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Abstract. Pile foundations usually are used when the upper soil layers are soft clay and, hence, unable to 

support the structures’ loads. Piles are needed to carry these loads deep into the hard soil layer. Therefore, 

the safety and stability of pile-supported structures depends on the behavior of the piles. Additionally, an 

accurate prediction of the piles’ behavior is very important to ensure satisfactory performance of the 

structures. Although many methods in the literature estimate the settlement of the piles both theoretically 

and experimentally, methods for comprehensively predicting the load-settlement of piles are very limited. 

This study develops a new data mining approach called self-learning support vector machine (SL-SVM) to 

predict the load-settlement behavior of single piles. SL-SVM performance is investigated using 446 training 

data points and 53 test data points of cone penetration test (CPT) data obtained from the previous literature. 

The actual prediction accuracy is then compared to other prediction methods using three statistical 

measurements, including mean absolute error (MAE), coefficient of correlation (R), and root mean square 

error (RMSE). The obtained results show that SL-SVM achieves better accuracy than does LS-SVM and 

BPNN. This confirms the capability of the proposed data mining method to model the accurate load-

settlement behavior of single piles through CPT data. The paper proposes beneficial insights for 

geotechnical engineers involved in estimating pile behavior. 

1 Introduction  

Pile foundations are usually used to transmit the axial 

load from upper structures to the hard soil layer. At 

times, a pile foundation can be more advantageous than a 

shallow foundation due to the cost-effectiveness of its 

construction [1-3]. One important aspect in the design of 

the pile foundation is the evaluation of its load-

settlement. Poulos and Davis [4] showed that the elastic 

settlement of the pile makes a major contribution to the 

total settlement. Especially in pile on sand, the elastic 

settlement is almost as much as the total settlement. 

Usually, the elastic settlement is analyzed using the 

semi-empirical method. 

Although many methods in geotechnical engineering 

predict the pile’s settlement, both theoretical and 

experimental methods of thoroughly predicting the load-

settlement of the pile are very limited. In the civil 

engineering world, data mining techniques have become 

an important research area. Several studies have shown 

the advantages of data mining technique in producing 

better prediction models than traditional methods [5,6]. 

Shahin [7] developed an artificial neural network (ANN) 

model to predict the load-settlement of a steel pile using 

a recurrent neural network (RNN). This RNN model had 

been calibrated using 23 in situ, full-scale load tests, as 

well as cone penetration test (CPT) data. Even though 

the RNN model from Shahin [7] showed good results, 

this model was derived from limited data, i.e. 23 full-

scale load tests. In addition, the Shahin model is focused 

on steel driven piles and has only one input parameter to 

calculate the variation of the soil strength along the pile 

shaft, i.e. the mean value of cone resistance of CPT, qc. 

Lately, the least squares support vector machine (LS-

SVM) has become one of the most prominent data 

mining techniques used to solve a complex problem in 

the world [8,9]. Although LS-SVM has produced more 

accurate prediction results, an incorrect tuning parameter 

can reduce the accuracy of LS-SVM. The objective of 

this study is to improve the accuracy of the prediction 

model using parameter optimization. Identifying the 

most optimal parameters is an optimization problem. 

Therefore, the latest studies integrate a machine learning 

technique with a metaheuristic-based optimization tool 

instead of using only a machine learning technique [10-

13]. This study introduces a new hybrid data mining 

model called the self-learning support vector machine 

(SL-SVM) to accurately predict the individual pile 

behavior in test records. Tests were conducted directly in 

the field and took into account various types of soil, 

several types of pile, and various geotechnical problems 

commonly encountered in the field. The hybrid approach 

used by SL-SVM combines techniques from SOS and 

LS-SVM. SOS is used to optimize the γ and σ 
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parameters of LS-SVM; then LS-SVM creates an 

improved input-output relationship from a dataset by 

performing a supervised-learning-based predictor. 

In this study, 499 test records were obtained from the 

previous literature. The proposed SL-SVM model can 

fully predict the load-settlement behavior of concrete, 

steel, and composite piles, as well as bored or driven 

piles. To accurately model the non-uniformity of the soil 

along the pile shaft, the length of the embedded pile is 

divided into 5 segments of equal length. In each 

segment, the mean value of qc and shaft friction of CPT 

(fs) are calculated. 

