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Abstract

In this paper, we consider the problem of full schema induction from either multiple list pages or singleton pages with the
same template. Existing approaches do not work well for this problem because they use fixed abstraction schemes that are
suitable for data-rich detection, but they are not appropriate for small records and complex data found in other sections.
We propose an unsupervised full schema web data extraction via Divide-and-Conquer Alignment with Dynamic Encoding
(DCADE for short). We define the Content Equivalence Class (CEC) and Typeset Equivalence Class (TEC) based on leaf
node content. We then combine HTML attributes (i.e., id and class) in the paths for various levels of encoding, so that
the proposed algorithm can align leaf nodes by exploring patterns at various levels from specific to general. We conducted
experiments on 49 real-world websites used in TEX and ExAlg. The proposed DCADE achieved a 0.962 F1 measure for
non-recordset data extraction (denoted by Fp), and a 0.936 F1 measure for recordset data extraction (denoted by Fy),
which outperformed other page-level web data extraction methods, i.e., DCA ( Fp=0.660), TEX (Fp=0.454 and F5=0.549),

RoadRunner (Fp=0.396 and Fs=0.330), and UWIDE (F=0.260 and F5=0.081).

Keywords Deep web data extraction - Divide-conquer alignment - Dynamic encoding - Full-schema induction -

Multiple template pages

1 Introduction

Data extraction from the deep web is a reverse engineering
task that distils a predefined template and embedded data
from dynamic pages to recover the original data. Over the
past decades, many data extraction and wrapper induction
techniques have been proposed with varying degrees of
automation, including supervised [9, 15, 22, 23], semi-
supervised [2, 4, 10, 14, 20], and unsupervised (ExAlg
[1], WEIR [3], RoadRunner [8], OXPath [12], Vertex [13],
FivaTech [16], [21], TEX [25], STEM [30], DCA [31])
learning algorithms. Unsupervised learning algorithms are
especially attractive because they can extract web data
without human intervention.
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Most unsupervised approaches assume the data to be
extracted are located in data-rich sections, such as search
result records. Therefore, repeat pattern mining can be
applied to discover recordsets from a single page through
proper abstraction or encoding, such as, TEGRA [7],
SYNTHIA [19], AutoRM [24], MiBAT [27], CTVS[28],
DIADEM [29], DEPTA [32], Dual-TLBO [33]. However,
full schema web data extraction aims to make a complete
data extraction with the help of multiple pages (e.g., ExAlg
[1], UWIDE [6], RoadRunner [8], FivaTech [16], TEX
[25], DCA [31]). Thus, the task is not only to detect and
align records in the data-rich sections, but also to align
all data in the complete pages, including context-dependent
advertisements and dynamic changing menus.

New challenges arise when we try to align both [list
pages and singleton pages. List pages usually contain a
large list of products or records, such as search results,
whereas singleton pages contain detailed information about
an item in a page. Thus, more complex information, such
as variant formats, menu bars, and small recordsets need
to be aligned. For example, Fig. 1 shows two singleton
pages from IMDB.com with slightly different presentation

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-019-01499-0&domain=pdf
http://orcid.org/0000-0002-1101-6337
mailto: chia@csie.ncu.edu.tw
mailto: oviliani@gmail.com

0.Y. Yuliana and C.-H. Chang

=/
11 July 1997 (USA)

Dr. Ellie Arroway, after years of searching, finds conclusive radio
proof of extraterrestrial intelligence, sending plans for a mysterious
machine.

Director: Robert Zemeckis 2

riters: James V. Hart (screenplay by), Michael Goldenberg |
screenplay by)[" 3 more credits »

[tars: 3 Jodie Foster, Matthew McConaughey, Tom Skerritt]
See full cast & crew » @

Sl ’
Fp

Conmcr

{

B8 Metascore
8 From metacritic,

+ Hidden Figures (2016)

2h 7min | |Biography, Drama, Hi

Reviews

V\ Popularity
1.881 (8 317)

* 78

January 2017 (USA)

9 critic

com

The story of a team of female African-American mathematicians who served a vital role in
NASA during the early years of the U.S. space program.

Director: Theodore Melfi @

Writers: Allison Schroeder (screenplay by), Theodore Melfi (screenplay by)] 1 more credit »

Stars: 4 Taraji P. Henson, Octavia Spencer, Janelle Monde, Kristen Wii

See full cast & crew » @

B Metascore Reviews W Popularity
Ml From metacritic.com | 372 user | 397 critic 269 (# 5)

Fig. 1 An example of singleton pages (from IMDB.com) with two
presentation styles

styles (with or without a preview video), small recordsets
(e.g., writers or stars), a dynamic changing movie category
section, and context-dependent advertisements (not shown
in the clipped pages).

Among the existing approaches for full schema web data
extraction, some algorithms (e.g., ExAlg, RoadRunner, and
TEX) use HTML tags and words as the basic units for
alignment, and some algorithms (e.g., FivaTech and WEIR)
use leaf nodes from Document Object Model (DOM) trees
as processing units. Whether or not word or tag tokens
(small granularity) or leaf nodes (larger granularity) are
used as basic units, the goal of web data extraction is to
align these basic units with the same role or purpose in the
same column. However, owing to the choice of different
processing units, the number of output data columns and
the complexity of alignment are different for different
approaches. For example, RoadRunner often generates a
small number of data columns and TEX usually outputs a
large number of data columns. Although small granularity
may be desirable for fine data extraction, excessive sparse
data columns without matching components are useless.
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Thus, we want the system to be able to merge sparse units
to the larger granularity.

Although ExAlg and TEX are full schema data extraction
approaches, their evaluation only considered the selected
data columns of data-rich sections. In fact, the performance
of these systems across all data columns are far poorer than
for the data-rich section mainly because they only align
template patterns that share the same path and text string.
In many cases, templates do not share the same path or text
string, so many data columns cannot be correctly aligned.

Full schema data extraction from singleton webpages is
more difficult and challenging than from list pages for the
following reasons:

— There are more leaf nodes to align (thousands in
singleton webpages compared with hundreds in list
pages).

— Singleton pages may contain several small lists or sets,
with optional data and similar patterns in a webpage.

— Leaf nodes with the same template role may have
different paths or text contents for various reasons, such
as grammar. For example, the path for text contents
“Stars” in the two example pages of Fig. 1 are different
due to the extra preview video clip.

The research goal of this paper is to induce a full schema
from either multiple singletons or multiple list pages of
the same template for data extraction. We use dynamic
encoding to abstract leaf nodes for pattern discovery
and design a divide-and-conquer alignment based on the
prioritized encoding. We start from the most specific
encoding, Content Equivalence Class (CEC), to discover
template (with the same text contents) patterns. We extend
this to data patterns with different contents by clustering
leaf nodes with the same token types into the same Typeset
Equivalence Class (TEC). With multiple levels of encoding,
the proposed method could better align data nodes that have
different text contents.

The remainder of this paper is organized as follows.
Section 2 introduces a formal problem definition and the
motivation behind the algorithm. Section 3 describes the
proposed method, and Section 4 presents the performance
evaluations. Section 5 provides a comparison with related
work on web data extraction techniques, and Section 6
concludes the paper and proposes future work.

2 Problem definition

Given m web pages from a website, where the pages are
of the same template, the problem of full schema web
data extraction is to divide input pages into small pieces
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of text contents such that text strings of the same role can
be aligned in the same column of an m x n matrix. Note
that if there exists a list or set in the input, a new matrix
will be generated for each list or set. Since HTML tags are
used for style presentation and readers are interested in text
content, we only align text contents and we ignore HTML
tags for ground truth preparation, i.e., the expected output.
Based on DOM tree parsing, we align leaf nodes from
different pages in the same column if they share the same
role. Each column in the output has special characteristics
or roles, i.e., column type. For example, columns can be
mandatory (if no page contains a null value) or optional
(if there are missing elements in a page). Some columns
are considered as templates if they have the same text
contents, while columns with varying text contents are
often data columns. Therefore, each column is labeled as

either mandatory template (MT), optional template (OT),
mandatory data (MD), or optional data (OD). Further,
repetitive columns may form a record list or set, denoted
by mandatory RecordSet (MR) or optional RecordSet (OR).
The final output of the data extraction system is one master
aligned table with template/data/list columns, and several
small aligned tables for each recordset (see Fig. 8).

3 Proposed method

The idea behind DCADE is to find trustable reference points
to divide the big problem into smaller problems. As shown
in Fig. 2, the algorithm consists of three phases including
mandatory template detection for page segmentation,
pattern discovery in segment for data-rich section detection,
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and table splitting and column rearrangement. We first
look for mandatory templates which is defined by Content
Equivalence Classes (CEC) that occur only once in each
sequence as landmarks and then apply Longest Increasing
Subsequence to keep consistent landmarks for sequence
segmentation.

To discover frequent patterns in each segment in the
second phase, we define several encoding schemes to
abstract data leaf nodes into Typeset Equivalence Class
(TEC) such that leaf nodes with different text contents
can share the same TECIds if they have the same data
type, or similar path, or HTML attribute class/id sequence.
Different from existing approaches for recordset discovery,
we select CEC or TEC with a consistent gap as sub-
landmarks, no matter their occurrence counts are the same
or not. The challenging part is how to divide a segment
into subsegments when some sub-landmarks are optional. In
this paper, we design postpone alignment which processes
subsegments from left to right such that sequences that have
right sub-landmarks are aligned first. Meanwhile, sequences
that are postponed will be aligned with the current result
when their right sub-landmarks are encountered.

Finally, in the third phase, we detect record boundary in
each repeat pattern region and split tables for each recordset.
Meanwhile, disjunctive columns or low-density columns
are merged to produce better alignment. To illustrate how
DCADE proceeds, we use pseudo code Algorithm 1, 2,
and 3 in Section 3.3 to show how different components are
connected together.

3.1 Data preprocessing and encoding scheme

To process the m input pages, we first parse them into DOM
trees (with CyberNeko) and arrange the leaf nodes into an
m X | matrix table (called TableL) where [ is the maximum
number of leaf nodes in all pages. For each leaf node in
the DOM trees, we keep five basic features including the
(1) position LeafIndex and (2) text Content of the leaf node,
as well as (3) Path, (4) IDSeq, and (5) ClassSeq, which
represent HTML fag, ID, and class name sequence from
DOM tree root to leaf node, respectively.

Based on the features, we further design four basic
encoding schemes, TypeSet/PTypeSet, Pathld and SimSeqld,
to support the alignment process, where Pathld and
SimSeqld are generated by complete-link clustering.

