
ORIGINAL ARTICLE

Prediction of permanent deformation in asphalt pavements using
a novel symbiotic organisms search–least squares support vector
regression

Min-Yuan Cheng1 • Doddy Prayogo2 • Yu-Wei Wu1

Received: 15 April 2017 / Accepted: 13 March 2018
� The Natural Computing Applications Forum 2018

Abstract
The prediction of asphalt performance can be very important in terms of increasing service life and performance while

saving energy and money. In this study, a new hybrid artificial intelligence (AI) system, SOS–LSSVR, has been proposed

to predict the permanent deformation potential of asphalt pavement mixtures. SOS–LSSVR utilizes the symbiotic

organisms search (SOS) and the least squares support vector regression (LSSVR), which are seen as a complementary

system. The prediction model can be established from all input and output data pairs for LSSVR, while SOS optimizes the

system’s tuning parameters. To avoid sampling bias and to partition the dataset into testing and training, a cross-validation

technique was chosen. The results can be compared to those of previous studies and other predictive methods. Through the

use of four error indicators, SOS–LSSVR accuracy was verified in predicting the permanent deformation behavior of an

asphalt mixture. The present study demonstrates that the proposed AI system is a valuable decision-making tool for road

designers. Additionally, the success of SOS–LSSVR in building an accurate prediction model suggests that the proposed

self-optimized prediction framework has found an underlying pattern in the current database and thus can potentially be

implemented in various disciplines.

Keywords Asphalt mixtures � Artificial intelligence � Permanent deformation � Least squares support vector regression �
Symbiotic organisms search

1 Introduction

Over the past decades, the number of vehicles on the road

has significantly increased, causing deformation in pave-

ment. Accumulated traffic load repetition permanently

deforms asphalt pavement [1]. The side effects of

permanent deformation can be devastating and include a

reduction in the service life of the pavement and the cre-

ation of risky conditions for roadway users [2]. Increasing

the thickness of asphalt pavement is one possible solution

for road designers. However, it is often abandoned due to

budget limitations. Predicting the appropriate asphalt

mixtures may increase performance and service life at little

additional construction cost. However, establishing a

model that accurately depicts the relationship between

asphalt mixtures and permanent deformation is a compli-

cated task because of the dynamic and complex charac-

teristics of asphalt mixtures.

There has been growing interest in the development of

artificial intelligence (AI), particularly in predictive tech-

niques due to their excellent learning features [3]. The

main idea behind predictive approaches in AI is to develop

a prediction model from a collection of input–output data

pairs using a specific learning procedure. Once trained, the

prediction model can forecast with high accuracy and
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handle nonlinear problems. As a result, much effort has

been invested in improving the computational time and

accuracy of AI predictive approaches [4–8].

The laboratory dynamic creep test and its flow number

are commonly used as indicators that an asphalt mixture

has a permanent deformation [9]. In the dynamic creep test

result, the flow number can be determined as the load cycle

number at which the tertiary deformation begins [10]. The

tertiary deformation denotes the phase at which the pro-

gressive permanent deformations accelerate and permanent

deformations grow rapidly. Determining the flow number

within asphalt mixtures requires various AI approaches.

For example, Gandomi et al. [11] built prediction models

using an AI method called gene expression programming

(GEP) by collecting dynamic creep test samples. Alavi

et al. [12] utilized the genetic programming-simulated

annealing (GP/SA) method to build prediction models for

asphalt mixtures’ performance. Mirzahosseini et al. [13]

subsequently used two artificial neural network (ANN)

models, multilayer perceptron (MLP) and multiexpression

programming (MEP), to investigate asphalt pavement

performance. These studies showed AI predictive tech-

niques’ strong potential to deal with the difficult input–

output relationship of asphalt mixtures.

Despite the effective performance of the AI approaches

that have been reported, previous studies in this area have

made limited use of AI techniques. Furthermore, these

studies have used only a simple, random division of

training and testing sets in the validation process. A more

advanced validation method is necessary to eliminate the

potential for bias in dividing data points between these two

sets. To that end, a serious need exists for more accurate

systems in estimating the flow number of asphalt mixtures.