2 Methodology  

2.1 Regression model: LS-SVM 

LS-SVM was first developed by [8] as an improved 

version of the support vector machine (SVM). As a data 

mining technique, LS-SVM has been successfully 

applied in many civil engineering-related problems [14-

17]. LS-SVM utilizes a cost function based on the least 

squares principle as opposed to the quadratic loss 

function that had been used in the original SVM [18]. 

The objective function and constraints for minimizing 

the cost function of LS-SVM are shown as follows: 
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where γ is a regularization constant, ek denotes the 

error variable, and xk and yk are the input and output data 

points of the given training dataset of N data points. 

For function estimation, the following equation 

expressed the LS-SVM model: 
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where k and b represent the solutions to the linear 

system.  

This study employed the radial basis function (RBF) 

kernel with the following formula: 
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where σ denotes the kernel function parameter. 

2.2 Optimization algorithm: SOS 

Initially developed by Cheng and Prayogo [10], the SOS 

algorithm took its inspiration from the symbiotic 

interactions among a group of organisms. Its initial 

application was to solve continuous optimization 

problems [10] and it has been used to solve various 

problems in multiple disciplines [19-27]. SOS utilized 

nature-inspired operators – the mutualism phase, 

commensalism phase, and parasitism phase – to guide 

the organisms (solutions) to the global optima region 

(best solution). 

In the “mutualism phase,” each organism is modified 

as follows: 

new_Oi = Oi + U(0,1) × [Obest – (1 + round(rand(0,1)) × 

(Oi + Oj)/2] (5) 

new_Oj = Oj + U(0,1) × [Obest – (1 + round(rand(0,1)) × 

(Oi + Oj)/2]  (6) 

where Oi and Oj denote the i-th and j-th organism 

vectors, respectively, such that i ≠ j; U(0,1) denotes the 

uniform random numbers between 0 and 1; Obest 

represents the best organism; and new_Oi and new_Oj 

are the generated candidate solutions after Oi and Oj 

perform the interaction. 

In the “commensalism phase,” each organism is 

modified as follows: 

 new_Oi = Oi + U(–1,1) × (Obest –Oj)  (7) 

where U(–1,1) denotes the uniform random numbers 

between –1 and 1.  

In the “parasitism phase,” each organism is modified 

as follows: 

 Opar = F × Oi + (1 – F) × (U(0,1) × (ub – lb) + lb)  (8) 

where Opar denotes the parasite that attempts to 

eliminate the host Oj; ub and lb represent the lower and 

upper bounds of the given problem, respectively; and F 

and (1 – F) are the binary random matrix and its inverse, 

respectively. 

2.3 SL-SVM system integration 

In this study, two different forms of artificial intelligence 

(AI), which are SOS and LS-SVM, are combined to 

form a new hybrid data-mining technique called SL-

SVM. The relationship between the input and output 

variables of a given set of data is accurately mapped out 

through the LS-SVM that has a key role as a predictor. 

The SOS is utilized to find the most suitable LS-SVM 

parameters γ and .  
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Fig. 1. Flow-chart of SL-SVM. 



 

The architecture of SL-SVM is shown in Fig. 1. 

Throughout these test phases and training, the six main 

steps of the SL-SVM are conducted and are as delineated 

below:  

(1) Dataset: The dataset is usually grouped into a test 

set and a training set. Furthermore, the datasets were 

scaled into a (0,1) range [28] to curb circumstances in 

which one or some of the input variables are dominant 

over others. 

(2) Hyperparameters’ initialization: Using the 

formula written below in the first iteration, the 

parameters are randomly initialized within the boundary 

range.  

 x = U(0,1) × (ub – lb) + lb (9) 

where x represents the candidate solution 

(hyperparameters of LS-SVM). 