Definition 1 (TypeSet/PTypeSet Encoding) We define
token hierarchy for TypeSet encoding, as shown in Fig. 3.
There are four main categories: address, date/ time, number,
and mixture tokens. Each category is further divided into
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several token types. Based on the token type hierarchy, each
text content is encoded as a set of token types. Formally,
we define TypeSet (PTypeSet) as a union of token types
based on the lower (higher) layer token type as defined in

(1.

TypeSet(u) = U TokenType(w)
weu.Content
PTypeSet(u) = U TokenPType(w) (1)

weu.Content

Note that function TokenType and TokenPType are
implemented based on regular expression and returns the
corresponding token type (code 5 ~ 17 and 1 ~ 4,
respectively) as defined in Fig. 3.

Definition 2 (Pathld Encoding) Two leaf nodes u
and v share the same Pathld if their tag sequence
similarity Sim(u.Path,v.Path) is greater than 6Opg,
where Sim(u.Path, v.Path) is defined in (2).

LCS(s1,
Sim(sy, s2) = LCS G, sl ()
max(|s, |s2])
where LC S denotes the Longest Common Subsequence, and
|x| returns the length of string x.

Definition 3 (SimSeqld Encoding) Two leaf nodes u and
v share the same SimSeqld if their weighted Path, IDSeq,
and ClassSeq sequence similarity simT EC (u, v) is higher
than O7gc, where simT EC(u, v) is defined by (3) with
corresponding weights wp, oy, and w¢ (0.5, 0.25, 0.25).

SimTEC(u,v) = Sim(u.Path,v.Path)xwp+
Sim(u.IDSeq,v.IDSeq) xw;+
Sim.ClassSeq,v.ClassSeq) x wc (3)

Combining the above encoding schemes, we generate the
following two types of equivalence classes.

Definition 4 (Content Equivalence Class) Two leaf nodes
u and v are considered as a CEC, if u.Content =
v.Content and u.Pathld = v.Pathld. In other words,
content equivalence class CECId is encoded based on the
same text Content (denoted by the same Contentld) and
Pathld. In the encoding hierarchy, CECId, i.e. Pathld-
Contentld, is the most specific encoding, known as level 0
encoding.
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Fig.3 Token type hierarchy
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Definition 5 (TypeSet Equivalence Class) Two leaf nodes
u and v share the same TEC, if u.TypeSet = v.TypeSet
and u.SimSeqld = v.SimSeqld. Similar to CEC
encoding, TypeSet equivalence class TECId is encoded
based on the same TypeSet (denoted by the same TypeSetld)
and SimSeqld. In the encoding hierarchy, the combination
SimSeqld-TypeSetld is level I encoding for TECId.

At the end of the data preprocessing, each leaf node
in TableL will have two codes, i.e., CECId (encoding 0)
and TECId (encoding 1). Later in the alignment process,
high level codes can be generated by replacing SimSeqld-
TypeSetld pair with Pathld and PTypeSetld (or NULL) as
shown in Fig. 4. In other words, the TECId code of leaf
nodes can be replaced with a higher-level code such that leaf
nodes with same role, but different content can be aligned
in one column during leaf node alignment phase.

Example 1 The leading attribute “Director” in each page of
Fig. 1 are fixed text Contents and with a similar Path. Thus,
these leaf nodes are assigned the same CECId and are later
used as a landmark for page segmentation. On the other
hand, “Judie Foster” contains only the FirstCapitalLetter(7)
token, while “Taraji P. Hens” has one additional token
type MixedCharacters(8). Thus, they are assigned different
TECIds.

3.2 Divide-and-conquer alignment

The divide-and-conquer alignment is the core basis of this
research. As depicted in Fig. 2, the algorithm is composed
of three phases: mandatory template mining from CECId,
mining patterns in segments, and columns re-arrangement.

3.2.1 Mandatory template mining in TableL

The idea behind mandatory template mining is to find
CEClIds that occur once in every page as landmarks for page

Capital letters

Small letters

First capital

Number (2) Date Time (3) Address (4)

Integer (10) Date (14)

Email (16)

Decimal (11) Time (15) Url (17)

letters (7) Currency (12)
Percentage
characters (8) (13)

Punctuation (9)

segmentation to divide the large alignment problem into
sub-problems. However, since such CECIds may not have
a consistent order across all pages, we apply the Longest
Increasing Subsequence algorithm to the LeafIndex of
these leaf nodes to select consistent landmarks. Therefore,
we collect leaf nodes with the same CECId as a Landmark
Equivalence Class (LEC) and compute two attributes for
each LEC: the Occurrence Vector (OV), which records
the occurrence counts of an LEC in each document, and
the First Position (FP) vector, which records the first
occurrence position of the LEC in each document.!

As shown in the top loop of Fig. 2, we first generate
the CECId-based LEC and compute the OV and FP to
select candidate MT's (i.e., with OV =1). We apply Longest
Increasing Subsequence to FP of these candidate MTs in
each document pair to maintain a set of consistent MT's
(i.e., the FP for the selected MTs are consistently increased
in each document) for TableL segmentation. The loop here
means that this process is recursively called for each new
segment since the OV and F P are defined with respect
to each segment. The output of this MT mining step is an
ordered sequence M Ty, MT,, ..., MTk. The collection of
FPs from selected MTs is called MTTable.

3.2.2 Pattern mining in segments

In mandatory template mining, we collect leaf nodes with
the same CECId as LECs and choose LECs with OV =1
as candidate MT's. In addition to LECs with OV = 1, there
are also LECs with OV < 1 or OV > 1. To differentiate
frequent patterns from infrequent ones, we define support
and maximum repeat (MaxRep) for an LEC e as below.

S, Pe.OVIj)
m
e.MaxRep = Max;”zl{e.OV[j]} “

e.Sup =

'Tf the rth page does not contain any leaf node with CECId e, we
assign -1 to e. F P[r].

@ Springer
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Fig.4 Multilevel encoding
schemes
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where P (x) return 1 if x > 0 and O otherwise.

We call an LEC e frequent if e.Sup > 6or. A
frequent LEC e based on CECId is a repeat template
(RT) if eeMaxRep > Ogp or a single template (ST) if
e.MaxRep 1, where Ogp is the given repeat pattern
threshold. Similarly, we call an LEC ¢t based on TECId a
repeat data (RD) if t.MaxRep > Ogrp or a single data
(SD) if t.MaxRep = 1. In other words, we obtain RT and
ST patterns from CECId-based LECs as well as SD and
RD from TECId-based LECs in each segment. Among these
frequent patterns, R7T and RD are important for recordset
detection, while SD can be used to remove false positive ST.

Example 2 Figure 5a shows a segment between two
mandatory templates M T; (“Stars:”) and M T;41 (“|”) from
the input page in Fig. 1. The number above each text string
denotes its LeafIndex. For movie stars that have a hyperlink,

two LeafIndexs are assigned: one for the text content and the
other for the link. The corresponding codes, such as Pathld
and SimSeqld, for these leaf nodes can be found in Fig. 7.

With 8pr = 0.3 and 6gp = 2, we can find frequent
LEC from leaf nodes with Content = “,” based on their
CECId code Pl-cl (where the first code is the Pathld and
the second code is the Contentld) as shown in Fig. 5(b).
Since the Max Rep equals 3, it is considered an RT pattern.
Three frequent LECs based on TECId can be found from
leaf nodes with star names, commas, and URLs respectively,
which we call RD patterns.

For each frequent LEC, we maintain a position matrix
PosMatrix (m x MaxRep) which keeps the LeafIndex
of the leaf nodes in each page. For example, the LEC with
TECId code T2-a4 occurs in position 54 and 57 in d[1] and
is not shown in d[2] because of different presentation style
(see Fig. 1), i.e. the Paths, IDSeqs, and ClassSeqs in d[2] are

50 51 52 53 54 55 56 57 58 59
d[1] Stars:| 3 Amy Adams, Jeremy Renner, Forest Whitaker
44 45 46 47 48 49 50 51 5253
d[2] Btars:| 3 Jodie Foster, Matthew McConaughey, Tom Skerritt
54 55 56 57 8 59 60 61 62 , 63 64 |65
d[3] Btars:| 4 Taraji P. Henson, Octavia Spencer, Janelle Monae , Kristen Wiig| |
50 51 52 53 54 55'i1 .
d[4] Stars:| 2 Matt Damon, Jessica Chastain
MT,
(a) A recordset in one segment.
1
Frequent CECId ! Frequent TECId
CECId: P1-cl (",") : Content: star name Content: comma Content: url
TECId: T2-a4 i, TECId:T2-22 X TECId: T2-a4 v/ TECId: T3-a3 v
d1| 54| 571 -1 : d[1]] 52| 55| 58 d[1]| 54| 57| -1 d[1]] 53| 56| 59
3| I INETY IS e N ) Y o ) YN e Y T Y
a3l 57 60| 63| 1+ a131] 58] e4] -1] a31] 57] 60] 63] a3 59| 62] -1
dr4] 54| -1 -1 : dl4]l 52 55 -1 dl4]l 54 -1f -1 dl4]] 53] -1 -1
1
rp 54] 48] 57 54] 1 [P s2[ -1] 58] 52| [Fp 54] -1] 57] 54]  [rp 53] -1 59 53
ov 2l of 3[ 1) ) Jov 3 o 2f 2| Jov o[ of 3[ 1] fov 3 of 2[ 1
MaxRep 3 I |[MaxRep 3 MaxRep 3 MaxRep 3
Sup 1 : Sup 0.75 Sup 0.75 Sup 0.75
nsp__ | 0.00 . Ivsp 0.35 NSD 0.00 NsD 0.00
Gap (3,4 1 |Gap (3,3) (6,1) Gap (3,3) Gap 3.3)
1
____________ Fmm e e e e e -
Global gap Gap |Count : Global gap Gap |Count
3l 4 3 9
: o 1
(b) Frequent CECId and TECId in (a)

Fig.5 Repeat pattern mining example
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TECId Tl1-al T3-a3 T2-a4 T3-a3 T2-a4 T3-a3 T2-a4 T2-a4

CECId P1-¢9 Pl-cl Pl-cl Pl-c1 Pl-c3

ABABA - ([l] 50 53 54 56 57 59 -1 60
—————— d[2] 44 -1 -1 -1 -1 -1 -1 54
-BABAB d[3] 54 -1 57 59 60 62 63 65
AB - - - - d[4] 50 53 54 -1 -1 -1 -1 56
MT, LM, LM, LM, LM, LM, LM, MT,,,

Note that A = T3-a3 and B = T2-a4

Fig.6 Aligning selected RDs in Fig. 5b

different from the other documents, leading to different Sim-
Seqld. Therefore, the second rows of these matrices are -1.