The present study proposes an AI system called SOS–

LSSVR to predict permanent deformation in asphalt

pavement. SOS–LSSVR integrates an accurate prediction

technique, least squares support vector regression

(LSSVR), with a new nature-inspired optimization tech-

nique, symbiotic organisms search (SOS). With the use of

radial basis function kernel (RBF), LSSVR is considered

an effective AI technique when dealing with prediction

problems [14–16]. To improve the modeling performance,

LSSVR needs two tuning parameters set correctly: the

regularization parameter (c) and the kernel parameter (r).
The selection process of parameters can be formulated as

an optimization problem. As a new nature-inspired algo-

rithm, SOS is considered a powerful and effective contin-

uous-based global optimization method [4]. In previous

research, experiments showed that SOS was superior to

other nature-inspired techniques [4, 17–21]. Nevertheless,

the algorithm’s capability has not yet been tested in terms

of obtaining the best LSSVR parameters.

The proposed method is investigated alongside other

predictive techniques in terms of its efficacy as a viable

prediction model for asphalt mixtures and their permanent

deformation potential. The proposed method will use cross-

validation, allowing for the validation of the training and

testing processes. Furthermore, four different measures are

employed to judge the accuracy of each prediction model.

Obtained results are then compared with those of previous

studies.

2 Literature review

2.1 Least squares support vector regression
(LSSVR)

Considered an alternative to the support vector machine

(SVM), LSSVR is employed for regression analysis and

solving the function estimation. Adopting a statistical

learning theory, this AI method focuses on replacing the

quadratic program with a least squares linear system as its

loss function [22]. The formulation of the optimization

problem and the constraints for LSSVR are shown as

follows:

Minimize Jp w; eð Þ ¼ 1

2
wTwþ c

1

2

XN

k¼1

e2k ð1Þ

Subjected to yk ¼ wT/ xkð Þ þ bþ ek; k ¼ 1; . . .;N ð2Þ

where ek [ R denote slack variable, c[ 0 is a regulariza-

tion constant, and / xkð Þ denotes an input mapping to a

higher-dimensional feature space.
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The Lagrangian is given by:

Lðw; b; e; aÞ ¼ Jpðw; eÞ �
XN

k¼1

akfwT uðxkÞ þ bþ ek � ykg

ð3Þ

where ak are Lagrange multipliers. The conditions for

optimality are given by:

oL

ow
¼ 0 ! w ¼

XN

k¼1
ak uðxkÞ

oL

ob
¼ 0 !

XN

k¼1
ak ¼ 0

oL

oek
¼ 0 ! ak ¼ cek; k ¼ 1; . . .;N

oL

oak
¼ 0 ! wTuðxkÞ þ bþ ek � yk ¼ 0; k ¼ 1; . . .N

8
>>>>>>>>><

>>>>>>>>>:

ð4Þ

After elimination of e and w, the following linear system

is obtained:

0 1Tv
1v xþ I=c

� �
b

a

" #
¼

0

y

" #
ð5Þ

where y ¼ y1; . . .; yN , 1v ¼ ½1; . . .; 1�, and a ¼ ½a1; . . .; aN �.
The following formula represents the kernel function:

x ¼ uðxkÞT uðxlÞ ¼ Kðxk; xlÞ ð6Þ

The resulting LSSVR model may be stated as:

y xð Þ ¼
XN

k¼1

akK xk; xlð Þ þ b: ð7Þ

where ak and b are the solution to the linear system. The

RBF kernel is the most frequently used kernel function.

The RBF may be expressed as:

K xk; xlð Þ ¼ exp � xk � x2l
2r2

� �
ð8Þ

where r is the kernel function parameter.

While using the RBF kernel, LSSVR needs two

parameters: the regularization parameter (c) and the kernel

parameter (r). While the parameter impacts the smoothness

of the regression function, the c parameter takes control of

all penalties imposed on data points that deviate from the

regression function.

2.2 Symbiotic organisms search (SOS)

Many areas of research employ nature-inspired algorithms

for the most complex optimization issues [23, 24]. Intro-

duced by Cheng and Prayogo [4], SOS emerges as a newly

promising nature-inspired algorithm. In the search for the

optimal global solution, the attempt is to reach promising

areas by simulating all symbiotic interactions that move an

ecosystem of organisms. Within the ecosystem, each

organism receives a certain fitness value that reflects the

level of adaptation to the objective.

With SOS, the main searching strategy is divided into

three phases: mutualism, commensalism, and parasitism.

The developed searching strategy simulates the three types

of actual symbiotic interactions that occur in the real world.

