d

by Leo Coelho

Submission date: 23-Sep-2020 12:46PM (UTC+0700)
Submission ID: 1394633766

File name: artigo_Final.pdf (1.51M)

Word count: 9181

Character count: 45304



Computers and Structures 242 (2021) 106353

Contents lists available at ScienceDirect

Computers
&5

Computers and Structures

journal homepage: www.elsevier.com/locate/compstruc

Chaotic coyote algorithm applied to truss optimization problems )
a,b,# s’

Juliano Pierezan?, Leandro dos Santos Coelho*”*, Viviana Cocco Mariani *€,
Emerson Hochsteiner de Vasconcelos Segundo ¢, Doddy Prayogo -

ADepartment of Electrical Engineering, Federal University of Parana (UFPR), Curitiba, PR, Brazil

® ndustrial and Systems Engineering Craduate Program (PPCEPS), Pontifical Catholic University of Parana { PUCPR), Curitiba, PR, Brazil
“Mechanical Engineering Graduate Program (PPGEM), Pontifical Catholic University of Parana (PUCPR), Curitiba, PR, Brazil

4 Department of Civil and Construction Engineering, National Taiwan University of Science and Technology. Taipei, Republic of China
“Department of Civil Engineering, Petra Christian University, Surabaya, Indonesia

ARTICLE INFO ABSTRACT

Article history:
Received 11 February 2020
Accepted 2 August 2020

The optimization of truss structures is a complex computing problem with many local minima, while
metaheurislg are naturally suited to deal with multimodal problems without the need of gradient infor-
mation. The Coyote Optimizpn Algorithm (COA) is a popul ation-based nature-inspired metaheuristic of
the swarm intelligence field for global mization that considers the social relations of the coyote pro-
posed to single-objective optimization. Unlike most widespread algorithms, its population is subdivided
in packs and the internal social influences are designed. The COA requires a few control hyperparameters
including the number of packs, the population size, and the number maximum of generations. In this
paper, a modified COA (MCOA) approach based on chaotic sequences generated by Tinkerbell map to
scatter and association probabilities tuning and an adaptive procedure of updating parameters related
to social condition is proposed. It is then validated by four benchmark problems of structures optimiza-
tion including planar 52-bar truss, spatial 72-bar truss, 120-bar dome truss and planar 200 bar-truss with
discrete design varigfles and focus in minimization of the structure weight under the required con-
straints. Simulation results collected in the mentioned problems demonstrate that the proposed MCOA
presented competitive solutions when compared with other state-of-the-art metaheuristic algorithms
in terms of results quality.

Keywords:

Structural optimization
Discrete truss structures
Coyote optimization algorithm
Metaheuristic algorithms
Chaotic sequences

© 2020 Elsevier Ltd. All rights reserved.

7
the search space becomes non-convex and may subterfuge the sol-
ve trap in a local optimum.
plementation is more challenging in the c fdiscrete opti-
mization problems such as several truss designs that usually entail

1. Introduction

Stru@fliral optimization is a subject that has gained the atten-
tion of researchers because of its di and large applicability to

the design of structures. Besides, the truss design is the most clas-
sical benﬂnark in structural optimization [1-21]. Discrete opti-
mization of truss structures is a hard computing problem with
many local minima. Metaheuristic algorithms are naturally suited
for discrete tpimization problems as they do not require gradient
information. Truss optimization may subject to static and dynamic
constraints. Static constraints include structural kinematic stabil-
ity, maximum allowable stress in truss members, maximum allow-
able deflection in the truss nodes and critical buckling load.
However, dynamic constraints impose limits on the natural fre-
quency of the desired truss to avoid the destructive resonance phe-
nomenon. Taking both static and dynamic constraints into account
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a complex design space with multiple local optima. Also, several
types of research have verified that the classical optimization
methods based on gradient information involving the calculation
of first and/or second derivatives are not efficient enough or always
efficient in dealing with many larger-scale real-world multimodal,
non-continuous, and non-differentiable problems [9]. To incre
the efficiency and accuracy of the optimization methods and to
overcome the computational shortcomings of ¢ ntional opti-
mization methods linked to structural design, researchers have
encouraged to rely on metaheuristic optimization algorithms.
The term metaheuristic describes higher-level heuristics that are
proposed for the solution to a wide range of optimization
problems.

Shih and Lee [10] applied the modified double-cuts approach
for large-scale fuzzy optimization in 25-bar and 72-bar truss
design problems. The proposed approach was better than the
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single-cut approach and easy programming. Several truss struc-
tures with discrete variables were solved by a hybrid particle
swarm optimizer (PSO) with harmony search (HS) scheme, called
(HPSO) by Li et al. [11]. The HPSO approach was validated and
compared with the PSO and the PSO with the passive congregation
being able to accelerate the convergence rate effectively. Degerte-
kin and Hayalioglu [12] applied a teaching-learning-based opti-
mization (TLBO) for optimization of truss structures. [t obtained
results as good as or better than the other metaheuristic algo-
rithms in terms of both the optimum solutions and the conver-
gence capability in most cases. A different approach named Ray
optimization was applied to minimize the size, shape and weight
of truss structures [13]. An adaptive dimensional search (ADS)
was proposed for discrete truss sizing optimization problems
|14]. The robustness of the ADS was investigated and verified using
two benchmark examples as well as three real-world problems.
When ADS was compared with other metaheuristic techniques
indicates that it is capable of locating improved solutions using
rmmesser computational effort.

he mine blast algorithm (MBA), improved MBA (IMBA), and
the wate le algorithm (WCA) were applied for weight mini-
lnizatim@t:russ structures including discrete sizing variables,
offering a good degree of competitiveness with other state-of-
the-art metaheuristics [15]. A novel adaptive hybrid evolutionary
firefly algorithm (AHEFA) was applied for shape and size optimiza-
tion of truss structures under multiple frequency constraints.
Accordingly, the convergence rate is significantly improved with
high solution accuracy |[16]. The authors Assimi and ] li [17]
utilized the hybrid genetic programming algorithm for optimum
connectivity table among the truss nodes, and optimal 5-
sectional areas subject to design constraints were considered both
types of continuous and discrete design variables.