In this paper, we only consider frequent patterns with unit
length and do not combine them to generate patterns with
longer length as traditional methods, e.g. UWIDE [6]. This
is because many heuristics that are used to prioritize patterns
get weaker when too many patterns are discovered. Instead,
we propose some checking mechanisms to remove false
positive patterns, and consider patterns of the same type
together using a trial strategy to select the best alignment
result (with the smallest number of aligned columns) based
on either ST, RT or RD. Note that the process is repeated for
each subsegment as indicated in the second loop of Fig. 2,
but with a priority splitting policy to decide which type of
patterns are used. Again, OV and FP have to be calculated
with respect to the given subsegment as mentioned above.
The details of this step are described below.

— Removing False Positive ST's, RT's, and RDs

Since many frequent LECs could be discovered, we need
some mechanisms to remove duplicates between STs and
SDs and to check the consistency of RTs and RDs. For
optional patterns, if an ST e and SD ¢ have the same TECId,
and e’s occurrence vector is subsumed by that of ¢ (i.e.
e.PosMatrix C t.PosMatrix), we remove ST e. Owing
to space limitations, we focus on consistency checking
among RT and RD.

For RT and RD patterns, we use their gap statistics
to remove irregular patterns and retain patterns with a
consistent gap. First, we compute the average gap u
(between two adjacent Leaflndex values) and standard
deviation o among gaps to obtain normalized standard
deviation (NSD = o/u) for each RT (RD) in the same
segment. We then remove RTs (RDs) with NSD greater
than Oy g D-2

Second, we sum the gap statistics for all RT to find
the global gap distribution. We consider the gap with
the largest count in the global gap as a reference gap

21f there exists frequent patterns RT or RD with NSD = 0, we will set
Onsp to 0, otherwise Oysp = 0.5.

(RefGap) and remove RTs (RDs) with different reference
gaps. The assumption behind this heuristic is that each
segment contains only one recordset, so the most frequent
patterns discovered will have a consistent gap. Therefore,
we keep potential frequent patterns with the consistent
gap as sub-landmarks to guide the following alignment
procedure.

Example 3 In the bottom of Fig. 5b, we see the local
gap distribution for each RD as well as their global gap
distribution. Most frequent RDs have a gap equal to 3,
leading to a zero NSD. However, TECId T2-a2 (denoting
most star names) has 1 adjacent gap equal to 6 (between
LeaflIndex 58 and 64 in d[3]). Since TECId T2-a4 and T3-
a3 already have zero NSD, 6 sp become zero according to
footnote 2. Therefore, we remove TECId T2-a2.

—  Aligning Frequent Patterns

To use the selected patterns (of the same pattern types) for
subsegment splitting, we need to align leaf nodes of these
selected patterns to divide the segment into sub-problems.
Let the leaf nodes (represented by their encoding codes)
from the selected patterns be ordered by their LeafIndex, as
shown in Fig. 6. We then use the longest sequence pattern
as the centroid and iteratively align other sequence patterns
with the centroid via pairwise string alignment (PSA)
algorithm. Here, we adopt Needleman-Wunsch algorithm
[18] with the following matching score.
PSA(i —1,j—1)+match(s1[i], s2[j])

PSAG—1,j) =2 5)
PSAG, j—1)—2

PSA(, j) = max

1 ifa=b&aisaTECId
match(a,b) =12 ifa=b&aisaCECIld (6)
—4 otherwise

Example 4 Let “A” and “B” denote the selected RD patterns
with TECId T3-a3 and T2-a4, respectively. Thus, we
represent the leaf nodes as “ABABA”, “BABAB” and “AB”
for d[1], d[3] and d[4] respectively, based on the PosMatrix.
Choosing the first string d[1] as the center and iteratively
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Pathld I EEE Pl Pl Pl Pl PI_ [Pl Pl Pl Pl P1_ [Pl P Pl P1_ [Pl Pl Pl P
SimSeqld T |6 |12 T3 T2 T4 T4 T [12 T3 T4 T4 ™ [12 T2 T3 ™ |12 T4 T4 ™
TypeSetld N 3 a5 2 3 ad [z 3 26 3 Wt |22 26 3 ad a2 2 3 ad Frequent pattern ¢
PTypeSettd — [b1 b2 |bl bl bl b1 bl bl [vl bl bl bl bl [bl b1 bl bl |bl bl b1 b1 q' ~ p . .ype
] S0 RD s, RD . S,—, RD S, | RD s RD RD s Abbreviation| _Stand for
Encoding Level[ 0_] 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 :E :f“gie IT)empla‘e
111 ...|[Stars: |<U> 3|Amy Ad Jeremy R Forest Wi | ingle Data
RT Repeat Template
d2) [surs: |<Us3 Jodie Fos Matthew Tom Sk | RD Repeat Data
d[3] Stars: |<U>4 Taraji P. 5 Octavia S| Janelle M 5 Kristen |
d[4]  |Stars: |<U> 2[Matt D; , Jessica Cl | Column type
Abbreviation Stand for
RD RD RD RD D, Mandatory Template
Pathld Pl [Pz [P1 Pl Pl [P1 Pl Pl [P1 P1 Pl [P1 Pl D Mandatory Data
OT Optional Template
SimSeqld Tl T6 — — T2 |[— — T2 |[— — T2 |T2 T2 oD Optional Data
TypeSetld al a8 — a3 a4 |— a3 a4 |— a3 a4 [a2 ad '\o"{: Z*‘""‘“‘i'}; R"““i’;‘lse‘
PTypeSetld  [bl__ |b2 bl bl bl |bl bl bl |bl bl bl |bl b1 prionsl RecordSel
Data region detection
Encoding Level| 0 1 5 4 0 5 4 0 5 4 0 1 0 Abbreviation Stand for
d[l] Stars: _|<U> 3 [Amy Adams :}/name/nm00107|,  |Jeremy Renner :: |/name/nm071963|,  |Forest Whitake|/name/nm0001 1] SDR Start Data Region
a2l <U> 3[Jodie Foster :]/name/nm00001], [ Matthew McCorl/name/nm000019], | Tom Skerritt :: {/name/nm00006 I e Dt Region
d[3] Stars: |<U> 4 |Taraji P. Hen , _|Octavia Spencer |/name/nm081805|,  |Janelle Monde {/name/nm18471),  [Kristen Wiig | | ER End Record
dl4] Stars:  J<U> 2 |Matt Damon :{/name/nm00005{, Jessica Chastain | SE Start and End Record
® ® ® ® ® ® @ ® @)
(a) AlignedSeg for RD
Encoding Level| 0 1 5 4 0 5 4 0 5 4 0 5 0
Col Type MT | MD MD OD oT OD OD oT OD OD oT OD MT
Data Region SDR EDR
Rec. Boundary SR ER SR ER SR ER SE

(b) Data region and record boundary detection

Fig.7 Examples of a an aligned segment, b data region and record boundary detection

aligning d[3] and d[4] with the center, we can obtain the
aligned string and LeafIndex matrix, as shown in Fig. 6.

We use the aligned frequent templates as sub-land-
marks LM, LM, ..., LMk to divide the segment into
K + 1 subsegments (denoted Sy, Sz, ..., Sk+1). The
pattern mining procedure is then recursively applied to
each subsegment as indicated in the second loop of Fig. 2.
However, since there might be optional sub-landmarks
(indicated by -1 in Fig. 6) for some documents, we need
to exclude them from the template/data pattern mining
and postpone the processing of these documents until later
subsegments when the right sub-landmark is not optional

(# —D).

Example 5 As shown in Fig. 6, there are seven subsegments
to be processed recursively. The -1 values for d[2] and
d[3] in the first column indicates that only d[l] and
d[4] would join the template/data mining process in
the first subsegment. d[3] would be aligned with the
aligned columns at the end of the 2nd subsegment mining
procedure. Similarly, d[4] would be ignored from the
pattern mining procedure until the last subsegment, where
we align it with other aligned columns.

Infrequent Patterns Alignment

The recursive pattern mining procedure stops if no frequent
patterns are discovered in a subsegment, where we can align
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all leaf nodes that could not become frequent patterns in this
subsegment directly by multiple string alignment based on
the center-star algorithm. This is like a terminal condition in
the recursive call. The output of the recursive procedure is
the aligned table. Thus, the final step of the second phase is
to align postponed documents with the aligned table.

Example 6 As shown in the top two tables of Fig. 7a, the
aligned frequent R D patterns divide the segment into seven
subsegments (S7, - -+, S7). According to column LM; of
Fig. 6, we align LeafIndex before 53 in d[1] and d[4] to
produce the first subsegment S;. There are no leaf nodes to
be aligned for the second subsegment S;. However, since
the d[3] has a value of 57 in column LM, of Fig. 6,
we align LeafIndex before 57 with the first three aligned
columns. Since the text node “Taraji P. Henson” (LeafIndex
56) in d[3] (TECId code T2-a5) cannot be aligned with the
second column (TECId code T2-a2), a new column (4th) is
inserted. The process continues until all seven subsegments
are aligned. Then, d[2] (all leaf nodes) and d[4] (leaf nodes
after 54) are aligned.

In summary, if new sub-landmarks are discovered
for a segment, we call the subsegment pattern mining
procedure recursively for each subsegment S; (k=1 to
K + 1) and append the new aligned results with those of
previous subsegments. During subsegment pattern mining,
documents that do not contain the frequent pattern L are
marked as postponed. In the terminal procedure of each
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recursive call, we align all leaf nodes in a segment, and
further align the postponed documents if the sublandmark is
not -1.

Note that for each segment (between two MT's), we may
find RT, RD and ST patterns in one segment at the same
time. If we align all frequent patterns at once, we may break
the repeat pattern of recordsets. Therefore, we choose to
align frequent patterns of the same type simultaneously and
select the pattern type with the minimum aligned columns.

3.2.3 Columns re-arrangement and table splitting

Although the strategy of aligning frequent patterns followed
by infrequent patterns can put most leaf nodes in proper
columns, data nodes could not be aligned well because
of different TECId codes. Therefore, we conduct column
re-arrangement to merge disjunctive columns via dynamic
encoding and merge low-density data columns to reduce
extra columns. Meanwhile, if a subsegment is a data region,
we further conduct record boundary detection for table
splitting.