With mutualism, all interactions between organisms are

mutually beneficial. The commensalism phase sees one

organism benefit, and another have no impact at all.

Finally, one organism benefits, while the other suffers from

parasitism. The detailed structure of the SOS algorithm is

explained in Algorithm 1.
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Since its publication, SOS has been increasingly used in

a variety of research fields [17–19, 25–31]. Today, the

algorithm has huge potential in the ever-growing search for

optimality.

2.3 Hybridization of prediction and optimization
approaches

In recent years, the collaborative integration between the

prediction method and optimization technique has been

studied extensively. The prediction methods learn from the

given data inputs and outputs until an underlying pattern

exists. However, some modeling techniques require

advanced parameter settings to produce an acceptable level

of accuracy [32]. Many studies have utilized optimization

techniques to find suitable parameters so that the prediction

methods can determine the complicated input and output

relationship and thus increase their accuracy. Table 1

summarizes the recent studies for hybridizing the predic-

tion method with the optimization technique.

3 The symbiotic organisms search–least
squares support vector regression (SOS–
LSSVR)

As a hybrid system, SOS–LSSVR integrates two compu-

tational intelligence methods with the LSSVR accurately

portraying the input/output relationship as a predictor and

with the SOS optimizing all LSSVR parameters ensuring

the highest level of accuracy. Figure 1 explains the

framework of SOS–LSSVR.

For SOS–LSSVR, there are eight key steps when used

across training and testing phases:

1. Training data

Training data are used for creating the prediction

model. To prevent greater numeric ranges of input

variables from dominating the process, the data were

normalized into a (0,1) range [33].

2. LSSVR training

With a hybrid system, the complex relationship

between output and input variables is addressed by

LSSVR. This learning process requires two tuning

parameters, c and r parameters. Within the boundary

range, the parameters are initialized randomly for the

first iteration. As the optimizer, SOS simulates the

searching for the best tuning parameters, allowing the

LSSVR to then build the prediction model with higher

accuracy.

3. SOS searching

SOS is used to test the many combinations of both

parameters that allow for the best set to be found. The

generation of the population that best represents the

candidate solution allows the search process to begin

(consisting of both parameters). Utilizing all three

phases—mutualism, commensalism, and parasitism—

the fitness value of each solution will gradually

improve.

4. Fitness evaluation

LSSVR can have a low accuracy when predicting a

new and unseen dataset despite its solid performance

on all training data. This issue is known as the over-

fitting problem [34]. To overcome this problem, the

training data were separated into learning subsample

and validation subsamples. The learning subsample

Table 1 Summary of recent studies for hybrid prediction–optimization method

Previous work Description Techniques

Gandomi et al. [11] Prediction of flow number of asphalt mixtures Prediction: genetic programming

Optimization: simulated annealing

Alavi et al. [12] Prediction of flow number of asphalt mixtures Prediction: genetic programming

Optimization: simulated annealing

Cao et al. [38] Prediction of construction cost index in Taiwan Prediction: radial basis function neural network

Optimization: artificial bee colony

Hoang et al. [6] Prediction of groutability estimation of grouting process Prediction: support vector machine

Optimization: flower pollination algorithm

Chou and Ngo [39] Prediction of fiber-reinforced soil Prediction: least squares support vector regression

Optimization: smart firefly algorithm

Tien Bui et al. [40] Prediction of rainfall-induced shallow landslides Prediction: least squares support vector machine

Optimization: differential evolution
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was used for building the prediction model. The

validation subsample has no rule in building the actual

model. However, it was used for supporting the

generalization capability. To avoid the sampling bias,

the tenfold cross-validation technique was used to split

the training data into smaller subsamples.

The prediction model with the highest accuracy is

determined based on the combination of two c and r
tuning parameters that has the lowest error on the

validation subsample. An objective function is now

developed based on the model accuracy in predicting

the validation subsample. The root-mean-square error

(RMSE) is used to represent model accuracy in the

objective function, as shown in Eq. 9.

Min Fitness Value ¼
PS

k¼1 RMSEðvalidationkÞ
S

ð9Þ

where S indicates the total number of folds and

RMSE(validationk) indicates the value of root-mean-

squared error between the actual and predicted values

for the k-th validation subsample.

5. Termination criteria

Once the stopping conditions have been met, the

process terminates or else proceeds to the next

iteration. The total number of SOS iterations was used

as the termination criterion.