Degertekin and his collaborators [18] modified the Jaya Algo-
rithm (JA) improving convergence speed and reducing the number
of structural analyses required in the optimization process. Six
classical weight minimization problems of truss structures includ-
ing sizing, layout and large-scale optimization problems with up to
204 design variables were solved. Discrete sizing/layout variables
and simplified topology optimization were considered. A novel
Jaya Algorithm (JA) #:8s proposed by Degertekin et al. [19] for dis-
crete optinﬁtion, noted as discrete advanced JA (DAJA), and
applied truss structures under stress and displacement con-
straints. Results collected in seven benchmark problems demon-
strated the superiority of DAJA over other state-of-the-art
metaheuristic algorithms. The multi-objective colliding bodies
optimization (MOCBO) algorithm was proposed by Kaveh and
Mahdavi [20] and used to solve two truss structural bi-objective
functions. The accuracy and efficiency of the optimization algo-
rithm were compared with literature with promising performance.

An extension of the basic truss layout optimization using various
materials was considered in [21]. A novel improved version of the
particle swarm optimization algorithm (GEMPSO) was developed
for solving six benchmark problems and three truss structures with
two multi-material layouts, showing that the appropriate use of
expensive sgnger materials can reduce the overall cost of struc-
tures. The Electromagnetism-like Firefly Algorithm (EFA) was
developed hy et al. [1] and applied for discrete structural opti-
mization. The improved performance of the EFA in comparison with
other optimizers was demonstrated by six optimization problems
related to truss structures. An adaptivi tist differential evolution
(aeDE) was used by Ho-Huu et al. [2] for the optimization of truss
structur ith discrete design variables. That technique helps pre-
serve the balance between global and local searching abilities in the
differential evolution (DE). Numerical results reveal that aeDE was
more efficient than the DE and other methods in terms of the qual-
ity of solution and convergence rate.

Metaheuristics such as evolutionary algorithms and swarm
intelligence paradigms have been designed for tackling many
lems in various fields as competitive alternative solvers
cause they do not require gradient information, easy imple-
mentation process, and bypass the local optima problem [22-
28]. Swarm-based algorithms try to mimic the social behavior
of nature creatures who swarm, herds, schools or flocks for forag-
ing, migration and enemy skipping. The swarm-based algorithms
comprised of environment and agents. These agents interact with
each other in the environment and converge to a common solu-
tion for a problem using an environmental mechanism, interac-
tion mechanism, and activities of agents. terms of recently
proposed swarm intelligence paradigms, the Coyote Optimization
Algorithm (COA) [29] is a promising and competitive stochastic
population-based approach for global optimization tasks. It con-
siders the principles of coyote social relations. The Cultural Coy-
ote Optimization Algor (CCOA) was proposed and validated
by Pierezan et al. [30]| under a set of benchmark functions from
the Institute of Electrical and Electronics Engineers (IEEE) Con-
gress on Evolutionary Computation (CEC) 2017 and gas turbine
problem. The results showed that the CCOA outperforms state-
of-the-art metaheuristics.

Maintaining a good balance between the convergence and the
diversity is particularly crucial for the performance of a meta-
heuristic algorithm. In this context, the key capabilities of meta-
heuristic algorithms such as COA to be able to find reasonable
solutions are exploration and exploitation.

Exploration and exploitation are fundamental concepts of any
search algorithm. The explorati ay be described as the ability
of the algorithm to investigate the different promising regions in
a given search space whereas exploitation ensures the searching
of optimal solutions around the promising regions, a kind of local
search. It is important for a metaheuristic algorithm maintaining
an appropriate balance between the exploration and exploitation
behaviop) be competitive in terms of robustness and perfor-
mance. However, it is difficult to balance between these phases
due to its stochastic nature. A latent viewpoint interprets explo-
ration and exploitation as a global search and local search, respec-
tively. Pure exploration degrades the precision of the search
process but increases its capacity to find new potential solutions.
On the other hand, pure exploitation allows refining existent solu-
tions but rsely driving the process to locally optimal solutions.

On the other hand, in recent years, growing interests in chaos
theory and its features have stimulatec@e studies of chaos
applied in optimization algorithms design. Chaos is a kind of a fea-
ture of a nonlinear dynamic system which exhibits bounded unsta-
ble dynamic behavior, ergodic, non-period behavior depended on
initial condition and control parameters. Due to the benefit of a
few properties as stochasticity and ergodicity of chaos, the idea
of using chaotic sequences instead of random sequences has been
noticed in several fields, one of these fields is the optimization the-
ory [31-40]. In this paper, a modified COA (MCOA) approach based
on chaotic sequences generated by Tinkerbell map [41-43] is pro-
posed to improve the exploration behavior. Additionally, an adap-
tive procedure of updating parameters related to social condition is
adopted to update the exploitation behavior based on the historical
recor success in the search. The proposed MCOA is validated by
truss optimization problems with discrete design variables and
focus in minimization of the structure weight under the required
constraints.