— Merging Disjunctive Columns

Because the DCADE algorithm works on two specific
encoding levels (0 and 1) for landmark pattern mining,
many data leaf nodes cannot be merged. Thus, many extra
columns are inserted because of different TECId code. To
solve this problem, we need to adjust the encoding scheme
to align data nodes with higher encoding levels for common
TECId. In this paper, we take a greedy approach to merge
columns that have support (see (4)) less than one with other
disjunctive columns from the left to the right, and stop when
the support becomes one.

Example 7 We start from the first column of the top two
tables in Fig. 7a and find the 2nd column has support 0.5.
First, we merge the 2nd and 4th columns into one column
with encoding level 2 to generate the common code T2-bl
for d[1], d[3], and d[4]. Next, the 5th column is merged

columns at the 3rd and 6th columns can be merged with
encoding level 4 to generate the common TECId P1-a3.

— Merging Low Density Data Columns

In addition to the merging of disjunctive columns, we
consider another strategy to merge low density columns
between two sub-landmarks LMy_; ~ LM if their
Density(Sk), i.e., the percentage of nonnull leaf nodes, is
less than or equal to Op., (=0.7).

Y, Leaf Node(Sk,r)
max, Leaf Node(Si,r) X m

Density(Sy) = @)

where Leaf Node(Sy, r) denotes the number of leaf nodes
in d[r] for segment S.

— Record Boundary Detection

If a segment is aligned based on RT or RD patterns, it
means a data region is discovered in this segment. Since
there could be non-recordset data in the same segment, we
need to decide the start and end position for the data region
and each record boundary. Let p; and pg respectively
denote the column index of LM and LMk in the aligned

results TableA. For example, P1 = ® and Pk = . The
potential Start Data Region (SDR) and End Data Region
(EDR) can be bounded by

SDR =
EDR =

max{p; — RefGap + 1, 1}

min{pg + RefGap — 1, pg+1 — 1} (8

Assume the first Start Record (S Ry) ranges from SDR to
EDR —2x RefGap (since there are at least two records) and
the second record follows immediately after the first one.
We can then compute the matching score of the first two
records and choose SR with the highest matching score as
the starting position. Thus, the start of the second record will
be SRy = SR+ RefGap.

RefGap—1 . .
with encoding level 5 to generate the common code P1-bl Score(SRy) = 20 match(SRy +1i, SRy +1) ©)
for all four documents. Moving to the next column, the URL RefGap

TableA
Encoding[__| [ 2 [ o ] 4 [ 4 ] o [ Jol « [ o JoJo] 1 [s5]o] o |
Col Type |MR| [ MD | mr | MD | mp | mr [mrlor[ op | or [or[mr|[ mp [MrMT[ wmT |
d[1] eee Irb e+ A linguist is recruil Director: |Denis Villeneuve /name/nm( Writers:  2g Stars: |<U> 3 </U %1 | |See full cast| «es
dp) 12 |Dr. Elle Arroway|Director: |Robert Zemeckis |/mame/m(Writers: |32 | 113 more eréfulieredits| » |Stars:|<U>3 U372 | | [see ullcast
d[3] 1-3 ‘\‘ The story of a teai Director: ' Theodore Melfi  |/name/nm( Writers: -3 | | |1 more crefulleredits| » |Stars <U>4</U','§J | [See full cast
d[4] 14 [\ |An astronaut becq Director: |Ridiey Scott /name/nmi Writers: /2-4 Stars: |<U>2 <f3-4 | 1 [Sec fullcast
Record Set / Record Set ) ]'lecord Set ®

[Encoding] 2 [ 1 0] [Encodind s [ 4 [ 5 | [Encodig T s T 4 To]

(ot Type MD [ MD [ MD | |Col Type [ MD [ oD _[oT]

1-1-N Drama /genre/Dr: 2-1-1¥  Eric Heiss /name/nm (screenpla B31-1V Amy Ada fname/nmi

12

-13 [SciFi  |fgenre/Sci
f-3-1

1-3-2

Biography /genre/Bio
Drama  /genre/Dre

Fig. 8 Final output with split tables

Mystery /genre/My 12

oD

Ted Chian /name/nmé (based on

Allison Scl/name/nm (screenpla

Theodore /name/nml (screenpla

Jeremy Re/name/nmi
Forest WI/name/nmi

f3-3-1
3-3-2 Octavia S /name/nm ,

Taraji P, £
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We use a loop to compute the matching score for each
SR; from SDR to EDR — 2 x Ref Gap and break the loop
if the score equals one. Finally, we mark data records with
Start Record (SR) starting from SR and End Record (ER)
or SE if a record only has a field.

Example 8 Consider the aligned segment, which has
RefGap = 3 as shown in the last table in Fig. 7a. Since

p1 =@ and Pk = , we have SDR = 1 and EDR =
11.

To decide the start of the first record, we consider SR
from 1 to 5. If SR; = 1, the score is 2/3 since there are two
matching column pairs that have the same TECID code: (@,
@) and (®, @). If SR; = 2, there will be one additional
matching column pairs: (@, @). The score is 1, and we
stop the loop. Therefore, we mark @, @, and \O) as the start
of a record (SR). Finally, we check the remaining columns
before EDR with the found record schema P1-b1, P1-a3, and
CECId for encoding level 5, 4, 0, respectively. Figure 7b
shows the final record boundary.

Finally, we split each data region into a separate table
as follows. We keep an index in TableA to represent
a split data region and a pointer for each document to
the corresponding row in the created table. The pointer
follows the format: Setld—Docld—Recld. Figure 8 shows an
example output with three split recordsets.

3.3 Summary

We summarize the main algorithm in Algorithm 1. First,
the DataProcessEncode module parses the input to generate
a leaf node sequence for TableL, and we call MTMining
to find mandatory patterns MTTable for segmentation
(lines 2 and 3). Then, DCADE processes each segment
sequentially to generate aligned columns (lines 4 to 12).
If a segment contains only one leaf node on each page,
we call AligninFreqPattern and ReArrangement directly.
Otherwise, we call MiningSegment to generate AlignedSeg
and concatenate it with the previously aligned TableA (line
10).

In Algorithm 2, the MiningSegment module first com-
putes frequent CECId for STs and RTs (line 1) and
frequent T EC1d for SDs and R Ds (line 2) from the given
segment between u = MT; and v = MT;y,. The Min-
ingSegment module then removes false positive ST's via
SDs (line 3) and keeps consistent RT's and RDs based
on GapRT and GapRD, respectively, via the global gap
statistics (line 4). If none of the three pattern types are dis-
covered, we align data nodes with AligninFreqPattern and
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ReArrangegment (lines 7 and 8). Otherwise, we attempt to
align frequent patterns based on an ST, RT, or RD pat-
tern type (lines 13 to 19) and repeat a similar procedure
(SplittingSubSegment) for each new subsegments (line
17) to generate data regions and augment ASeg,. From
the three possible pattern types, we select the split strat-
egy with the minimum output data columns (line 20) and
conduct record boundary detection for each data region in
RecDetection (line 21).

Algorithm 1 DCADE (Webpages).

TableA < &

TableL < DataProcessEncode(Webpages)

MTTable <~ MTMining(T ableL)

fort < 0, | MTTable| — 1 do

if  MT;+1 — MT;| = 2 then
AlignedSeg < AligninFreqPattern(M T;, M T;11)
ReArrangement(AlignedSeg)

else if |[MT;;1 — MT;| > 2 then

| AlignedSeg < MiningSegment(MT;, M T;11)

10 TableA < TableA ® AlignedSeg

11 TableA < TableA & MT;4+,

12 end

13 return TableA

R NN AW -

=]

Note that M Ty and M Ty 71able| are dummies MTs.
TableL is a global matrix. Underline denotes call by reference.

Algorithm 2 MiningSegment (u, v).

1 ST, RT < MineTemplatePattern(u, v)
2 SD, RD < MineDataPattern(u, v)
3 RemoveFalseST(SD, ST)
4 Gap®T GapRP <« RemoveFalseRTRD(RT, RD)
5 GapST <0
6 if RT = RD = ST = @ then
7 ASeg < AlignlnFreqPattern(u, v)
8 ReArrangement(ASeg)
9 return ASeg
10 else
11 Postpone < @ // global variable
12 S1. < u// global variable
13 | for each pattern type t € (“ST”,“RT”,“RD”) do
14 ASeg' < @
15 DataRegSet' < &
16 LM" < AlignFrequentPattern(t) & v
17 SplittingSubSegment(¢, Gap’, LM', DataRegSet',
ASegh)
18 ReArrangement(ASeg’)
19 end
20 t* < argmin; (|ASeg’|)
21 RecDetection(v, DataRegSet” , ASeg")
22 return ASeg'"

23 end

Postpone is a global set for storing documents not processed.
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Algorithm 3 SplittingSubSegment(p, Gap, LM, DataReg
Set, Aseg).

1 if Gap # 0 then
2 DataRegSet <
DataRegSet U{p, Gap, Sp., LM m|-1}
3 end
4 forc < 1,|LM|—1do
5 forr < 1,|D| do
6 if LM [r] = —1 then
7 | Postpone < Postpone U {r}
8 end
9 end
10 if [ LM, — Sp| = 1 then
11 // no leaf nodes between S; and L M,
12 Aseg < Aseg ® LM,
13 else
14 ST, RT, RTnsp <«
MineTemplatePattern(Sy,, L M., Postpone)
15 SD,RD, RDysp <
MineDataPattern(Sy, LM., Postpone)
16 RemoveFalseST(SD, ST)
17 GapRT,GapRD <«
RemoveFalseRTRD(RT, RD)
18 if GapRT # 0 and RTysp = 0 then
19 SubL M < AlignFrequentPattern(RT')
20 SplittingSubSegment(“RT”, GapRT,
SubLM, DataRegSet, ASeg)
21 else if GapRD # 0 and RDysp = 0 then
22 SubL M <« AlignFrequentPattern(R D)
23 SplittingSubSegment(“RD”, GapRD,
SubLM, DataRegSet, ASeg)
24 else if ST # o then
25 SubLM <« AlignFrequentPattern(S7')
26 SplittingSubSegment(“ST”, 0,
SubLM, DataRegSet, ASeg)
27 else if RT # & then
28 SubLM <« AlignFrequentPattern(RT)
29 SplittingSubSegment(“RT”, GapRT,
SubLM, DataRegSet, ASeg)
30 else if RD # & then
31 SubLM <« AlignFrequentPattern(R D)
32 SplittingSubSegment(“RD”, GapRD,
SubLM, DataRegSet, ASeg)
33 else
34 ASeg < ASeg®
AlignInFreqPattern(Sy,, LM,)
35 end
36 end
37 for r < |D|, 1do
38 if LM [r] # —1 & r € Postpone then
39 AligningPendingDoc(ASeg, r, Sp[r], LM [r])
40 Postpone.remove(r)
41 end
42 end
43 forr < 1, |D| do
44 if LM.[r] # —1 then
45 | Splr] < LM,[r]
46 end
47 end
48 end

Since the aligned frequent patterns LM’ may contain
optional landmarks (line 16 in Algorithm 2), we must

exclude d[r] from subsegment mining if there is no right
landmark (-1). Therefore, Algorithm 3 saves d[r] to a
Postpone set (lines 5 to 9) before the recursive call to the
main procedure (lines 10 to 36). However, if a documenet
d[r] has previously been placed in the Postpone set, but
the right boundary is not optional in this subsegment,
ie., LM r] # —1 & r € Postpone (line 38), we
call Aligning PendingDoc to align d[r] and remove it
from the set (lines 39 and 40). Thus, we can ensure that
documents with optional right boundaries are processed
properly through Splitting SubSegment.