6. Optimal LSSVR model and parameters

As soon as the termination criteria have been met, the

loop will come to a complete stop and this suggests the

prediction model has found the ideal input–output

mapping relationship along with the optimal

parameters.

7. LSSVR predicting

With the two parameters at the optimum level obtained

from the training phase, the prediction model can be

established and then used to predict all test data.

8. Testing data

Finally, to measure the general accuracy and the

prediction performance, the testing data are applied to

the trained model.

4 Experimental results

4.1 Historical dataset

In this study, 118 dynamic creep test samples from a lab-

oratory test were used, and this allowed a prediction to be

made of the proposed solution’s performance [11, 12]. The

dataset included 10 different input variables (influencing

factors) as well as one output variable. All statistical

descriptions of input and output variables are described in

Table 2. The historical dataset is listed in Table 3.

The dataset was employed for modeling the asphalt

pavement performance in [11–13, 35]. It was revealed that

the previous studies have only used a partial amount of all

possible input variables. Table 4 lists all previous models

that have been employed to predict the flow number of

asphalt mixtures.

In Case 1, Alavi et al. [12] and Mirzahosseini et al. [13]

used IF3, IF4, IF6, and IF10 as their input variables.

Gandomi et al. [11] employed IF1, IF5, IF6, and IF10 as

the input variables in Case 2. Meanwhile, Mirzahosseini

Training dataset LSSVR train Fitness 
evalua�on

Termina�on 
criteria

Op�mal LSSVR model 
and parameters

γ & σ

YES

SOS searching

γγγ,,, σσ

NO

LSSVR predict
Predic�on 

Results
Tes�ng dataset

Training

Tes�ng

R 

γ,,, σ

1
5

4

6

2

3

8 7

Fig. 1 SOS–LSSVR architecture
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et al. [35] utilized IF1, IF3, IF4, IF5, IF6, and IF10 as the

input variables in Case 3.

4.2 Experimental settings

To benchmark the performance of SOS–LSSVR, three

different widely used predictive techniques were

employed, including SVR [36], LSSVR [14], and BPNN

[37]. The SVR and LSSVR methods belong to SVM class.

Meanwhile, BPNN modifies the ANN by regulating the

connection weights and bias values using back-propagation

algorithm throughout the training process.

This study uses a default set for all parameters to ensure

a fair comparison. All parameters for SOS–LSSVR, SVR,

LSSVR, and BPNN are listed in Table 5. Four performance

measures were used during the evaluation process for AI-

based predictive methods throughout this research, as listed

in Table 6. To evaluate all predictive methods, these per-

formance measures were used, which allowed for more

accurate results and a fairer test all around.

The historical dataset was now separated into training

and testing dataset. Previously, Gandomi et al. [11], Alavi

et al. [12], and Mirzahosseni et al. [13] used approximately

75% of the dataset for training and 25% of the dataset for

Table 2 Input/output variables

and statistical descriptions
Variable Definition Min Max Average SD

IF1 Percentage of coarse aggregate (%) 33 81 57.31 14.33

IF2 Percentage of fine aggregate (%) 18 57 37.15 11.31

IF3 Percentage of filler (%) 1 10 5.54 3.17

IF4 Percentage of bitumen (%) 4 7 5.51 0.81

IF5 Percentage of air voids (%) 1.71 8.77 4.54 1.52

IF6 Percentage of voids in mineral aggregate (%) 13.20 19.04 16.55 1.41

IF7 Marshall stability (kN) 2.73 15.3 10.16 2.04

IF8 Marshall flow (mm) 2.1 4.75 3.50 0.62

IF9 Coarse aggregate-to-fine aggregate ratio 0.58 4.5 1.84 1.05

IF10 Marshall stability to flow ratio/Marshal quotient 0.61 4.81 2.99 0.74

Output Flow number 22 510 227 143.97

Table 3 Historical dataset
No. IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 IF9 IF10 Output