The rest of this paper is organized as follows. Section 2 presents
a description of the classical COA and the proposed COA variant
using Tinkerbell chaotic map. After, details of the truss optimiza-
tion problems are shown in Section 3. Finishing, the numerical
results and conclusive remarks are given in Sections 4 and 5,
respectively.
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2. Description of the optimization methods

In this section, the fundamentals of the COA are presented.
After, the proposed modified COA using Tinkerbell chaotic map is
detailed.

2.1. Coyote optimization algorithm (COA)

gnlike most widespread algorithms, the population in the COA
is subdivided in packs and the internal social influences are
designed [29]. The COA requires only a few control hyperparame-
ters including the number of packs, the population size, and the
number maximum of generations (the stopping criterion). The
source code of the COA for single-objective optimization in
MATLAB®, R and Python are given in https://github.com/jkpir/
COA.

Step 1: tes population initialization. The population (X) is
composed of N, packs with N. coyotes each and the initialization
(iteration t = 0) inside the search space defined by the interval

Ib, ub]"occurs as follows:
socyy = by + 15 - (uby — Iby), 1)

where ¢ =[1,2,---.NJ, p=[1.2,--- Np|, j = :l_ZD:, D is the
dimension of the optimization problem and r; is a random number
inside [0, 1] generated by a uniform probability distribution. The
packs are randomly grouped by the same distribution and the initial
coyotes ages (age?”) are all equal to 0.

Step 2: Coyote’s adaptation. The coyote adaptation is evaluated
due to the objective function. It is a consequence of its social con-
dition, which means:

fit2* = f(soc2). )
While the stopping criterion is not reached, repeat Steps 3 to
10.
For each p™ pack, repeat Steps 3 to 8.
Step 3: Alpha coyote definition. In nature, the alpha coyote is

the one that presents the best social condition. In the COA, it means
the best (i.e. the smallest or the highest) objective function cost, or:

alpha* = {socf"|arg¢.=”_2_..._Mmi'ﬂj{mfa] } 3)

Step q:e social tendency. The social behavior of coyotes is
naturally influenced by the alpha and the other coyotes of the pack.
In COA, this phenomenon is represented by the cultural tendency
of the pack (ct*'), which is the median of the coyote's social
conditions:

ctt = median(socfj)\fc €{1,2,--- N¢} 4

forj=[1,2,---,D].

For each c'" coyote of the p*® pack, repeat Steps 5 to 7.

Step 5: Social condition update. The social condition is
updated according to the influence of the alpha coyote (4,) and
the social tendency (é,), generated from two random coyotes of
the pack (cry and crz), which means:

new.soct! = soc' + 1y d + 128y (5)
where
g = ctht — socf,'.“ (6)

8q = alpha™ — soc?! (7)

and ry and r; are, respectively, the weights of the pack and the
alpha influence, both random numbers inside the range [0,1] gen-
erated with uniform distribution of probability.

Step 6: New social condition evaluation. The objective func-
tion cost is calculated considering the new social condition.

new_fit'! = f (new_soc?"), (8)

Step 7: Adaptation. The coyotes choose the social condition
that best fits the environment to keep it to the next iteration,
which means the best (ie. the smallest or the highest) objective
function cost, such that:
soctH — { new_soct’, if new _fit < fit?" )

¢ soc?', otherwise

Step 8: Birth and death. Fir§€fR pup is generated with age
equals to 0 and considering the scatter probability (P.) and the
association probability (P, ), such that:

socp’y, if md; < Py orj = j;
pupj* = soch’, if rd; > P + Py or j =j, (10)
R;, otherwise

where these probabilities are calculated as follows:

1 \
Po=p. an
p,-1-P) (12)

k, and k- are the two selected coyotes from p" pack, j, and j, are
two random dimensions of the problem, & 1s a random number

inside the decision variable bound of the j* dimension and rnd; is
a random number inside [0,1] generated with uniform probability
distribution. After that, the pup social condition is evaluated and
the death rule is applied, according to the following algorithm:

Step Description

1 Compute the group of worst adapted coyotes mn the
pup ()
2 Compute the number of coyotes inside ¢ (¢)
Ifp=1
3 The pup survives and the only coyote in o dies
Else if ¢ = 1
4 The pup survives and the oldest coyote in  dies
Else
5 The pup dies.

Step 9: Transition between packs. Along with the coyote's life, it
can evict from a pack and go to another one. In COA, two random
coyotes from different packs change their positions with probability
P., such that:

P, =0.005 -N? (13)

Step 10: Ages update. The coyotes age is updated every itera-
tion, which means:
agefl.ul _ t]gef."[ + 1 {]41

Step 11: Solution selection. The best-adapted coyote among all
packs is selected as the solution of the optimization problem.

2.2. Modified coyote optimization algorithm (MCOA)

An important issue that needs to be addressed is value of
control parameters of COA (see details in [29,30,44]). The control
parameters manage the balance between exploitation (using the
existing material in the population to best effect) and exploration
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(searching for better coyotes). The control meters related to
the scatter and association probabilities are key factors affecting
the COA's convergence.

Choosing suitable control parameter values in COA as in
another evolutionary and swarm-based approaches is frequently
a problem-dependent task. Suitable control parameters are differ-
ent for different function problems in€ding structural optimiza-
tion (see examples in [1-2145]). The difficulty in the use of COA
arises in that the choice of these is mainly based on empirical evi-
dence and practical experience.