For the left boundary of a segment, we use S, = u (line
12 in Algorithm 2) to ensure the starting position of the first
SplittingSubSegment. We gradually update Sy (lines 43
to 47 in Algorithm 3) to the next landmark if L M_[r] is not
optional. Thus, Sy keeps the left LeafIndex of all documents
for the current segment.

Compare Algorithm 2 and 3, the main steps for each
subsegment are similar, i.e., (template/data) patterns min-
ing, frequent/infrequent patterns alignment, and subsegment
splitting. The major difference is that we try for every pat-
tern types in MiningSegment, but choose only one of the
ST, RT, or RD patterns in SplittingSubSegment, i.e.,
we give priority of RT > RD > ST if NSD = 0
and the priority of ST > RT > RD when the NSD is
not zero and ST # & (lines 18 to 32 in Algorithm 3).
If SplittingSubSegment is called with frequent RT or
RD patterns, we add a region with the left and right
boundary from S; and LMy -1 into data region sets
(DataRegSet). Finally, we call RecDetection to detect
the record boundary for each data region at the end of
Algorithm 2 (line 21).

4 Experimental results

We use two datasets for the experiments, including nine
websites from ExAlg (242 web pages) and 40 websites in
eight categories from TEX> (1,202 web pages). Table 1
shows the statistics about the number of web pages and the
maximum number of leaf nodes (MaxLN) per webpage
for each website, which corresponds to the number of rows
and columns of input matrix TableL. Table 1 also shows
the ground truth of aligned page-level schema for each
website including non-recordset region 7ableA and data-
rich section, i.e. recordsets. The ground truth follows the
output data structure of RoadRunner (RR), which includes
lists, tuples and basic types. For our ground truth, we
ignore tuples as they could be defined differently and other
approaches do not provide such information. Meanwhile,
we merge leaf nodes belonging to the same comments to

3hitp://www.tdg-seville.info/Hassan/TEX
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23“? Tllgn)zomplete extraction Ground Truth TEX E Ground Truth TEX
9,384,100.42 384,100.42 : 1
9,384,095.07 384,095.07 | i | 1 person liked this. 1
9,384,066.42 384,066.42 Cl person liked this. 2
9,384,059.73 | | 384,059.73 | | 7
9,381,500.65 | | 381,500.65 | i |2 people liked this.
i | 7 people liked this.

produce compact data columns, i.e. increasing the density
from 0.776 to 0.928 as shown in the density columns of
TableL and TableA. On average, we reduce 599 Max LN to
278 columns in the aligned output matrix 7ableA, which are
further labeled as template (228) or data (49) columns per
website.

For lists, we output them in separate tables and count the
number of recordsets for each website. The total number
of aligned columns in all recordsets and the number of

RR performance with pair-wise character similarity threshold
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Fig. 10 Performance tuning with respect to similarity threshold for
RoadRunner a and TEX b
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template/data columns as well as the maximum number of
rows per recordset are shown in Recordset part of Table 1.
Among 49 websites, only five are list-pages; however, many
(24) websites contain small recordsets.

Given the ground truth and the output from any approach,
we can evaluate the extraction performance in terms of
data columns. We use (10) to compute precision and
recall for each extracted data column. We then average
precisions of extracted data columns and recall of ground
truth data columns as shown in (11), where Ext and
GT denote the extracted and ground truth data columns
respectively.

#correct extracted cells in column ¢

#extracted cellsin column c

R #correct extracted cells in column ¢ (10)
“ 7 #columns in ground truth column

|Ext column)| |GT column)|
podest g ben R
|Ext column]| |GT column)|
2x P xR
F=—-— (11)
P+ R

4.1 Baselines

In this work, we compare the performances of DCADE
with four state-of-the-arts page-level extraction systems,
including RoadRunner (2005), TEX (2013), UWIDE
(2016), and DCA (2018). Since the processing units for
different approaches are different, we explain how various
methods are processed for a fair comparison. For example,
TEX may mix links/images and text in the same file (i.e.
column), therefore we help split them into several files
and clean the tags related with links/images for evaluation.
Similarly, UWIDE extracts HTML script tags which are
unique to other approaches. Therefore, we removed the
scripts from the extracted data.
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Table 3 Performance comparison on data columns of recordsets

Category ID DCADE UWIDE TEX RoadRunner
P Rg Fy Ps Rs Fs Ps Rg Fy Py Rs F
ExAlg EOI  1.000 0951 0975 0.111 0016 0028 1.000 0611 0759 0593 0815  0.686
E02  1.000 1.000 1.000 0996 0498  0.664 1.000 0267 0421 1.000 1000  1.000
E03  1.000  1.000  1.000 0.000  0.000 0.000 1.000 098 0993  1.000  1.000  1.000
E07 0996  0.159 0274 0997 0797 0886 0995 0411 0582 0997 1000 0.999
Books TOI  1.000 0983 0992  0.002 0.007 0000 0336 0482 039  0.000 0.000  0.000
TO2 1000  1.000 1.000 0.000  0.000 0.000 0440 0402 0420 0.875 0875 0875
TO3  1.000 0952 0976 0.000 0.000 0000 0623 0462 0.531  0.000 0.000  0.000
TO4 1000 0994 0997 0019 0171 0034 0377 0535 0442  0.000 0.000  0.000
TO5S  1.000  1.000  1.000 0.000  0.000 0.000 0407  0.530 0460  0.000  0.000  0.000
Cars TO6  0.871  0.781  0.823  0.000 0.000 0.000 0016 0267 0.030 0.000 0.000  0.000
TO7 1000  1.000  1.000 0.002  0.009 0003 0897 0471 0618 1.000  1.000  1.000
TO8  1.000  1.000 1.000 0.111 0500 0.182  1.000 0.872 0932  0.000 0.000  0.000
Events Til 1000  1.000 1.000 0.013 0127 0024 0953 0.151 0261  1.000 1.000  1.000
T2  1.000  1.000  1.000 0.000  0.001  0.000 0.173 0.044 0070 1.000  1.000  1.000
Doctors Ti6 1000  1.000  1.000 0.000  0.000 0.000 0826 0870 0.847  0.000  0.000  0.000
T17 1000  1.000 1.000 0.018 0434 0035 1000 0.605 0754  1.000  1.000  1.000
T19 1000  1.000 1.000 0.000  0.000 0.000 1.000 0.758  0.862  0.000  0.000  0.000
T20 0750  1.000 0857 0.143 0667 0236 0985  0.88  0.933  0.000 0.000  0.000
Jobs T22 1000 0997 0999  0.000 0000 0000 0550 0557 0.553  0.000 0.000  0.000
T23 1000  1.000 1.000 0.000  0.000 0.000 0.115 0.678 0.197 0.000  0.000  0.000
Movies T27 1000  1.000 1.000 0.007 0.069 0013 0343 0979  0.508  0.000  0.000  0.000
T28  1.000 1.000 1.000 0.013 0216 0025 1000 0.124 0221  1.000 1.000  1.000
T30  1.000 0903 0949 0.030 0061 0040 0297 0.840 0439  0.000  0.000  0.000
T31 1000  1.000  1.000 0.000  0.000 0.000 1.000 0.888  0.941  0.000  0.000  0.000
Estate T32 0990 0990 0990 0.107 0125 0115 0410 1000  0.582  0.000  0.000  0.000
T34  1.000 1.000 1.000 0.000 0.034 0000 0726 0.705  0.715  0.000  0.000  0.000
T35 0697 0.637 0.666 0.007 0270 0014 1.000 0.193 0.324 0.000 0.000  0.000
T36  1.000 0984 0992 0035 0341 0063 0327 0827 0469  0.000 0.000  0.000
Sports T39  1.000 0474  0.643 0000 0.000 0000 0733 0.616 0.669 0.000  0.000  0.000
Average 0976 0924 0936  0.090 0.150 0.081 0.673 0587 0549 0326 0334  0.330

The bold numbers present the highest performance metrics in the comparison methods

Among these five approaches, TEX is the only one that
considers word tokens. Thus, TEX usually extracted more data
columns. TEX outputs each data column in a file and ignores
template columns. Moreover, TEX also skips null data cells
as shown in the blank lines of the third table of Fig. 9, we
therefore need to compare each line in the file with each
cell in a data column of the ground truth. Similarly, we
compare a basic-type element of RR and UWIDE, or a cell
in TableA of DCADE and DCA to a ground truth cell based
on character similarity using (2). If the similarity is greater
than the given threshold, we consider the cell to be correctly
extracted; otherwise, it is incorrect.

Since the precision of an extracted data column depends
on the pair-wise cell comparison, we tuned the similarity
threshold for RoadRunner and TEX to find the best
performance. Figure 10a shows that RoadRunner has higher
precision than recall and F1, which drops in line with
the increasing threshold. On the contrary Fig. 10b has
higher recall than precision as TEX extracts too many files.
The performance also drops in line with the increasing
threshold. To minimize false positive data extraction, we set
0.5 for RoadRunner and TEX. We set pair-wise character
similarities threshold 0.7 for DCA and UWIDE and 0.85 for
DCADE.