1 55 38 7 4 7.69 16.3 11.74 3.27 1.4474 3.5902 260

2 55 38 7 4 7.52 16.16 9.49 2.9 1.4474 3.2724 350

3 55 38 7 4.5 5.6 15.45 11.58 3.4 1.4474 3.4059 300

4 55 38 7 4.5 5.67 15.51 11.42 3.72 1.4474 3.0699 310

5 55 38 7 5 4.55 15.54 11.38 3.73 1.4474 3.0509 310

6 55 38 7 5 4.08 15.12 12.88 3.8 1.4474 3.3895 340

… … … … … … … … … … … …
112 68 30 2 6 3.42 16.55 9.57 3.3 2.2667 2.9000 60

113 68 30 2 6 4 17.05 9.71 3.4 2.2667 2.8559 55

114 68 30 2 6.5 3.46 17.59 9.12 3.48 2.2667 2.6207 50

115 68 30 2 6.5 3.36 17.51 9.22 3.25 2.2667 2.8369 60

116 68 30 2 6.5 3.02 17.21 9.55 3.36 2.2667 2.8423 60

117 68 30 2 7 3.36 18.49 9.01 3.51 2.2667 2.5670 50

118 68 30 2 7 2.74 17.97 8.24 3.37 2.2667 2.4451 45

Table 4 Previous models for

predicting the flow number of

asphalt mixtures

Model Previous works No. of input variables List of input variables

Case 1 GP/SA [12] 4 IF3, IF4, IF6, IF10

MEP, MLP [13]

Case 2 GEP [11] 4 IF1, IF5, IF6, IF10

Case 3 LGP, ANN [35] 6 IF1, IF3, IF4, IF5, IF6, IF10
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testing. To ensure the same proportion of training and

testing data as the previous works, fourfold cross-valida-

tion was selected. The dataset was split into fourfold,

which assigns the 3/4 (or 75%) portion of the dataset for

training and assigns the remaining portion for validating

the prediction model. A total of four distinct sets of training

and testing data were performed. By using a fourfold cross-

validation method for each model, the results were

obtained, and they were based on average results for the

testing and training datasets. Compared to considered

models, cross-validation allowed the best validation capa-

bilities, and this allowed the study to apply all training and

testing datasets in both phases.

4.3 LSSVR–SOS training process and prediction
results

As mentioned previously, SOS simulates the nature-in-

spired searching strategies to find the combination of

LSSVR tuning parameters that produces the lowest fitness

value (training error) during the training process. To ensure

that the learning model is accurately generated, the k-fold

cross-validation method was used. In the beginning, the k-

fold cross-validation separates the dataset randomly into

the training and testing data. The training data are

employed to build the prediction model, while the testing

data are treated as unseen data for verifying the trained

model. To avoid the over-fitting, SOS–LSSVR also utilizes

k-fold cross-validation to divide the training data into the

learning and validation subsamples 10 times, where each

subsample is used as a validation subsample.

In this study, every fitness value of LSSVR tuning

parameters is determined using the objective function for-

mulated in Eq. 5. The convergence curves of SOS

searching are illustrated in Fig. 2. As shown in Fig. 2, the

SOS searching improved the fitness value quickly from the

starting iteration. The fitness value converged after several

iterations, indicating that no further improvement of the

Table 5 Tuning parameters of

the competing predictive

methods

AI method Parameters Setting references

SVR Regulation parameter C = 1

RBF kernel parameter c = 1/N

[33]

LSSVR Regulation parameter r = 1

RBF kernel parameter c = 1

[14]

BPNN Training algorithm = Levenberg–Marquardt

Maximum number of iterations = 1000

Initial l = 0.01

l decrease factor = 0.1

l increase factor = 10

Maximum l = 1010

[41]

SOS–LSSVR c searching boundary = 10-8–108

r searching boundary = 10-5–105

Population size = 25

Maximum number of iterations = 100

N is number of input variables, l is learning rate of BPNN

Table 6 Performance measures
Performance measure Formula

Coefficient of correlation (R)
R ¼ n

P
y:y0�

P
yð Þ

P
y0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

y2ð Þ�
P

yð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

y02ð Þ�
P

y0ð Þ2
q

Root-mean-squared error (RMSE)
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

i¼1

y� y0ð Þ2
s

Mean absolute percentage error (MAPE)
MAPE ¼ 1

n

Pn

i¼1

y�y0

y

���
���

Mean absolute error (MAE)
MAE ¼ 1

n

Pn

i¼1

y� y0j j

y is the actual value; y0 is the predicted value; and n is the number of data samples
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fitness value can be obtained. It can be seen that the SOS

delivers a great performance as the optimizer in this

system.