As mentioned in the Introduction section, the deff§n of opti-
mization techniques using chaotic sequences [31-40] has received
a great deal of attention in the literature. Optimization approaches
using chaotic sequences are generally based on ergodicity, stochas-
tic properties and irregularity of chaotic signals. The use of chaotic

05

=051

Fig. 1. Phase plots of Tinkerbell map using 3000 iterations.

sequences in COA can be helpful to escape more easily from local
minima than can be done through the traditional COA.

In the MCOA, Tinkerbell chaotic m@generating values are
adopted. The Tinkerl map [41-43] is an example of a strange
attractor, where the two-dimensional quadratic map of its map is
given by

X =X -y +a-x+b-y, (15)

P =2XY, +C- X +d-y, (16)

where a, b, ¢, d are non-zero parameters and f is the iteration. For
parameter feflues (adopted to the COA design with different initial
conditions)a=09,b= —-0.6013,c= 2.0, and d = 0.5, we get the chao-
tic attractor of this map as shown in Fig. 1. For generating the Fig. 1,
th?itial conditions are xp = 0.1 and y, = 0.1.

onsidering a population with N, packs with N, coyotes each, a
summary of the MCOA steps is shown in Fig. 2. In step 11, it is
adopted a normalized Tinkerbell chaotic map-generating values
in range [0, 1] to scatter and association probabilities tuning.

In this case, in a preprocessing phase of Tinkerbell map data to
utilization in MCOA, T values are generated using the equations
(15) and (16). After the values of x,., (equation (17)) are normal-
ized using a linear scaﬁ function to scatter and association prob-
abilities tuning. The [inear scaling function makes use of the
maximum and minimum values of x;,,. The linear scaling function
in the range [0.025, 0.075] transforms a variable x,,, into x; , in the
following way:

: X1 — min(x) .
X = max(x) — min(x) (7)
where x = (x, ..., xr),gs number of iterations, min(x) and max(x)
are the minimum and maximum val f x;.1, respectively.

In the original COA, r; and r; are random numbers inside the
range [0,1] generated with uniform distribution of probability. In
terms of exploitation behavior, an adaptive procedure of updating
parameters r, and r; in equation (5) related to social condition is
employed in the MCOA based on adaptive differential evolution
called JADE. Details about the JADE can be found in [465].

Step Description

1 Define the control parameters

2 Initialize N, packs with N: coyotes each
3 Evaluate the coyote’s adaptation

While stopping criterion is not achieved do

For each p pack do

4 Define the alpha coyote of the pack
5 Compute the pack’s social tendency
For each ¢ coyote do
6 Update the coyote’s social condition
7 Evaluate the new social condition
8 Coyote’s adaptation (objective function calculus)
End for
9 Birth and death inside the pack
End for
10 Select the population to the next iteration
11 Packs reorganization according to the scatter and association
probabilities using Tinkerbell chaotic maps
12 Update parameters related to social condition in an adaptive form
13 Update the coyotes’ ages
End while
14 Return the best solution

Fig. 2. Steps of the MCOA.
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The adopted procedure in MCOA uses optional external archive
and an adaptive parameter method. The external archive not only
can provide the progress direction but also can improve the diver-
sity of the swarm. The adaptive parameter method lets the ry and
r; be generated following Gaussian distributions truncated to [0,1].
Their expected mean values are adaptively updated using the suc-
cessful values of ry and rz. In general terms, the parameters r; and
r; for each coyote are updated based on their historical record of
success.

At each iteration, a ry and r; are generated for each coyote
according to Gaussian distributions with location parameter i,
and p,, with a standard deviation of 0.1. The parameters g, and
U, are initialized to 0.5 and then updated at the end of each gen-
eration according to the following equations:

ey = (1 = ¢l +Cp o+ meana(Se) (18)

Mo = (1 = Cr el +Cp o+ MEaNa(Sez) (19)

where ¢, is a constant £ [0, 1]. 5,y and Sz are the set of all successful
ry and r; in the current iteration, and mean,(.) is the arithmetic
mean. In this paper, the adopted ¢, equals to 0.05.

3. Benchmarks of truss optimization

In this section, four benchmarks of truss optimization problems
including planar 52-bar truss, 72-bar space truss structure, 120-bar
dome truss, and planar 200-bar truss structure are described. All
adopted benchmarks are constrained optimization problems.

When the problems contain constraints, the feasible region is
reduced, leading to many difficulties in solving them. As a rule,
in constraint handling methods based on penalty functions
|47,48], a penalty term is added to the objective function penaliz-
ing the function values outside the feasible region.

In this paper, the comint-handling strategy utilized by COA
and MCOA approaches relies on a simple transformation of the
original cost function of the optimization problem. Transforming
constrained optimization problem into an unconstrained problem
is the core idea of the penalty function whose formula is given by:

@(X) = f(X) + p(X) (20)

p(X) =y +nve imax{ll_g, X7 (21)

where max is the maximum value, i = 1,.. ,m inequality constraints,
fiX) is the objective function {minimization of the structure weight),
@(X) is the extended objective function, p(X) is the penalty value
defined by the inequality constraints g (X), nvc is the number of vio-
lated constraints, and 7} is a positive constant called penalty factor.
The penalty value is added to the fitness function because low val-
ues are preferred as expected in a minimization problem. In this
paper, 7 equals to 10*° was adopted.