@ Springer
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Fig. 11 Sensitivity analysis for parameter tuning

4.2 Performance comparison

Table 2 shows the performances comparison on non-
recordsets, i.e. TableA output.* In terms of data column
extraction, DCADE presents the best performance for all
categories with FF = 0.962, followed by DCA, TEX,
RoadRunner, and UWIDE with FF = 0.660, 0.454, 0.396
and 0.260, respectively. This is mainly because of the
difference between the number of output data columns
and the ground truth as shown in the extraction output
comparison on Table 5 in the appendix, where UWIDE and
RoadRunner output 111 and 7 data columns respectively,
while the ground truth is only 49 on average. We can also
examine the density of UWIDE (0.580) and RoadRunner
(0.589) to know that the outputs are not as good as that of
DCADE (0.917), DCA (0.900) and TEX (0.880). Note that

4The detail extraction output of each approach can be found in the
Appendix section.

@ Springer
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RoadRunner deal with only 27 websites. Thus, RoadRunner
is not a robust method. However, RoadRunner performs
better than DCA, TEX, and UWIDE for several websites
when webpages are well-formed such as EO1, E02, E03, etc.
(as shown in Table 2 with cyan color).

As for the evaluation in recordsets, Table 3 shows
the performance of four approaches (DCA is excluded
since it does not support recordset extraction). DCADE
showed the best performance with ' = 0.936 followed
by TEX, RoadRunner, and UWIDE with F = 0.549,
0.330, and 0.081 respectively. DCADE outperformed all
other approaches in every category except for ExAlg and
Sports. The detail output of each approach is shown in Table
5. Due to space limitation, we could not show the density
in the recordset output for each website and only report
overall density in recordsets. Two better approaches are
DCADE and TEX, which has an average density of 0.960
and 0.827, respectively. Two poor methods are UWIDE
and RoadRunner, which has an average density of 0.621
and 0.343, respectively. However, RoadRunner has the best
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average performance in ExAlg (F = 0.921) category with
cyan color, where the web contents are formatted with table
tags.

Although DCADE outperforms other approaches, the
performance is not good on some websites (i.e., E07, T30,
T31, and T39). There are three major reasons. First, when
a data region contains records with skew length, DCADE
may fail to detect them because the N S D is greater than 0.5.
Second, false positive MT's or ST's (because of the same data
values across records) may divide a data region into several
parts. For example, the same data values in a data region
(such as record numbers) are often detected as MT's or ST's,
leading to fragmented data regions. Third, DCADE fails
to detect recordsets that are mixed in one segment without
sub-landmarks like S7.

4.3 Sensitivity analysis

We conduct the following sensitivity analysis to evaluate the
robustness of the proposed algorithm. First, Fig. 11a shows
the performance changes with the varying path similarity
threshold (Op,s;) and the path similarity distribution. Path
similarity is used in (2) to determine if two leaf nodes
have the same Pathld. If 6p,;, is set too high, leaf nodes
with the same text content but slightly different paths could
not be generalized in the same column. If the threshold
is set too low, there would be no distinction. The Fl1
performance varies between 0.901 and 0.962. The highest
F1 performance was achieved when path similarity was 0.7
(0.7< Oparn, <0.8).

Second, the performance (0.931~0.962) with varying
SimSeqld threshold (Orgc) is shown in Fig. 11b. This
parameter is used in (3) to determine if two leaf nodes have
the same SimSeqld and can form a template equivalence
class. Similar to the path threshold, 8rgc should not
be set too high or too low. The best performance was
achieved with 0rgc = 0.7 (0.7< O7gc <0.8) in our
experiment.

Third, the performance (0.845~0.962) with varying
support threshold 67 is shown in Fig. 11c. This parameter
is used in (4) to determine whether a CECId is considered
frequent. If the threshold is set too high, there will be
fewer frequent patterns to split segments into subsegments.
DCADE achieves the best performance when 6pr = 0.3
(0.3< o1 <0.4). Most CECIds (92.4%) have the support
less than 0.1, indicating many data nodes.

Finally, we show the performance with varying density
threshold 0p., for section merging and density distribution
in Fig. 11d. We can see 51.2% section density higher than
0.9. Different from above, we conduct merging stops when

section density is smaller than Op,,. If Op., is too small,
no merging is conducted and the F1 performance is only
0.685. The best performance (F = 0.962) was achieved
when Op., = 0.7 (0.7< Op., <0.8).

5 Related work and comparison

The World Wide Web is the hugest data repository of
information about almost any topic. However, since the
data is not formatted for machine access, automatic web
information extractions (IE) are important for data reuse,
integration, and analysis. In this paper, we focus on the deep
web which contains consolidated data from the searchable
web database.

As reported in [5, 11], various IE tasks can be defined
based on their input and output. Some IE tasks require
annotated input pages for extraction rule induction (called
supervised approaches), and some work on annotation-free
input pages with or without user intervention. We call these
semi-supervised and unsupervised approaches, respectively.
Many IE tasks operate on list pages that contain multiple
data records in a web page, while some focus on extraction
from singleton pages, which contain detailed information of
an item. The former usually takes a single web page as input
for data extraction, such as TEGRA [7], SYNTHIA [19],
AutoRM [24], Dual-TLBO [33] and MiBAT [27], while
the later usually receive multiple web pages as input (e.g.,
RoadRunner, FivaTech [16], TEX, DCA). There are also IE
systems that work with both single and multiple web pages,
such as STEM [30].

In terms of output, some IE tasks are designed to extract
record lists from list pages, such as [7, 17, 29, 30], while
some tasks aim to induce full schema from multiple pages
such as ExAlg [1], WEIR [3], RoadRunner [8], FivaTech
[16], TEX [25], and DCA [31]. Essentially, multiple web
pages give chances for full schema induction and can be
considered a total solution if both list and singleton pages
can be processed.

RoadRunner [8] is the pioneer work that generates a
wrapper with full schema by aligning one page with the
previous wrapper iteratively based on HTML tags. Since
RoadRunner looks for paired HTML tags during string
alignment, it fails to generalize well on mal-formatted web
pages. Meanwhile, when input pages contain decorative tags
or similar patterns for different structures, RoadRunner may
fail to infer the schema, leading to the extraction of few data
columns.

ExAlg detects and constructs [1] templates from large
and frequent equivalence classes of tokens (either words or

@ Springer
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HTML tags) that have the same occurrence vectors across
input pages. The major problem with ExAlg is its inability
to deal with inconsistent data sequences. Another issue
involves how to choose the right pattern from a large number
of large and frequent equivalence classes due to optional
templates.

By contrast, TEX [25] and Trinity [26] find shared token
sequences among all web pages and considers them as
separators for data column extraction. However, TEX would
extract incomplete information when all records share the
same tokens.

UWIDE [6] is composed of two subsystems, i.e. page-
level schema induction and schema verification. We only
use the first part for the page-level schema induction,
which includes recordset region detection, record boundary
segmentation, data alignment and schema generation. (In
contrast, our work segments webpages using MT templates
first, followed by frequent pattern mining, repetitive pattern
alignment, recordset region detection, and record boundary
segmentation.) UWIDE encodes leaf node sequences based
on HTML tags and text content and mines repetitive patterns
for recordset based on maximal patterns. Since it segments
webpages locally, there may exist false positive and false
negative templates or recordsets.

DCA [31] focuses on singletton pages that contain detail
description of single items and features the technique of
multi-order attribute value pair extraction. Thus, DCA could
not deal with list pages that contain recordsets or singleton
pages that contain small data regions (e.g. Fig. 1). In
addition, the alignment performance is limited because of
the fixed encoding scheme.

Since this paper focuses on full schema data extraction
from deep Web, we therefore exclude IE systems that do
not focus on deep web data extraction, i.e. IE systems that
extract only recordsets without full schema. For example,
TEGRA [7], SYNTHIA [19], AutoRM [24], and Dual-
TLBO [33] process one page at a time and needs extra step
to align data extracted from multiple pages. Lu et al. [17]
and DIADEM [29] extracts only recordsets from list pages
and do not output full schema data. Therefore, we only
compare with RoadRunner, TEX, UWIDE, and DCA.

In summary, Roadrunner uses iterative approaches to
align multiple input sequences, whereas ExAlg, TEX,
and UWIDE mine common patterns as landmarks for
dividing input sequences into segments. However, existing
approaches fail to work well because they are designed to
align processing units with the same text contents or path.
Although DCA aligns processing units with the same text
contents and equal path with a fixed encoding scheme, it
is hard to align various data nodes in the same column or
differentiate similar data nodes into different columns. By

@ Springer

contrast, the proposed DCADE algorithm is able to divide
the input pages into segments using MT templates (based
on CECId), and recursively mine RT, RD, and ST patterns
for sub-segment division using TECId. The different
encoding schemes extend to column rearrangement such
that disjunctive column could be merged if they share
common TECId code at a higher encoding level.

6 Conclusions

In this paper, we present a novel algorithm for web
data extraction and compare the performance with DCA,
UWIDE, TEX and RoadRunner, on the full pages for list
and singleton pages. Compared with full web page data
extraction like TEX and RoadRunner, where performance
is only evaluated based on selected data, the proposed
method DCADE is more robust and efficient. We conducted
experiments on 49 websites from TEX and ExAlg datasets.
For non-recordset data extraction, DCADE (Fp = 0.962)
outperformed DCA (Fp = 0.660), TEX (Fp = 0.454),
RoadRunner (Fp = 0.396), and UWIDE (Fp =
0.260) in column-wise evaluation. In cell-wise evaluations
for recordset data extraction, DCADE (Fs = 0.936)
outperformed TEX (Fs = 0.549), RoadRunner (Fs =
0.330), and UWIDE (Fs = 0.081).

The big improvement of the proposed algorithm co-mes
from the following design features. First, DCADE defines
CECId to identify MT for divide-and-conquer alignment.
Second, DCADE systematically differentiates two types
of patterns from CECId (i.e., RT and ST) and two other
patterns from TECId (i.e., RD and SD) in each segment
such that frequent patterns of the same type are consistent.
Third, DCADE designed a postponed alignment to handle
documents that do not contain a landmark.

For future work, although the performance for full
schema data extraction has been improved, the extraction
performance on recordset is not good when there are
cascade tables or nested sets. In addition, efficient extraction
on testing pages and verification of the generated scheme
can complete the task for wrapper maintenance.

Acknowledgements The research is supported by Ministry of Science
and Technology Taiwan under Grant MOST105-2628-E-008-004-
MY?2.

Appendix

The magenta numbers in brackets represent the gap with the
ground truth answer.



DCADE: divide and conquer alignment with dynamic encoding...