Table 7 displays the performance of SOS–LSSVR for

each fold on each dataset. Table 8 shows the complete

statistical comparative results of the experiment among the

predictive methods. These results show that SOS–LSSVR

performed better compared to the rest of predictive meth-

ods. In each dataset, SOS–LSSVR earned the best score in

overall measurement category (R, RMSE, MAPE, and

MAE), followed by the BPNN, LSSVR, and SVR. Figure 3

depicts the performance measures that are described in

Table 8.

Among three models of dataset, SOS–LSSVR achieved

the best overall performance in Case 3. In Case 3, SOS–

LSSVR produces the lowest RMSE, MAPE, and MAE

scores of 34.35, 14.47%, and 24.80, respectively, while

having the highest R score of 0.9713. To conclude, Case 3,

the model with 6 input variables (IF1, IF3, IF4, IF5, IF6,

IF10), enables SOS–LSSVR to build the most accurate

model for predicting the flow number.

4.4 Comparison with previous works

Numerous studies have proposed AI methods for estimat-

ing the flow number of asphalt mixtures. For further veri-

fication, the prediction results of the proposed SOS–

LSSVR were compared with those of previous works.

Generally, it was not possible to compare the performance

of the proposed method with the previous works because

Table 7 Summary of the cross-validation results of the proposed SOS–LSSVR over various models

Model No. of fold Training dataset Testing dataset Optimal parameters

R RMSE MAPE (%) MAE R RMSE MAPE (%) MAE c r

Case 1 1 0.9723 34.10 12.71 23.92 0.9815 29.30 17.95 23.91 189,827.5 11.3

2 0.9759 31.12 13.14 21.98 0.9533 47.66 34.12 34.72 1706709.6 19.4

3 0.9699 34.55 13.66 23.93 0.9778 32.79 12.22 23.04 440,099.6 15.3

4 0.9804 28.07 12.27 20.52 0.9557 44.99 15.49 30.19 423,084.1 10.8

Case 2 1 0.9608 40.79 20.59 30.40 0.8952 58.57 30.04 45.26 18.2 2.6

2 0.9536 42.48 18.89 30.30 0.9356 54.82 44.58 44.59 12.3 2.6

3 0.9702 35.15 17.34 26.30 0.9020 60.96 26.11 41.08 121.0 2.9

4 0.9670 36.28 17.21 26.87 0.9435 51.44 20.06 36.46 21.3 2.3

Case 3 1 0.9897 20.47 8.22 14.85 0.9740 33.93 12.69 22.88 127,896.4 22.4

2 0.9866 22.70 10.98 17.08 0.9759 34.62 14.85 25.12 100,000,000.0 92.6

3 0.9902 20.45 7.32 15.01 0.9670 33.48 14.59 26.20 11,418.1 14.6

4 0.9863 23.77 11.32 17.87 0.9681 35.35 15.77 24.99 14,776,685.0 80.1

Table 8 Comparative testing results between SOS–LSSVR with other predictive methods over various models

Model AI methods R RMSE MAPE (%) MAE

Best Worst Average Best Worst Average Best Worst Average Best Worst Average

Case 1 SOS–LSSVR 0.9815 0.9533 0.9671 29.30 47.66 38.68 12.22 34.12 19.94 23.04 34.72 27.96

LSSVR 0.9460 0.9199 0.9312 49.59 68.85 60.98 40.65 70.70 51.37 42.25 55.57 49.86

BPNN 0.9700 0.9385 0.9589 38.38 53.65 43.56 16.69 32.18 22.17 28.89 36.65 33.09

SVR 0.9249 0.8564 0.9002 135.09 137.50 136.54 108.57 177.44 139.45 112.34 121.05 117.80

Case 2 SOS–LSSVR 0.9435 0.8952 0.9191 51.44 60.96 56.45 20.06 44.58 30.20 36.46 45.26 41.85

LSSVR 0.8457 0.6057 0.7497 91.33 104.30 97.24 70.05 114.57 81.40 77.23 87.90 80.11

BPNN 0.9390 0.8181 0.8821 54.69 78.41 67.69 22.93 48.40 32.78 40.10 60.39 50.59

SVR 0.8156 0.6095 0.7359 130.16 148.90 140.64 106.72 195.53 142.96 111.68 130.19 123.14

Case 3 SOS–LSSVR 0.9759 0.9670 0.9713 33.48 35.35 34.35 12.69 15.77 14.47 22.88 26.20 24.80

LSSVR 0.9491 0.8694 0.9091 66.38 77.30 69.33 33.14 76.21 57.11 51.26 61.75 55.60

BPNN 0.9499 0.8711 0.9241 43.13 80.39 56.71 24.81 43.96 32.33 35.34 61.97 43.42

SVR 0.8707 0.8008 0.8406 134.04 151.91 141.47 113.71 163.32 145.62 110.60 134.63 122.43

Bold text denotes the best performance across the methods
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the data divisions for training and testing were different. As

discussed previously, this study employed fourfold cross-

validation to keep the same proportion of training and

testing ratio (75/25) with the previous research. Table 9

summarizes the comparison results between the proposed

method and previous works.

