation.

The past decade has seen increasing interest in the application of chaotic system to
improve exploration and exploitation of metaheuristic algorithms. A chaos map is a set
of functions that describe some sort of random and chaotic behavior, but not necessarily
random. Thus, a chaos map proves that a deterministic system can also exhibit random
behavior [30]. In 2006, Zhenyu et al. [31] applied a chaotic mutation factor to enhance
the performance of differential evolution (DE). In the study of Gandomi et al. [32]. the
global search of the firefly algorithm (FA) was increased by using chaotic maps instead
of parameters of FA. Moreover, the chaotic maps were integrated by Saremi et al. [30]
into the selection, emigration, and mutation probabilities of biogeography-based

optimization (BBO).

All mentioned studies confirmed the capacity to enhance the performance of
metaheuristic algorithms. As a result, this study aims to manipulate the exploration and
exploitation in the standard SOS phases by applying the chaotic mapping operator in
place of random parameters. In this study, the chaotic maps used are investigated and
the method of SOS performance enhancement through the chaotic maps is further
explained. Table 1 and Fig. 3 show three selected chaotic maps [30]. All chaotic values

(Cy) were mapped in the interval between 0 and 1. Following [32]. 0.7 was used as the




initial point for all. It is also worth pointing out that Fig. 3 shows quite clear chaotic

behaviors while Table 1 does not show random components.

Table 1. Chaotic maps

No. Chaotic Maps Formulation
am
1 Iterative Cr41 = sin (?) ,a=0.7
t
3 Sinusoidal Cpy1 = aC,’ sin(nC,),a = 2.3

Iterative map

sl ML W |
OJWWW M |
T

40 50 60 70 80 90 100

100

Logistic map

-

Fig. 3. lllustration of chaotic behavior for iterative, logistic. and sinusoidal maps

This study used chaotic maps to manipulate the mutualism and commensalism operators
of the SOS algorithm. As can be seen in Egs. (5) and (6), the modification of the
organism in the mutualism symbiosis phase is influenced by the uniform random
parameter of rand(0,1). A large value generated by rand (0,1) enables the exploration

of a new and promising region, but it takes a long time for the organisms to converge.
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On the other hand, a small value generated by rand(0,1) facilitates exploitation but it
sometimes leads organisms to prematurely converge on local optima. Chaotic maps

were used to replace the uniform random parameter as follows:

Xinew = X1+ Ce * [Xpese = (5 * (1 + round(rand(0,1))], (13)

Xitnew = Xii + Ct * [Xpese = () # (1 + round (rand 0,1))). (14)
Similarly, according to Eq. (9). the modification of organisms in the commensalism
symbiosis phase is affected by the uniform random parameter of rand(—1,1). The

chaotic maps were used to replace the uniform random parameter as follows:

Xinew = Xi + Cp * (Xpese — Xiz). (15)

In the modified SOS algorithm, different chaotic maps for mutualism symbiosis and
commensalism symbiosis provide different searching patterns for exploration and
exploitation. A symbiotic interaction of SOS gives priority either to exploration or

exploitation. considering that a chaotic map exhibits chaotic behavior.

3.3. MSOS-SVM System Integration

This study combines the several different Al techniques of SOS, chaotic system, and
LS-SVM in a hybrid Al system called MSOS-SVM. The LS-SVM plays an important
role as a predictor that accurately maps the relationship of input and output variables of
the given dataset. The SOS and chaos system are utilized to optimize the LS-SVM

parameters y and o. Figure 4 shows the architecture of MSOS-SVM.
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Fig. 4. MSOS-SVM architecture

The six main steps of the SOS-SVM are conducted across the training and test phases

and are explained below:

(1) Dataset, training set. and test set: The dataset is divided into a training set (70%) and
a test set (30%). Furthermore, to avoid the situation when one or some input variables
dominate others, the datasets were scaled into a (0.1) range [33]. The training set is
further divided into training subsa and validation subset for model selection through
cross-validation. The test sct is used to measure the performance of the LS-SVM

prediction model.
(2) Initialization of hyperparameters:

In the first iteration, the parameters are initialized randomly within the boundary range

using the following formula:

x = rand(0,1) * (UB — LB) + LB, (16)

where x represents candidate solution (hyperparameters), UB represents upper bound,
and LB represents lower bound. For the present study. the lower and upper bounds were

set to 107 and 10", respectively.
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(3) Model selection and fitness evaluation: This step is a critical and important step for
building the accurate learning model. LS-SVM model is trained ﬁing the training set
and the initial hyperparameters with a goal to find the accurate relationship between
input and output variables. LS-SVM requires two parameters to operate, y and o, to
conduct the learning process. The training process is conducted iterﬁi\-'ely and the
tuning parameters arc gradually optimized using the MSOS algorithm. To evaluate the
accuracy of the learning system. a fitness funct'an that is correlated with the accuracy of
the prediction model is now developed. The combination of y and o parameters that
produces the best fitness value is considered as the most accurate prediction model. In
the training process, the potential exists for the system to fit a poor training dataset on
the new dataset., which is a probla*l known as “over-fitting” [34]. To overcome this
problem, a well-known technique, £-fold cross-validation, is incorporatedd'l the fitness
function. The dataset is now split into & folds. which assigns the (kX — 1)/k portion of the
dataset for training and assigns the remaining portion for validating the prediction
model. A total of k-d'étinct sets of training and validation subset are performed. The
fitness function uses root mean square error (RMSE) to represent model accuracy as
shown in Eq. (17):

5
> RMSE,,

Jit val = %2

E— a”n

where S is the total number of folds and /it val is the fitness value calculated from the

RMSE between the predicted and actual values for the validation set.

(4) Modified SOS for parameter search: The hybrid Al system uses MSOS to explore
the various combinations of y and o parameters to idanlil‘y the best set of these
hyperparameters. The search process commences with the generation of the initial
population that represents the initial candidate solution for the searched
hyperparameters. As mentioned before, the population is then encoded into continuous
variables with the boundary limit set from 0 to 1. MSOS utilizes the mutualism,
comrnensﬁism‘ and parasitism phases with the help of a chaotic system for each
iteration to gradually improve the fitness value of each candidate solution in the

population.
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(5) Optimal hyperparameters: The loop stops when the termination criterion is fulfilled.
which implies that the prediction model has identified the input/output mapping
relationship with optimal y and o parameters.

(6) LS-SVM predicting: The optimal LS-SVM 7 and o parameters that were obtained

from the training phase are used to establish the prediction model for predicting the test

set.

4. Experimental Results

4.1. Data Collection and Preparation

The study used an experimental dataset acquired from Alavi et al. a A set of 118
experiment samples of dynamic creep tests was collected from the Asphalt Mixtures
and Bitumen Reﬁarch Center at the Iran University of Science and Technology. The
purpose of the uniaxial dynamic creep test was to detect the flow number, which
correlates with the rutting performance the asphalt mixtures. The details of aggregates,
fillers, and bitumen characteristics are provided in [3]. The experimental dataset of five
input variables and one output variable employed in thiasrud}‘ is presented in Table 2.
The ratio of coarse aggregate to fine aggregate (C/S). percentage of filler to the total
aggregate (FP), percentage of binder to the total aggregate (BP), percentage of voids in
mineral aggregate (VMA), ratio of Marshall stability to Marshall flow (M/F), and flow
number (Fn) are the main attributes of the dataset. Appendix A provides the whole

dataset of the dynamic creep test samples.

Table 2. Statistical description of permanent deformation analysis obtained from the

dynamic creep test

Attribute Unit Type Minimum Maximum Average Sla_r_lda.rd
Deviation
C/S - Input 0.58 nﬁ 1.8410 1.05006
FP % Input 1 10 5.5424 3.1721
BP % Input 4 7 5.5085 0.8138
VMA % Input 11552 19.04 16.5513 1.4123
M/F - Input 0.61 4.81 29872 0.7425
Fn - Output 22 510 2] 143.9741
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4.2. Model Selection and Training Results

In this study, the performance of three MSOSs in selecting the optimal hyperparameters
was benchmarked with the original SOS. As mentioned previously, three types of chaos
maps utilized by MSOSs were investigated: iterative map (MSOS)). logistic map
(MSOS:,). and sinusoidal maﬁMSOS;), To ensure a fair comparison, the MSOSs and
SOS used the same settings: maximum number of iterations = 20 and ecosystem size =