 (3) Model selection: This is a critical step in building 

an accurate learning model. Utilizing the initial 

hyperparameters and the training set, the LS-SVM model 

is trained with a key focus on determining the true nature 

of the relationship between the input and output 

variables. The training process is conducted in an 

iterative manner and the tuning parameters from LS-

SVM are gradually optimized by utilizing the SOS 

algorithm. A fitness function that correlates with the 

accuracy of the prediction model is now developed in the 

bid to evaluate the accuracy of the learning system. k-

fold cross validation, a well-known sampling technique, 

is incorporated in the fitness function. The dataset is now 

grouped into k-folds in which the (k – 1)/k part of the 

given dataset is assigned to training and the remaining 

part is assigned to validating the trained model. 

Thus, a k sets of training and validation subset are 

formed and carried out for model selection. For 

measuring the model accuracy, the root mean square 

error (RMSE) is selected as the fitness function, as 

shown in the following equation: 
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where fit_val is a fitness value calculated from RMSE 

between the predicted output and actual output from the 

validation subset and S is the total number of folds. 

 (4) SOS for parameter search: To identify the best 

set of these hyperparameters, the hybrid AI system 

utilizes SOS to explore various simulations of γ and . 

Through the generation of the initial population, the 

search process commences. The initial population, 

however, serves as the initial candidate for the 

hyperparameters searched. SOS uses the parasitism, 

commensalism, and mutualism phases for each iteration 

to gradually bring about improvement in the fitness 

value of every candidate solution present in the 

population.  

(5) Optimal hyperparameters: When the stopping 

criterion is met, the loop stops. This implies that the 

prediction model has identified the input–output 

mapping relationship with optimal γ and  parameters. 

(6) LS-SVM predicting: To predict the test set, the 

prediction model must be established. Thus, the given 

training phase brought about the optimal LS-SVM γ and 

 parameters that were utilized to establish the 

prediction model. 

3 Data preprocessing  

Four fundamental parameters are used in many 

established methods to predict the load-settlement 

behavior of single pile. These main parameters are: the 

geometry of the pile, material properties of the pile, soil 

properties, and load applied to the pile. In addition to the 

main parameters are several extra parameters, such as: 

the pile installation method and load test type, as well as 

whether the pile tip is open or closed. The geometry of 

the pile, material properties of the pile, and load applied 

to the pile are easy to quantify and identify. However, 

soil properties are tricky to quantify and identify. 

Table 1. Statistical description of the dataset. 

Attributes Unit Min Max Avg Std 

X1: Type of load 

test 
1: Maintained load, 2: Constant rate of penetration 

X2: Material 

properties of the 

pile 

1: Concrete, 2: Steel, 3: Composite 

X3: Pile 

installation 
method 

1: Bored, 2: Driven 

X4: End of pile 1: Closed, 2: Open 

X5: Axial rigidity 

of the pile 
MN 796.74 33106.3 11459.8 11680.0 

X6: Cross-

sectional area of 

the pile 

cm2 100.00 7854.00 3411.78 2638.14 

X7: Perimeter of 
the pile 

cm2 58.50 957.56 320.31 280.47 

X8: Pile length m 5.50 56.39 21.84 13.63 

X9: Embedded 

length of the pile 
m 5.50 45.00 18.03 10.39 

X10: qc1 MPa 0.00 10.38 3.57 2.64 

X11: fs1 KPa 0.00 273.91 59.11 52.29 

X12: qc2 MPa 0.05 17.16 4.73 3.51 

X13: fs2 KPa 1.83 275.50 75.59 63.24 

X14: qc3 MPa 0.30 31.54 6.18 6.55 

X15: fs3 KPa 1.62 618.67 90.95 97.18 

X16: qc4 MPa 0.25 33.37 8.52 7.72 

X17: fs4 KPa 4.42 1292.67 200.31 215.31 

X18: qc5 MPa 0.25 53.82 10.54 10.30 

X19: fs5 KPa 7.99 559.00 139.86 144.50 

X20: qc at the end 
of the pile 

MPa 0.25 70.29 13.40 13.02 

X21: load applied 

to the pile 
KN 0.00 30000.0 2585.01 3652.62 

Y: Pile settlement mm 0.00 137.88 10.57 16.14 



 

In this study, the dataset is derived from load tests 

which comprised 499 data points, obtained from Pooya 

Nejad and Jaksa [29]. In the literature, CPT is used to 

quantify and identify soil properties. The 499 data points 

are divided into 446 training data points and 53 test data 

points. To accurately model the non-uniformity of the 

soil along the pile shaft, the length of the embedded pile 

is divided into 5 segments of equal length. In each 

segment, the mean value of qc and fs are calculated. 