In Case 1, SOS–LSSVR outperforms GP/SA and MEP

in all performance measure categories (R, RMSE, and

MAE). MEP has slightly better R and MAE scores com-

pared with GP/SA, while GP/SA is better than MEP in

terms of RMSE. Overall, error rates (RMSE and MAE)

improved by SOS–LSSVR method were 14.0–17.4%

compared to those of previous methods in this case. Similar

to Case 1, the obtained results of the SOS–LSSVR per-

formance are better than those of GEP in every category in

Case 2. The error rates of SOS–LSSVR were 13.2–16.5%

lower than those of GEP. In Case 3, the SOS–LSSVR and

ANN produced better performance than LGP. SOS–

LSSVR has the best score in terms of RMSE, while ANN

has the best score in terms of R and MAE.

0.50 0.60 0.70 0.80 0.90 1.00

Case 3

Case 2

Case 1

SVR LSSVR BPNN SOS-LSSVR

25.0 50.0 75.0 100.0 125.0 150.0

Case 3

Case 2

Case 1

SVR LSSVR BPNN SOS-LSSVR

0.0 25.0 50.0 75.0 100.0 125.0 150.0

Case 3

Case 2

Case 1

SVR LSSVR BPNN SOS-LSSVR

20.0 40.0 60.0 80.0 100.0 120.0

Case 3

Case 2

Case 1

SVR LSSVR BPNN SOS-LSSVR

Average R Average RMSE

Average MAPE (%) Average MAE

Fig. 3 Average testing results of the performance measures for the SOS–LSSVR and other methods through cross-validation

Table 9 Average testing results between SOS–LSSVR with previous

researches over various datasets

Model AI methods R RMSE MAE

Case 1 MEP [13] 0.956 46.23 32.509

GP/SA [12] 0.948 46.06 33.842

SOS–LSSVR 0.9671 38.68 27.96

Case 2 GEP [11] 0.891 67.63 48.218

SOS–LSSVR 0.9191 56.45 41.85

Case 3 LGP [35] 0.964 38.44 26.442

ANN [35] 0.974 34.95 23.102

SOS–LSSVR 0.9713 34.35 24.80

Bold text denotes the best performance across the methods
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5 Conclusion

Permanent deformations in asphalt pavement have become

a major issue in road engineering because it creates dis-

comfort and often dangerous situations to the road users.

Permanent deformations usually occur after a number of

repeated loading cycles, known as flow number, applied to

an asphalt pavement. Accurately predicting the flow

number is essential for road designers in determining the

proper asphalt binder properties. Thus, the present study

developed a new predictive method called SOS–LSSVR to

model the complex relationship of asphalt mixtures and

predict their permanent deformation.

The dataset used in this study was obtained from a

dynamic creep test containing 118 samples. All proposed

predictive techniques used cross-validation through the

varying dataset models. As a benchmark, three different

predictive methods were used for SOS–LSSVR: SVR,

BPNN, and LSSVR. The proposed SOS–LSSVR was

compared with other methods through multiple perfor-

mance measures to build an extensive comparison of the

predictive methods.

In this study, the SOS–LSSVR is able to achieve better

accuracy than all other comparative measures with the

BPNN, LSSVR, and SVR achieving the second-, third-, and

fourth-best overall accuracies, respectively. Furthermore,

the results from SOS–LSSVR are compared with those of

past research. It was revealed that the results from SOS–

LSSVR outperform those of previous predictive methods.

The present study validates that the new predictive

model SOS–LSSVR represents a significant step forward in

assisting road designers in addressing the critical problem

of permanent deformation in asphalt mixtures. Investigat-

ing the selection of relevant input factors of the given

dataset represents an interesting direction for further study.

Choosing a set of relevant input factors may increase the

model performance and reduce the model complexity.
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