20. The boundary range for the y and o parameters was set between 107'° and 10'°.

The 10-fold cross-validation splits the training set into 10 sets of different training and
validation subsets. The model selection was performed by MSOSs and SOS using 10
sets of training and validation subsets and the average validation errors were used as the
fitness values. Table 3 shows the training performance of each model. Fig. 5 shows the
convergence history of the model selection using MSOSs and SOS. It can be seen from
Fig. 5 and Table 3 that all variants of MSOS are able to find the lower validation error
in comparison with the original SOS. MSOS; and MSOS; can yield the most optimum
fitness value, slightly better than the other models. Furthermore. Fig. 6 shows the

hyperparameters selection history of each model.

Table 3. Training results by SOS and MSOS over the 10 folds

. Optimal Fitness Value Hyperparameters
Optimizer (average validation RMSE) Final 7 Final o°
SOS 34.6147 1.8356E+09 4.3391E+03
MSOS; 34.5491 8.1941E+08 3.4134E+03
MSOS: 34.4811 2.2330E+08 2.1421E+03
MSOS; 34.4799 2.3992E+08 2.2888E+03
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4.3. Prediction Results

This research used four performance metrics to evaluate the prediction accuracy of the

proposed method and other prediction techniques as follows:

)] Ccﬁlation CoefTicient (R)
R is a statistical measure of how well a regression line approximates the real

data points. The following equation is used to express R:

92 »'-(Z ¥)ET )

R = i
Jn(z ¥)-( y)‘*Jﬂ(E )2

(18)
17

(2) Root mean square error (RMSE)
RMSE is the square root of the average squared distance between the values that
are predicted by the model and the values that are observed. RMSE may be used
to calculate the variation of errors in a prediction model and is very useful when

large errors are undesirable. The following equation is used to express RMSE:

- 1 " A 12
RMSE = \/—Z » ;-3
s , (19)

a
where y; is the actual value. ¥, is the predicted value, and » is the number of

samples.
(3) Mean Absolute Error (MAE)
MAE is the average absolute value of the residual (error). MAE is used to
measure the closeness of forecasts or predictions to the actual outcomes. The

following equation is used to express MAE:

] " ~
MEZEZFJ-V; -V,

20)

[ 12]
(4) Mean Absolute Percentage Error (MAPE)

MAPE is used to measure prediction accuracy in terms of prediction percentage
error. Small denominators cause problems in the MAPE value as these values
generate large MAPE values that impact overall value. The following equation is

used to express MAPE:
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To validate the performance of the developed MSOS-SVM models, comparisons with
other predictive models, including the original LS-SVM and back-propagation ncural
network (BPNN), in addition to SOS-SVM, were performed. The comparison between
MSOS-SVM and other predictive algorithms may imply the advantages of using the
optimization method to tunhthe optimal parameters. BPNN settings included:
maximum hidden layers = 1: number of neurons in the hidden layer = 5 (equal to the
number of input variables); and learning rate = 1. Finally, the LS-SVM parameters for

o and y were set to 1 as suggested in [15].

Table 4 shows the complete set of experimental results. These results show that lﬁ
three MSOS-SVM models performed better in the overall measurement category. In
terms of R, RMSE, MAE, and MAPE, the MSOS-SVMs earned the best score followed
by the SOS-SVM. The LS-SVM earned the worst scores for prediction ability. MSOS;-
SVM has produced a slightly better performance among the MSOS-SVM models.

Table 4. Test performance of MSOS-SVMs and other methods.

Performance Indicators

Al Methods R RMSE MAE MAPE
BPNN 0.9582 492929 32.3731 0.2500
LS-SVM 0.9459 72.5298  58.7483 0.7979
SOS-SVM 09712 387542 245113 0.2828

MSOS,;-SVM 0.9720 382396 239216 0.2469
MSOS2-SVM 0.9724 379132  23.4834 0.2347
MSOS:-SVM 0.9723 38.0390  23.5934 0.2424

The detailed results for test set of the MSOS-SVMs, SOS-SVM, LS-SVM., aiil BPNN,
respectively, are displayed in Table 5. Figure 7 further illustrates the test deviations
between the actual and predictedﬁalues for the three prediction techniques. The three
proposed MSOS-SVM models produced the best data fit among thenprediction
techniques that were evaluated. further supporting that the MSOS-SVM is the most
reliable algorithm for establishing the prediction model.
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Table 5. Details of test results of MO-SVMs and other methods