0001 z(0g—) €560  1€(9+) €1L0  8(pz—) 0.8°0 b (TI+) 6L6°0 43 681 44 1A
0000  0(Lg—) 9,60  6£(91+) vsy'0  LL (0P ) L¥80 €5 (91+) 0S6'0 (4200—) 8¢ (I+) €19 €59 (1+) (YA
0001 tT(zz—) 60 TL(sst) 0000 0 (¥z—) 6680 96 (ZL+) ciLo(gero—) e (8+) 191 L61 (8+) (4A}
000'T 0T €190  ce(trt) 0001 L(¢—) 8¢6'0 91 (9+) 000'1 01 91 SLI 1zl sqor
0001  t(gz—) 1L60  Tr(LTt) 0001 sz(z—) 6560  8I1(16+) 9560 LT ¥0€ (443 0zl
0000  0(sz—) L08°0 95 (6¢+) SLLO  0T(s—) €80  sc(o1+) 976°0 ST 6 (44 611
0960 01 9¢6'0 €1 (8+) €S0 sg(szth) 7980 1 () 0960 01 Is 19 8IL
L1I60 I LyLo Tz (or+) 0001 T(zi—) 0680  1T(L1) 760 1 §ST 0LT L1L
0001  €(r1—) S180 0z (L+) 9050 6¥ (zet) €80 81 (1+) 6¥L°0 (001°0—) 1T (H+) LES (P+)  6SS (8+) 91L s10300(]
0001 T(s—) €880  8(s+) 0001 €(—) 9180 LI (0I+) 000'T L 6€ 9t SIL
000T 1 0001 ¥ (9+) 0000 0(1—) €860 c¢(+) ¥L6°0 I 0 I v1L
000'T €I 0001 ST(zh) 0001 T(11-) 000'T €I 000'T €l LE 0 €IL
9680  9¢ 806'0  1€(8+) 9,80  €£(L+) §t8'0  ev(LI+) 006°0 9 88 SIT TIL
vL80 9z (1—) L2600 LT (9+) 0080  §(zz—) L160  Te(st) 688°0 LT s 43 I1L SJuaA
0000  0(18—) €680 6L (6T+) TLLO 6Tl (8p+) 8160  6¢CI (8v+) L96°0 (1100—) 28 (1+) 87T 01g (1+) 0L
0000  0(£9-) 180  $8(0s+) 6890  vIT(15+) §T6'0 L9 (b 1) L160(ST00—) €9 LIS 08$ 601
0000  0(0s—) 0880  I¥(st) 06L0  6£(11—) 9680  19(11+) LL80 0 Sh1 961 80.L
0001 t1(ss—) €L80 16 (0s+) 69L°0 96 (LTH) €68°0  9¢1(L9+) ¥$6'0 (€000—) 89 (1—) cee (1+)  16¢ LOL
0000  0(SL1—) ¥s60  LIT(01+) €590 Tee (LST+) 888°0  8LI(¢+) 016°0 (100°0+) 9.1 (1+) sie(v—)  gov (€—) 90L s1eD)
0001 S(8-) 6990  88(86+) 950 €6 (08+) ¥88°0 €z (01+) 098°0 €l L8T 10€ SoL
0000 0(1g—) 9zL0 g (0Tt L8T0  £LT(ThTt) 0160  LE(9+) LS80 (+00°0+)  1¢ 12! 91 0L
000'T  S(85—) 1780 651 (6€1+) 0000  0(€9—) §960 L9 (v+) 6260 (0200—) 69 (9+) Log (L+)  8Le(€1+) €0l
6o gg(1-) ¥8L°0  LT(EI+) 9L£0  LL(ESH) ¢80 sc(i+) 80 ¥C 161 91¢ 701
0000 0 (9v—) LL6O b (9+) ¥8%°0 001 ($S+) 1680 ¢S (9+) 6680 (6000+) st (1—) §sT z0¢ (1) T0L syoog
0000  0(t—) 60 601+ 8970  0TL(91L+) €60 9(zh) 966°0 (t000—) ¥ 0T T 604
0000  0(cL—) 80 19 (6TH) 8160 €01 (0¢+) 6560 08 (L+) vr60 (€100—)  vL(1+) L1g 16¢ (1+) 80
0001 ¢ €L60  SI(Is+) 0001 € 9660 v (1zt) 6880 (SI10—)  11(8+) Tse s9¢ (6+) L0d
0001 T(Le-) €080 IS (9p+) 99¢0 66 (09+) 6vL0 €S (pIt) 688°0 6€ 201 1 909
8€6'0  9¢ LS60  se(olt) 000'T 01 (92—) $s60 v (9+) 8€6°0 9¢ 901 Wl sod
L66'0 61 (ct) 000'T 91 (zH) 0007 €1 (v—) 1660 LI L6670 LT 6¢ 9 ¥0d
0001 S 000'1 11 (9+) €8y'0  L0g (zogt) LL8O LT (T91+H) 0001 S €TT 62C €0d
v68°0  6(ct+) Ly60  L1(SIH) 000'1 1(9-) 0001 tvT(LI+) 0001 L 8¢ 9¢ z0d
0001 S 000T 91 (b1+) 6950 €T (81+) 60 Ti(Lt) 000'T S ocr (1H)  zp1 (1) 104 Svxd
Apsuaq ele(# Ansuoq BlR(# Aysuo(q ele(# Asuoq BlR(# Apsuaq ele(# rejdwo] # uwno)#
Jouunypeoy XHL HAIMN vod 4avod ar  Aw3se)

V2]qpy, uo uostredwod indjno uonoenxy ¢ d|qel

pringer

fs



0.Y. Yuliana and C.-H. Chang

6850 L 0880 LS 08S0  TI11 0060 L9 L16°0 6% 87T 6LT ageroAy
6860 8 (v—) €880 8L (65+) 9ze'0  ssz(cozt) 960 69 (L1+) 9860 4 665 159 oL
0000  0(0L—) 856'0 69 (9p+) vLS0 111 (1p+) 8260  S6(sT+) 2060 (8100—)  ¢L(ThH) vrL (1+)  L18(¢+) 6€L
0000  0(61—) 8L0  8S (vs+) 0000  0(61—) €88°0  0€(11+) 166°0 61 8¢ 10¢€ €L
L6081 608°0  0g(sz+) 1820  8SS (0¥s+) 9960  ev(sTt) TL6°0 81 ¢ 39 LEL spodg
0000  0(€8¢—) 668°0 01t (9T1+) 0ZL'0  60% (9T+) 0€6'0 1TSS (8EI+)  1$6'0(2000—)  6LE (—) 9Ls (6+) 656 (S+) 9¢L
0000  0(65—) 668°0 LS (€TtH) 9¢L'0 11 (8v—) S68°0  LL(8I+) 168°0 (€100—) 19 (¢c+) o1z (¢+) 9Lz (s+) SelL
0000  0(z6—) €cLo 6L (01+) 6v'0  11(18—) 0,80  $9(Lz—) 8%9°0 6 60¢ 70¢ vel
0000  0(Lt—) 1180 0L (¥¥+) ver'o P11 (L9+) 8680 S (L+) 0€6°0 Ly 181 8TC €eL
0001 €(z8—) L8L°0  6£1 (28+) 1550 00z (STI1+) 7160 +6(61) 688°0 S8 ¥se (344 €l oy
0000  0(62—) 8660  €£(91+) 9zs'0 911 (L8+) 0,60 19 (zet) LE60 6T 62C 65¢ I€L
0001 ¥ (LvE—) €560 80T (98+) S9L0  $8¢ (bet+) L160  ovT(I11—)  918°0(1100—)  09¢ (6+) veL (1+H)  001°T(11+)  0€L
0000 0(Lz—) €LLO  Th(9T+) 68€0 99 (6¢+) 080  S€(8+) L96°0 (6100—) LT SoT (43! 6L
SI80 91 9690 ¥z (8+) 68L0  6(L—) LSL0  se(61t) Se8'0 91 19 6L 8CL
0000 0(zz—) 0€8°0 96 (z9+) 1L60  #81(291+) $98°0 901 (#8+) 7560 (44 L11 Shl LTL
vL9°0  8I 0001 L1(1+) 0000 0(81—) vL9°0 81 ¥L9°0 81 SL €6 9zL SATAOIN
660 €1 6,60 I (6+) 1920 €61 (081+) 660 €1 766°0 €1 8 86 YA)
(ponunuod) ¢ 3jqeL

pringer

A's



DCADE: divide and conquer alignment with dynamic encoding...

€61 4 I 15T S € LET 9 4 6¥¢ L 4 € ageroAy
0(6s—) o0l 0(1—-) 96 (¢-) 1(c)1 I 09 (1+) o1 (L+) I e (L) € I I 6€L spods
0(s1—)  001—-)  o0W) 6LE (6Tz+)  11(5—) 12 0S¥ (00€+) 16 (SL+) 12 0ST 91 I 12 9¢l
0(06z—)  0(9-) 0(s—) s6T (s+) v () r(1—) 88y (861+)  Tp(9¢+) v(1-)  06¢C 9 S S sel
o(ii—) o) 0(1—-) €1 (#01—) 1(1-) I cec (91Tt)  osT(8vct) 1 LT1 4 I I relL
- - - - - - - - - - - - - €eL
0(or—) og=) o1-) S8t (8L+) oci—) 6(—) oL1(Lec—)  +T(9-) €(L—) Loy 0¢ I 01 €l oreIsy
0(ses—)  o0(T) 0(1-) SLy (09—) 4 I 017 (STh—) ¢(1+) I 439 4 0 I Iel
0(se—)  owi—) o0(s—) 91¥ (99+) €1 (1-) S 9%t (96+) 8(9—) z(e—)  osg 14l € 9(1+)  0fL
874 € 4 og(112—) z(1-) 4 86T (LT+) oz (L1+) 4 ¢ € 4 4 8TL
0or—) o(i—) 00-) e (09—) (- 9 9zs (zei+)  zg (ozt+) t=)  pov ! I 9 LTL SOTAOIN
0ei—)  0(z) 0(z—) 0€ (46—) 4 4 09 (+9-) v (z+) 1(1-) vl 4 4 4 €Tl
00z 0@1—) 0(r—) 001 (801—) ¢TI (9—) 4 0 (802—) 0(81-) 0(—)  soz(c—) 81 € 14 (1A} sqof
0(009—)  0(F—) 0(1—-) ots (09—) €(1-) I 009 y1(01+) r(c+) 009 14 0 I 0zl
0(9.-) 0(z—) 0(z—) 0s (97—) 4 4 gse(LLi+) v (Th) 4 9L 4 4 4 61L
9L 4 I 9t (0€—) 4 I sez(esi+) 91 (b1+) I 9L 4 I I L1L
o(s11—-)  0(¢) 0(1-) 121 (9+) € I o(sri—-) 0(¢—) 0(1—)  ¢I1 € 0 I 91L s10300(
w8 4 I 0€(z18—) 4 I €0z (6£9—)  se(get) I w8 4 I I (4R}
70¢ 9 € 99 (9¢7—) 9 € 96T (9v—) €01 (L6+) t(1-)  zog 9 I € T1L SJuoAY
0(rcc—)  o0(T) 0(1-) 0T (0€—) 4 T 6T (09+) 81 (91+) ¢(z+) et 4 I I 80L
091 L(1-) I L9 (S6—) v (r—) I 012 (8%+) [«AC4R0) r(e+) 291 8 I I LOL
0(L0z—)  0(z—) 0(z—) 0€(LLT—) 1(1-) 1(0-) oLz (€9+) L(s+) 1(0—-) 881(61—) T 4 4 90L Rie}
0 (6¢—) 0(¢—) 0(1—-) 0¢ (6—) z(1-) I st i+ ¢l-) c(+)  6¢ € 0 I SOL
0(s8—) 0(z—) 0(1—-) T (€9-) 1(1-) I L8 (T+) 81 (91+) I S8 4 I I Y01
0@8Ly—)  0(8-) 0(z—) coc(sLe—)  9(z-) 4 0(8L¥—) 0(8-) 0(z—) 8Lv 11 (¢+) r(—) ¢ €0L
Ly 8 I 0g (L1—) 709-) I 99 (61+) 9(z—) I Ly 8 4 I 701
0006—) o(1—) o) 0€ (99—-) €(L—) 4 Ss1 (65+) 11 (1+) 4 96 01 4 4 10L syoog
499 S I 8T (vze—) ¢ I 499 v (1-) I L9S (ST+) ¢ 0 c(1+)  Lod
LO8T 4 I 69LT(8s—) T I Ls(osL'z—)  8(9+) I LO8T 4 I I €0d
10$ 4 I ver(Los—) ¢ I 10$ 1(1-) I 10$ 4 0 I 04
S et 1 ¢e (12—) L(1-) I €9 (6+) 1(L—-) I S 8 € I 104 3vxd
MOYXDIN ele(Q# 19SH MOYXDI ele(Q# 19SH MOYXD ele(q# 1OSH MOYXD ele(q# arerdway # 19SH
Iouunypeoy XdL qaImn 4avod ar  Awo3ar)