3.1. A planar 52-bar truss structure

This section carries out the optimization #fiblem for a 52-bar
planar truss structure shown in Fig. 3. The mass density E and
the modulus of elasticity g of the constitutive material are respec-
tively 207 GPa and 7860 kg/m>. The tension and compression
stress are subjected not to higher than a magnitude of 180 MPa.
In this problem, the horizontal and vertical loads that are applied
to the nodes from 17 to 20 are set to P, = 100 kN and P, = 200
kN, correspondingly. All bar this planar 52-bar truss are
gathered into 12 groups: (1) A;-Ag (2) As-Aqp, (3) A-Aqs, (4)
Ara=Ay7, (5) Aig=Aza, (6) Aza-Azs, (7) Az7-Asp, (8) Az-Asg (9)
Az7-Asg, (10) Aso-Ass, (11) Ass—Ase, and (12) Asp-Asz; wherein,

w

fY
Py
Lﬁx (18) (19)

—(17) - T = (20)
) 44 43 46 47 48 49,
g = a0 41 2 43
“ | o
R (14 (15
(13 37 38 39 (16)
1 2 3 5 36
g 7 28 29 30
o
10 11
1@ 24( ) zs( 2% U2
18 19 21 23
g 14 15 16 17
[1s]
6) (7)
_| ( g
[-(5) 1 12 13 ®
6 v i 9 10
g | 2 3 4
o
X
-"—(l)_'. — (2) (3) L 100}
1 2m 2m i__ 2m _Jl

Y78.7402 in) |

Fig. 3. A 52-bar space truss structure. Source: [15].

each group contains the bars having a same value of the cross-
sectional area. Therefore, there are 12 design variables in this opti-
mal design problem. Discrete values of cross-sectional areas can be
selged from Table 1.
is problem has been investigated using several optimiza

algorithms such as genetic algorithm (GA) and modified GA by
Wu and Chowf§ffi5 |, HS by Lee et al. [49], heuristic particle swarm
optimization (HPSO) by Li et al. [11], MBA, WCA and IMBA by
Sadollah et al. [15,50], colliding bodies optimization (CBO) by
Kaveh and Mahd |51], TLBO by Dede [52], hybrid harmony
search algorithm (HHS) by Cheng et al. [53 ], DE and aeDE by Ho-
Huu et al. [2].

3.2. A spatial 72-bar space truss structure

The second example executes the optimization problem for a
72-bar space truss structure as shown in Fig. 4. The material den-
sity is 0.1 Ib/in® and the modulus of elasticity is 10* ksi. The stress
limitations of the members are +25,000 psi. All nodal displace-
ments must be smaller than #0.25 in. There are 72 truss elements
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Table 1
List of the cross-sectional areas from the AISC (American Institute of Steel
Construction) design code.

Number in? mm? Number in? mm?

1 0111 71.613 33 3.840 2477414
2 0141 90.968 34 3.870 2406.760

3 0.196 126.451 35 3.880 2503.221
4 0250 161.290 36 4180 2696.769

5 0307 198.064 37 4220 2722575
[ 030 252258 38 4490 2896.768

7 0442 285.161 39 4,590 2061.284
8 0563 363.225 40 4,800 3096.768
El 0.602 388.386 41 4970 3206.445
10 0766 494,193 42 5120 3303.219
1 0.785 506451 43 5.740 3703.218
12 0994 641.289 44 7220 4658.055
13 1.000 645.160 45 7.970 5141.925
14 1.228 792256 46 8530 5503.215
15 1.266 816.773 47 9.300 5099988
16 1.457 939.998 48 10.850 6999.986
17 1.563 1008.385 49 11.500 7419.340
18 1.620 1045.159 50 13.500 8709.660
19 1.800 1161288 51 13.900 8067.724
20 1.990 1283.868 52 14.200 9161.272
2 2130 1374191 53 15.500 9999.980
22 2.380 1535481 54 16.000 10,322,560
23 2,620 1690319 55 16.900 10,903.204
24 2,630 1696.771 56 18.800 12,129,008
25 2.880 1858.061 57 19.900 12,823,684
26 2.930 1890319 58 22,000 14,193,520
27 3.000 1993544 59 22,900 14,774164
28 3.130 2019351 60 24.500 15,806.420
29 3.380 2180641 61 26.500 17,096.740
30 3.470 2238705 62 28,000 18,064.480
31 3.550 2290318 63 30.000 19,354.800
32 3.630 2341931 64 33.500 21,612,860

¥ 4

-

60 in
171524 cm)

(s)

element and node numbering system

| 60in

- (9) 4 (10)

40 in

1

(6096 cm)
| 60 in

(13 (14)

60 in

any—pX 5 (18)

Fig. 4. A 72-bar space truss structure, Source: [56].

which are divided into 16 groups: (1) Aj-Ay, (2) As-Aqz, (3)
A]Z‘AIG- {4) AIT_AIS' {5) AIQ‘AZZ' {E) AZZ‘AZD' {7) AZ]‘AZ‘}' {8)
Ass-Ass, (9) Asy-Ago, (10) Ag-Agg, (11) As-Asy, (12) Aszﬂ4.
(13) Ass-Asg, (14) Aso=Aes, (15) Agy-Agp, and (16) Agy-Azz. This
probler s previously examined by Li et al. [11], Sadollah et al.
[15,50], Wu and Chow [45], Lee et al. [49], Kaveh and Mahdavi
|51], Kaveh and Talatahari [54], and Kaveh and Ghazaan [55].

196,85 in. (S00 cm)
118.11 in. (300 em]

273.26 in.
(694.1 ecm) I
492.12 in. (1250 cm) I

62559 in (1589 cm) _§

Fig. 5. A 120-bar dome structure. Source: [50].