Test Actual Deviation between actual and predicted Fn
Case Fn BPNN LS-SVM SOS-SVM  MSOS;-SVM  MS0S:-SVM  MSOS;-SVM
16 55 11.08 42.73 1.23 1.24 1.26 1.07
17 50 0.47 54.85 6.21 4.10 3.96 425
18 300 26.31 12.94 39.61 40.60 40.62 40.39
21 300 38.37 17.89 57.03 60.34 59.65 58.64
28 370 52.85 85.07 76.75 78.86 78.39 77.87
32 310 7.82 23.50 23.03 25.23 24.91 24.30
38 190 35.80 21.51 5.00 4.20 3.44 3.69
40 300 14.75 25.03 4.47 6.57 6.00 5.33
46 300 57.56 14.22 21.34 21.20 21.24 21.35
47 510 153.50 51225 151.76 152.99 153.67 153.75
52 38 8.74 44.66 10.34 10.27 10.26 10.16
54 500 130.18 103.23 28.69 30.72 30.27 29.63
56 60 7.00 56.68 5.40 5.33 5.62 5.48
57 420 79.63 88.40 5.48 3.58 2.74 3.38
58 24 37.51 91.96 54.52 44.99 41.94 43.55
59 60 26.60 31.60 9.83 7.26 7.22 7.79
64 40 6.62 51.93 6.23 3.41 1.71 2.10
66 380 27.91 120.49 28.12 28.94 28.67 28.55
69 52 12.11 36.24 13.25 14.23 14.05 13.87
71 380 9.49 46.22 10.29 8.38 8.47 9.07
73 230 33.76 64.27 40.19 39.37 40.18 40.71
82 60 20.43 51.28 2.37 1.25 1.33 1.49
83 50 0.50 63.62 3.69 3.43 2.85 3.21
87 50 14.40 44.83 3.76 4.12 4.05 3.81
90 300 23.97 43.61 41.66 44.01 44.52 43.86
92 320 8.47 36.86 3.27 4.69 4.19 3.67
94 150 90.06 14.51 5.42 7.70 7.75 7.39
95 60 1.44 60.90 12:25 11.53 1182 12.07
98 370 4.96 68.03 41.85 42.71 40.88 40.64
101 310 16.37 15.38 24.03 25.07 24.96 24.57
102 60 892 46.49 13.84 13.40 13.40 13.56
103 38 8.64 45,55 11.53 7.69 6.92 7.52
105 22 39.00 165.14 78.70 65.25 61.47 65.34
113 480 111.37 113.16 5.09 3.90 4.64 4.95
118 40 6.47 41.16 11.68 10.68 8.89 8.75
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Fig. 7. Prediction deviation of LS-SVM, BPNN, SOS-SVM, and MSOS-SVMs for the

test set

4.4. Comparison with Previous Works

Many studies have been conducted to predict the rutting behavior of asphalt mixtures
using Al methods. As mentioned carlier in Section 2, some previous works that have
performed the rutting behavior modeling of the asphat mixtures are: Gandomi et al.
[13] with the gene expression programming (GEP): Alavi et al. [3] with the hybrid
genetic programming and simulated annealing (GP/SA) method: and Mirzahosseini et
al. [14] with the multi-expression programming (MEP). Table 6 compares the test
performance between the MSOS-SVM and other predictive techniques. It is worth
noting that the data partitioning for training and test sets might be different between the
present study and the past work because the data partitioning is often not shown in the
past literature. As shown in Table 6, all MSOS-SVM models perform better in different

performance metrics.