Finally, the attributes of the dataset are shown in Table 1 

alongside the statistical description of the dataset. 

4 SL-SVM application 

4.1 Model selection and training results 

This study implements the parameter setting of SOS as 

follows: ecosystem size = 50 and total iterations = 30. 

The searching range for the tuning parameters, γ and  

was between 10−5 and 105. To have a balance between 

training and validation data points, cross-validation was 

used. To have a splitting ratio of 2:1 between training 

and validation, 3-fold cross validation is used. SOS is 

then performed on the model selection using the 3 sets of 

training and validation data subsets. The fitness value 

was determined as the average validation errors in the 

model selection. The model performance in the training 

process is shown in Fig. 2. The optimal hyperparameters 

found by SOS were as follows: final  = 28.9507 and 

final  = 0.0547 with the fitness value of 10.5514 mm. 

 

Fig. 2. Model selection process and convergence history of the 

training RMSE. 

 

4.2 Prediction results 

The accuracy of the training and test results between the 

predicted output (y’) and actual output (y) of n data 

points can be compared using three metrics: correlation 

coefficient (R), root mean square error (RMSE), and 

mean absolute error (MAE). Each metric can be 

expressed as shown in Table 2. 

Table 2. Performance metrics for measuring prediction results. 

Performance 

Metrics 
Formula 

R 
 

RMSE 

 

MAE 

 
 

The developed SL-SVM was validated and compared 

to other predictive models, including the original LS-

SVM and back-propagation neural network (BPNN). 

The comparison between SL-SVM and other predictive 

algorithms may indicate the advantages of using the 

optimization method to tune the optimal parameters. 

BPNN settings included: learning rate = 1, maximum 

hidden layers = 1, and number of neurons in the hidden 

layer = 21 (following the total input variables). Finally, 

the LS-SVM parameters for  and  were set to 1 as 

suggested in [8].  

The experimental results between the proposed 

method and other prediction method are shown in Table 

3. It is shown that the SL-SVM model outperformed LS-

SVM and BPNN in all performance metrics. The SL-

SVM produces the best value in R, RMSE, and MAE. 

Meanwhile, Fig. 3 further illustrates the actual and 

predicted settlement of the developed model in both the 

training and test datasets.  

Table 3. Training and test performance of SL-SVM and other 

methods. 

AI methods 

Training 

R 
RMSE 

(mm) 

MAE 

(mm) 

BPNN 0.7264 10.4378 6.602 

LS-SVM 0.7354 12.0865 6.9043 

SL-SVM 0.9513 5.2468 2.5634 

AI methods 

Test 

R 
RMSE 

(mm) 

MAE 

(mm) 

BPNN 0.7876 8.5783 6.0188 

LS-SVM 0.5501 7.4134 5.2907 

SL-SVM 0.7523 7.0517 4.7118 



 

 

Fig. 3. Actual and predicted settlement of SL-SVM in training 

and test datasets.  

5 Conclusions  

In this study, we propose an automatic-tuning data 

mining technique called the self-learning least squares 

support vector machine (SL-SVM) to predict the 

settlement of a single pile. The experimental dataset was 

acquired from previous literature that contained 499 

samples of load tests. Three performance metrics were 

utilized to assess the proposed data mining technique and 

a comparison with various predictive techniques was 

conducted. The result indicates that the most accurate 

prediction model is the proposed SL-SVM. The SL-

SVM is able to outperform the original LS-SVM due to 

the SOS’s success in searching for the most suitable LS-

SVM parameters. This established data mining 

technique, SL-SVM, can potentially help geotechnical 

engineers model pile behavior for pile design. The 

trained model can model pile settlement with higher 

accuracy in comparison to other predictive techniques. 
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