3.3. A 120-bar dome structure

A 120-bar dome truss, shown in Fig. 5, is considered the third
case study. The problem has been studied as a benchmark opti-
mization problem with static constraints. The symmetry of the
structure about the X-axis and Y-axis is considered td’@roup the
120 members into seven independent size variables. A constant
lumped mass is attached as 3000 kg (6613,868 lb) at node 1,
500 kg (1102.31 Ib) at nodes 2 to 13, and 100 kg (220.462 Ib) at
the rest of the free nodes. The elements are clustered into 7 groups
by considering symmetry about the Z-axis.

This problem was previously solved by Kaveh and Mahdavi [51]
using CBO, Kaveh and Zolghadr [58| using democratic particle
swarm optimization (DPS0O), Kaveh and Zolghadr [59] based on
hybridization of the Charged System Search and the Big Bang-Big
Crunch algorithms ( C5S-BBBC), and Tejani et al. |60] using adaptive
symbiotic organisms search {SOS), among others.

3.4. A planar 200-bar truss structure

The fourth case study con?red for size optimization is the
200-bar plane truss structure. A constant lumped mass of 100 kg
is attached at each of the upper nodes (nodes 1-5), whereas all ele-
ments are grouped into 29 groups corresponding to 29 design vari-
ables by considering geometrical symmetry, as shown in Fig. 6 and
Table 2. All member are made of steel: the material density and
modulus of elasticity are 0.283 Ibfin® (7933410 kg/m?) and
30,000 ksi (206,000 MPa), respectively. This truss is subjected to
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Fig. 6. A 120-bar dome structure, Source: [61].

constraints only on stress limitations of + 10 ksi. There are three
loading conditions: (i) 1.0 kip acting in the positive X-direction at
nodes 1, 6, 15, 20, 29, 43, 48, 57, 62, and 71; (ii) 10 kips acting in
the negative Y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15,
16, 17, 18, 19, 20, 22, 24,..., 71,72, 73, 74, and 75; and (iii) condi-
tions (i) and (ii) acting together. the minimum cross-sectional area
of all is 0.1 in? (0.6452 cm?®) and the maximum cross-sectional area
is 20 in? (129.03 cm?).

This problem was previously solved by Kaveh and Talatahari
|61] using a hybrid scheme based on particle swarm optimization,
ant colony and harmony search (HPSACO), Lamberti [62] using a
simulated annealing approach (SA), Degertekin et al. [63] using a

Table 2
Design variables for the planar 200-bar truss structure.

harmony search approach (SAHS) and Degertekin and Hayalioglu
|12] proposed a TLB ethod. Furthermore, recently Kim and
Byun [64] presented a diversity-enhanced cyclic neighborhood
networlk topology particle swarm optimizer (CNNT-PSO).

4. Numerical results

In ns section, four benchmarks of structure optimization prob-
lems with discrete design variables are solved by the COA and
MCOA which were described in Section 2. The MCOA was imple-
mented in MATLAB®©, adopting the parameters: number of inde-
pendent runs is 50 times to provide statistically meaningful
results, N, equal to 10 packs, N, set to 5 coyotes, and stopping cri-
terion of 8000 objective function evaluations, except to the planar
200-bar truss structure with 30,000 objective function evaluations.
It is important to mention that the candidate solutions are rounded
for the nearest integer (discrete variables) to objective function
evaluation. 9

In this paper, the structural optimization problem minimizes
the truss weight by finding the optimal nodal positions and opti-
mal elemental cross-sectional areas such that it satisfies multiple
natural frequency constraints. Therefore, the objective function is
formulated for the structural weight by neglecting the weight of
lumped masses, where nodal coordinates and the element cross-
sectional areas are the design variables.

Simulation results in Tables 3-6 show that the MCOA obtained
competitive results to planar 52-bar truss (D = 12), spatial 72-bar
truss (O = 16), 120-bar dome truss (D = 7) and planar 200 bar-
truss (D = 29) optimization problems, respectively. The best results
in Tables 3-6 are in bold.

In terms of the MCOA for the planar 52-truss case study
reported in Table 3, MCOA found an optimum weight of
1902.605 lb after 5392 structural analyses. It suitably agrees
with the results obtained by other researches. It outperforms
the best result presented in [11] in terms of the best (minimum)
of the weights. Furthermore, MCOA presents the same best
results than the results mentioned in [1,250], but it presents
superior results in terms of the mean and worst weight than
the results in [1,2,11,50]. However, the IMBA [15] presented
superior results considering the mean weight when compared
with MCOA.

For the spatial 72-truss case study, the best results in Table 4 for
the weights of MCOA outperform the best results presented in
[1,2,50,51,54] in terms of the mean of the weights. MCOA achieved

Element number Member in the group

Element number Member in the group

{design variable) (design variable)
1 1,2 3,4 16 82,83, B5, 86, 88, 89,91, 92, 103, 104, 106, 107,
109,110,112, 113

2 5 811,14, 17 17 115,116, 117, 118

3 19,20, 21, 22,23, 24 18 119,122, 125, 128 131

4 18,25, 56, 63,94, 101, 132,139,170,177 19 133,134, 135, 136,137, 138

5 26,29, 32, 35,38 20 140, 143, 146, 149, 152

[ 6,7,9,10,12, 13,15, 16, 27,28, 30, 31, 21 120,121, 123, 124, 126, 127, 129, 130, 141, 142,
33,34, 36,37 144, 145, 147, 148, 150, 151