Table 6. Test performance of MSOS-SVMs and other methods

Performance metrics

AT Methods Ref R RMSE MAE
MEP [14] 0.956 46.23 32.509
GP/SA [3] 0.948 46.06 33.842
GEP [13] 0.891 67.63 48.218

MSOS-SVM Present study 0.9720 38.2396 239216
MSOS,-SVM Present study 0.9724 379132  23.4834
MSOS3;-SVM Present study 0.9723 38.0390  23.5934
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5. Conclusion

The present study developed a new self-tuning prediction method called the modified

symbiotic organisms search-least squares support vector machine (MSOS-SVM) to
predict permanent deformation in asphalt mixtures. SOS is a very promising
metaheuristic algorithm that offers important advantages over traditional metaheuristic
algorithms, including less control parameters. The three unique phases of SOS were
shown to cover the search space of the hyperparameters effectively, which reduced the
risk of entrapment in local optima. The chaotic maps are utilized to further enhance the
SOS performance in searching the optimal hypcrpﬁamc[crs, Furthermore, three
prediction methods, SOS-SVM, LS-SVM, and BPNN, were used as a benchmark for
the MSOS-SVM. The experimental dataset was acquired from a prior dynamic creep

test of 118 samples.

Furthermore, four performance metrics (MAPE, MAE, RMSE, and R) were used to
additionally compare the proposed MSOS-SVM for performance outcomes to
quantitatively compare in detail various predictive techniques. According to the results,
the most accurate pcrfonnanccdncasurc is the proposed MSOS-SVM, with the SOS-
SVM, BPNN. and LS-SVM achieving the second-. third-, and fourth-best overall
accuracies, respectively. It is obvious that the original LS-SVM was outperformed by
the hybrid MSOS-SVM because of the success of the MSOS in finding parameters of
better fit than the default parameter settings in the LS-SVM. The superiority of MSOS-
SVM over BPNN indicates that the proposed methods perform better than other.
currently prevalent prediction methods. Meanwhile, the superiority of the MSOS-SVM
over SOS-SVM reveals the success of chaos maps in improving the exploration and

exploitation of the basic SOS.

This study conclusively established that the new predictive model, MSOS-SVM,
enables road planners and engineers to resolve a crucial problem of pavement rutting in
asphalt mixtures. The innovative model predicts precisely the proper flow number of
asphalt mixtures and accordingly designers are enabled to choose mixtures that meet
specifications. The findings proved that the MSOS-SVM is the optimal model for

developing asphalt mixtures with particular permanent deformation characteristics.
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Appendix A

Table A.1. Dynamic Creep Test Conducted on the Asphalt Mix Samples
No. Input Output
C/S FP (%)  BP (%) \@g)A M/F Fn
1 1.45 7 5 1512 3.39 340
2 227 2 5.5 16.38 3.37 50
3 1.16 6 5:5 17.38 3.68 230
4 1.45 7 4 16.3 3.59 260
5 227 2 6.5 1751 2.84 60
6 1.45 7 4 16.16 327 350
7 0.88 10 5.5 16.69 4.17 440
8 45 1 4.5 13.7 235 37
9 1.16 6 7 18.32 2.68 240
10 243 4 5.5 15.43 233 180
11 1.16 6 6.5 17.74 3.28 260
12 0.58 10 6.5 17.88 433 400
13 243 4 5.5 15.13 249 200
14 0.58 10 7 18.82 2.56 350
15 1.16 6 5 17.96 2.97 160
16 227 2 6 17.05 286 55
17 227 2 55 16.36 245 50
18 1.45 7 4.5 15.45 3.41 300
19 1.16 6 6 17.08 3.58 270
20 0.58 10 5.5 18.24 241 380
21 0.58 10 5.5 18.15 232 300
22 243 4 4 14.05 351 170
23 2.77 2 4.5 15.29 3.09 80
24 0.88 10 6.5 17.92 345 480
25 1.45 7 6 16.99 2.65 280
26 243 4 5 14.72 2.74 210
27 1.16 6 7 18.54 299 220
28 1.54 6 6 15.94 3.18 370
29 0.88 10 4.5 18.22 3.63 340
30 0.88 10 6 17.05 398 500
31 277 2 45 14.95 3.86 48
32 1.45 7 4.5 15.51 3.07 310
33 0.58 10 5 18.98 1.81 320
34 243 4 4.5 14.31 339 160
35 2T 2 D:D 15.8 2.66 80
36 1.16 6 5 18.13 33 180
37 227 2 7 17.97 245 45
38 243 4 4.5 14.54 33 190
39 227 2 6 16.83 2.84 55
40 1.54 6 5 15.65 3.72 300
41 1.45 7 6 17.42 2.86 240
42 1.54 6 45 16.26 3.24 290
43 1.54 6 4.5 15.8 3.41 260
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