$19SpI0d3al uo GOmE.mQEOO HSAFSO uonoenxy gsojqer

pringer

fs



0.Y. Yuliana and C.-H. Chang

References

10.

11.

12.

13.

14.

15.

16.

17.

. Arasu A, Garcia-Molina H (2003) Extracting structured data

from web pages. In: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pp 337-348

. Bing L, Lam W, Wong TL (2013) Wikipedia entity expansion and

attribute extraction from the web using semi-supervised learning.
In: Proceedings of the sixth ACM international conference on Web
search and data mining, pp 567-576

. Bronzi M, Crescenzi V, Merialdo P, Papotti P (2013) Extraction

and integration of partially overlapping web sources. VLDB J
6(10):805-816

. Carlson A, Betteridge J, Wang RC, Hruschka R, Mitchell

TM (2010) Coupled semi-supervised learning for information
extraction. In: Proceedings of the third ACM international
conference on Web search and data mining, pp 101-110

. Chang CH, Kayed M, Girgis MR, Shaalan KF (2006) A survey of

web information extraction systems. IEEE Trans Knowl Data Eng
18(10):1411-1428

. Chang CH, Chen TS, Chen MC, Ding JL (2016) Efficient

page-level data extraction via schema induction and verification.
In: Proceedings of the Pacific-Asia conference on knowledge
discovery and data mining, pp 478-490

. Chu X, He Y, Chakrabarti K, Ganjam K (2015) Tegra: table

extraction by global record alignment. In: Proceedings of the 2015
ACM SIGMOD international conference on management of data,
pp 1713-1728

. Crescenzi V, Mecca G (2005) Automatic information extraction

from large websites. Journal of the ACM (JACM) 51(5):731-779

. Crescenzi V, Merialdo P, Alfred DQ (2013) Alfred: crowd

assisted data extraction. In: Proceedings of the 22nd international
conference on World Wide Web, pp 297-300

Dhillon PS, Sellamanickam S, Selvaraj SK (2011) Semi-
supervised multi-task learning of structured prediction models
for web information extraction. In: Proceedings of the 20th
ACM international conference on information and knowledge
management, pp 957-966

Ferrara E, De Meo P, Fiumara G, Baumgartner R (2014) Web data
extraction, applications and techniques: a survey. Knowl-Based
Syst 70:301-323

Furche T, Gottlob G, Grasso G, Schallhart C, Sellers A (2013)
OXPAth: a language for scalable data extraction, automation, and
crawling on the deep web. The International Journal on Very Large
Data Bases 22(1):47-72

Gulhane P, Madaan A, Mehta R, Ramamirtham J, Rastogi R,
Satpal S, Sengamedu SH, Tengli A, Tiwari C (2011) Web-scale
information extraction with vertex. In: Proceedings of the IEEE
27th international conference on data engineering, pp 1209-1220
Gupta R, Sarawagi S (2011) Joint training for open-domain
extraction on the web: exploiting overlap when supervision
is limited. In: Proceedings of the fourth ACM international
conference on Web search and data mining, pp 217-226

Jiménez P, Corchuelo R (2016) On learning web information
extraction rules with TANGO. Inf Syst J 66:74-103

Kayed M, Chang CH (2010) Fivatech: page-level web data
extraction from template pages. IEEE Trans Knowl Data Eng
22(2):249-263

Lu Y, He H, Zhao H, Meng W, Yu C (2013) Annotating
search results from web databases. IEEE Trans Knowl Data Eng
25(3):514-527

@ Springer

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

. Needleman SB, Wunsch CD (1970) A general method applicable

to the search for similarities in the amino acid sequence of two
proteins. J Mol Biol 48(3):443-453

. Omari A, Kimelfeld B, Yahav E, Shoham S (2016) Loss-

less separation of web pages into layout code and data. In:
Proceedings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining, pp 1805-
1814

Omari A, Shoham S, Yahav E (2017) Synthesis of forgiv-
ing data extractors. In: Proceedings of the tenth ACM inter-
national conference on web search and data mining, pp 385-
394

Ortona S, Orsi G, Furche T, Buoncristiano M (2016) Joint repairs
for web wrappers. In: Proceedings of IEEE 32nd international
conference on data engineering, pp 1146-1157

Qu J, Ouyang D, Hua W, Ye Y, Zhou X (2019) Discovering
correlations between sparse features in distant supervision
for relation extraction. In: Proceedings of the twelfth ACM
international conference on web search and data mining, pp 726—
734

Ratner AJ, Bach SH, Ehrenberg HR, Ré C (2017) Snorkel: fast
training set generation for information extraction. In: Proceedings
of the 2017 ACM international conference on management of
data, pp 1683-1686

Shi S, Liu C, Shen Y, Yuan C, Huang Y (2015) AutoRM: an
effective approach for automatic Web data record mining. Knowl-
Based Syst 89:314-331

Sleiman HA, Corchuelo R (2013) Tex: an efficient and effective
unsupervised web information extractor. Knowl-Based Syst
39:109-123

Sleiman HA, Corchuelo R (2014) Trinity: on using trinary trees for
unsupervised web data extraction. IEEE Trans Knowl Data Eng
26(6):1544-1556

Song X, Liu J, Cao Y, Lin CY, Hon HW (2010) Automatic
extraction of web data records containing user-generated content.
In: Proceedings of the 19th ACM international conference on
information and knowledge management, pp 3948

Su W, Wang J, Lochovsky FH, Liu Y (2012) Combining tag and
value similarity for data extraction and alignment. IEEE Trans
Knowl Data Eng 24(7):1186-1200

Tim F, Georg G, Giovanni G, Xiaonan G, Giorgio O, Christian
S, Cheng W (2014) DIADEM: thousands of websites to a
single database. In: Proceedings of the VLDB, vol 7, pp 1845-
1856

Xie X, Fang Y, Zhang Z, Li L (2012) Extracting data records
from web using suffix tree. In: Proceedings of the ACM SIGKDD
workshop on mining data semantics, p 12

Yuliana OY, Chang CH (2018) A novel alignment algorithm for
effective web data extraction from singleton-item pages. Appl
Intell 48(11):4355-4370

Zhai Y, Liu B (2006) Structured data extraction from the web
based on partial tree alignment. IEEE Trans Knowl Data Eng
18(12):1614-1628

Zhao C, Zhang R, Qi J (2018) Web page template and
data separation for better maintainability. In: Proceedings of
international conference on web information systems engineering,
pp 439449

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.



DCADE: divide and conquer alignment with dynamic encoding...

Oviliani Yenty Yuliana recei-
ved the B.Eng. in Computer
Engineering  from  Institut
Teknologi Sepuluh Nopember,
Indonesia, 1993 and the MS in
Computer Information System
from Assumption University,
Thailand, 2004. Currently, she is
a Ph.D. student at Computer
Science and Information Engi-
neering, National Central Uni-
versity, Taiwan. Her research
interests are Database Sys-
tems, Data Mining, and Web
Data Extraction.

Chia-Hui Chang is a full
Professor at National Cen-
tral University, Taiwan. She
obtained her Ph.D. in Com-
puter Science and Information
Engineering from National
Taiwan University, Taiwan in
1999. Her research interests
focus on Information Extrac-
tion, Web Intelligence, Data
Mining, Machine Learning
and System Integration. Dr.
Chang has published more
than 80 papers at refereed
conferences and  journals
including WWW, PAKDD,
TKDE, IEEE Intelligent Systems, etc. She served as area co-chairs
for ACL 2017, NAACL 2018 and senior PC members for AAAI,
ICTIR, PAKDD, etc. She is currently president of Taiwan Association
for Artificial Intelligence (TAAI) and vice president for Association
for Computational Linguistic and Chinese Language Processing
(ACLCLP).

@ Springer



	DCADE: divide and conquer alignment with dynamic encoding...
	Abstract
	Introduction
	Problem definition
	Proposed method
	Data preprocessing and encoding scheme
	Divide-and-conquer alignment
	Mandatory template mining in TableL
	Pattern mining in segments
	Columns re-arrangement and table splitting

	Summary

	Experimental results
	Baselines
	Performance comparison
	Sensitivity analysis

	Related work and comparison
	Conclusions
	Acknowledgements
	Appendix A 
	References
	Publisher's note