7 39,40, 41, 42 22 153, 154, 155, 156

8 43, 46, 49, 52, 55 23 157, 160, 163, 166, 169

9 57,58, 59, 60, 61, 62 24 171,172,173, 174,175, 176

10 64,67, 70, 73, 76 25 178,181, 184, 187,190

11 44, 45, 47,48, 50, 51, 53, 54, 65, 66, 68, 26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180,
69,71, 72,74,75 182,183, 185, 186, 188, 189

12 77,78, 79,80 27 191, 192, 193, 194

13 81,84, 87,90,93 28 195,197, 198, 200

14 95,96, 97,98, 99, 100 29 196,199

15 102, 105,108,111, 114
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Table 3
Optimization results for the planar 52-bar dome structure case szp.
Design variable Leetal [1] Ho-Huu et al. [2] tetal [11] Sadollah et al. [50] Sadollah et al. [15] Sadollah et al. [15] COA MCOA
EFA aeDE PSO Mine WCA IMBA
A=Ay 4658055 4658055 4658.055 4658.055 4658.055 4658.055 4658.055  4658.055
As-Ajp 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288
Ay-Ags 494193 494193 363225 404193 404193 494,193 404193 494193
Aa-Ay7 3303.219 3303.219 3303.219 3303.219 3303.219 3303219 3303219 3303.219
Agg-Agy 939998 939,998 940,000 939998 940,000 940,000 030998 939,998
Aga-HAas 494193 494193 404193 404193 404193 494,193 404193 494193
Aazr-Aao 2238705 2238705 2238705 2238705 2283.705 2283.705 2238705 2238705
Agi=HAss 1008.385 1008.385 1008.385 1008.385 1008.385 1008385 1008.385 1008385
Aar-Aas 494193 494193 388386 404193 404193 494,193 404193 494193
Ago-Aas 1283868 1283868 1283.868 1283868 1283.868 1283.868 1283.868 1283.868
Aga-Pas 1161.288 1161.288 1161.228 1161.288 1161.288 1161.288 1161.288 1161.288
Asp=Asa 494193 494193 792256 494193 494,193 494,193 494193 494.193
Best weight ( 1902.605 1902.605 1905.490 1902.605 1902.605 1902.605 1902.605 1902.605
Worst weight (Ib) 1910942 1925714 - 1912.646 1912.646 1904.830 1931.551 1908923
Mean weight (Ih) 1904.775 1906.735 - 1906.076 1909.856 1903.076 1909.172  1903.928
Standard deviation (Ib)  3.045 6.679 - 4.090 7090 1.130 8129 2913
Number of structural 2804 3402 - 5450 7100 4750 7050 5390
analysis
Table 4
Optimization results for the spatial 72-bar trgggsase study.
Design variable Le et al. HU-HuuQ. Kaveh and Talatahari Sadollah et al.  Sadollah et al.  Sadollah et al.  Kaveh and COA MCOA
[1] EFA [2] aeDE [54 |DHPSACO [50] Mine [15] WCA [15] IMBA Mahdavi [51]
CBO
A-Ay 1.990 1.990 1.800 0.196 1.990 1.990 1.620 1.990 1.990
As-Ap 0.563 0.563 0.442 0.563 0442 0.442 0.563 0.563 0.563
A-Agg 0.111 0111 0.141 0.442 0111 0111 0.111 0.111 0.111
Air-Bis 0.111 0111 0111 0.602 0111 0111 0111 0,111 0111
Ajo-Aan 1.228 1.228 1228 0.442 1.266 1.266 1.457 1.228 1.228
Agz-Agg 0.442 0.442 0.563 0.442 0563 0.563 0.442 0.442 0.442
Ag-Agy 0111 0111 0111 0111 0111 0111 0111 0111 0111
Azs-Aag 0111 0111 0111 0111 0111 0111 0111 0111 0111
Agr-Agp 0.563 0.563 0.563 1.266 0422 0422 0.602 0.563 0.563
Agr-Aug 0.563 0.563 0.563 0.563 0422 0422 0.563 0.563 0.563
Agg-Asz 0111 0111 0111 0111 0111 0111 0111 0111 0111
Asi-Asq 0111 0111 0.250 0111 0111 0111 0111 0111 0111
Ass-Asg 0.196 0.196 0.196 1.800 0.196 0.196 0.196 0.196 0.196
Asg-Ass 0.563 0.563 0.563 0.602 0563 0.563 0.602 0.563 0.563
Agr-Azp 0.391 0.391 0.442 0111 0442 0442 0.391 0.39 0.391
Az -Ap 0.563 0.563 0.563 0111 0.602 0.602 0.563 0.563 0.563
@ weight (Ib) 389.334  389.334 300.380 390.730 389.334 389.334 391.070 389.334 389334
orst weight (Ib) 393325 393.826 - 399,490 393778 389.457 495,970 393965 392158
Mean weight (Ib) 390913 391.376 - 305.432 380941 389.823 403.710 393,618 390.162
Standard 1.161 1.376 - 3.040 1.430 0.840 24,800 1.561 1.018
deviation (Ib)
Number of 3123 410 - 11,600 4600 6250 6000 6800 5750
structural
analysis
Table 5
Optimization results for the spatial 120-bar dome case study.
Design variable Kaveh and Mahdavi [51] Kaveh and Zolghadr [58] Kaveh and Zolghadr [59] C85-  Tejani et al. [ 60| CoA MCOA
CBO DPsO BBBC S0s
1 19.6917 19.607 17.448 19.5715 19,4904 19.4994
2 41.1421 4.1290 49.076 39.8327 40,3890 40.3890
3 11.1550 11.136 12.365 10.5879 106073 10.6073
4 21.3207 21.025 21.979 21.2194 211126 21,1126
5 09.8330 10,060 11.190 10.0571 0.8420 0.8420
6 12.8520 12,758 12.590 11.8322 11.7715 11.7715
7 15.1602 15.414 13.585 14,7503 148384 14.8384
Best weight (kg) 8880.1303 880048 904634 8710.33 8707.2432 8707.2432
Worst weight (kg) - - - 87371328 8734.4957
Mean weight (kg) 8891.2540 889599 - 87205461 8713.4877
Standard deviation (kg) 1.7926 80.38 - 6.9123 9.1185
Number of structural G000 6000 4000 4000 5600 5250

analysis
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Table 6
Optimization results for the planar 200-bar truss structure.
Design varable Kaveh and Talatahari [54] Lamberti Degertekin [63] Degertekin and Hayalioglu Kim and Byun [64] COA MCOA
HFSACO [62] SA SAHS [12] TLBO CNNT-PSO
1 0.1033 01468 0.154 0.146 01482 0.1441 01390
2 0.9184 0.9400 0.941 0.941 0.9405 0.9395 0.9355
3 0.1202 0.1000 0.100 0.100 01000 0.1000 0.1000
4 0.1009 0.1000 0.100 0.101 01000 0.1000 01000
5 1.8664 1.9400 1.042 1.941 19408 1.9395 19355
6 0.2826 0.2062 030 0.296 02975 0.2947 0.2909
7 0.1000 0.1000 0.100 0.100 01000 0.1000 0.1000
8 29683 3.1042 3.108 3121 3.1067 3.1027 30816
9 0.1000 0.1000 0.100 0.100 01000 0.1000 0.1000
10 30456 41042 4106 4173 41067 41027 40816
11 0.3742 0.4034 0.409 0.401 0.4057 0.3987 03967
12 0.4501 01912 019 0.181 01897 0.1831 0.2959
13 496029 5.4284 5428 5.423 54343 5.3821 5.3854
14 10738 0.1000 0.100 0.100 01000 0.1000 0.1000
15 50785 6.4284 6427 6.422 64340 6.3821 6.3853
16 0.78629 05734 0.581 0.571 0.5745 0.5720 0.6332
17 0.73743 01327 0.151 0.156 0.1366 0.3389 0.1842
18 73809 79717 7973 7.958 70803 7.9871 80396
19 0.66740 0.1000 0.100 0.100 0.1000 0.1000 0.1000
20 8.3000 89717 8974 8.958 89802 8.9871 90395
21 1.19672 0.7049 0.719 0.720 071089 0.8188 0.7460
22 1.0000 0.4196 0422 0.478 0.4659 0.1435 01306
23 10.8262 10.8636 10.892 10.897 109110 10,9723 109114
24 0.1000 01000 0.100 0.100 01000 0.1000 01000
25 11.6976 11.8606 11.887 11.897 119112 11.9722 119114
26 1.3880 1.0339 1.040 1.080 10712 0.8947 0.8627
27 49523 66818 6.646 6.462 6.5030 6.7474 60169
28 8.8000 10.8113 10.804 10.799 10.7210 10.8536 109674
29 14,6645 13.8404 13.870 13.922 13.9310 13.7759 13.6742
Best weight (Ib) 25156.5 25,445.63 254919 25488.15 25,453.0057 2545311 2545018
‘Worst weight (Ib) - - 257993 25563.05 25466.0958 2566643 25557.53
Mean weight {Ib) - - 256102 2553314 25,459.1089 2554551  25522.07
Standard deviation - - 141.85 27.44 3.1544 52.74 47.62
(Ib)
Number of structural 19,670 28059 1,500,000 29,750 27720
analysis

the best weight as 389.334 Ib after a minimum of 5750 structural
analyses. In this case, the IMBA [15] found the best results in terms
of the mean weight of all tested optimizers. q

Table 5 provides the design variables and compares the
results obtained by using the COA and MCOA and those of
p other researches for the spatial 120-bar dome case study.
t can be observed that the MCOA was the most efficient opti-
mizer in terms of optimized weight and robustness when com-
pared with the proposed approaches in [51,58-60] in terms of
mean and best obj e function values. All optimization runs
of COA and MCOA were successful and converged to a feasible

de:

Qording to Table 6, the result obtained by the MCOA is
meaningfully lighter than those of the SAHS [63] and TLBO
|12] approaches. It can be observed that MCOA is competitive
with the other optimizers such as [12,62,63] in finding opti-
mum designs considered in this study. Furthermore, the mean
weight is close to the best weight and a small standard devia-
tion on optimized weight is observed. The results of the COA
and MCOA satisfied all design constraints with feasible solu-
tions. The COA and MCOA obtained results without violation
of the constraints. Kim and Byun [64| commented on the feasi-
bility of the solutions presented in the literature for the planar
200-bar truss structure.

5. Concluding remarks and direction of future research

In this paper, a modified version of the Coyote Optimization
Algorithm (COA) denoted MCOA was proposed to solve four
structures optimization problems. This version uses the Tinkerbell

chaotic map-generating to define the scatter and association prob-
abilities and an adaptive procedure of updating parameters related
to social condition.

The results showed that the MCOA is competitive with recent
results from literature in terms of the best and mean (objective
function values to 50 runs) measures as presented in Tables 3-6.
Comparing the MCOA with the original COA, the worst measures
were smaller in both cases, which means that the robustness of
the algorithm was improved.

In future works, further improvements on the MCOA using
ensemble strategies will be a pursuit to other optimization classes
and multiobjective approaches in structural optimization.
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