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gbstract Automatic data extraction from template
pages is an essential task for data integration and data
analysis. Most researches focus on data extraction from
list pages.
ton pages,
gle item is less addressed and is more challenging be-
cause the mumber of data attributes to be aligned is

e problem of data alignment for single-
which contain detail information of a sin-

much larger than list pages. In this paper, we pro-
pose anovel alignment algorithm working on leaf nodes
from the DOM trees of input pages for singleton pages
data extraction. The idea is to detect mandatory tem-
plates via the longest increasing sequence from the land-
mark equivalence class leaf nodes and recursively ap-
ply the same procedure to each segment divided by
mandatory templates. By this divide-and-conquer ap-
proach, we are able to efficiently conduct local align-
ment for each segment, while effectively handle multi-
order attribute-value pairs with a two-pass procedure.
The results show that the proposed approach (called
Divide-and-Conquerghlignment, DCA) outperforms TEX
[23] and WEIR [4] 2% and 12% on selected items of
TEX and WEIR dataset respectively. The improvement
is more obvious in terms of full schema evaluation, with
0.95 (DCA) versus 0.63 (TEX) F-measure, on 26 web-
sites from TEX and EXALG [1].
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1 Introduction

The World Wide Web, along with static web pages, con-
tains a tremendous number of dynamic web pages which
are generated through web query interfaces upon users’
requests. These online databases (structured data) make
up the deep web and generate search result pages (semi-
structured data) by embedding data into their prede-
fined templates. Deep web contains valuable data and
resources for knowledge harvesting and decision mak-
ing. Therefore, antomatic data extraction from the deep
web has been an important technique for information
integration and data analysis in various applications
from commercial to social web application [13].

As reported in [16]. Internet-accessible databases
contain up to 500 times more data than the static Web
and roughly 70% of websites are backed by relational
databases. A recent study in [18] indicates that there
exist more than 450 billion deep web pages. If the data
hidden in deep Web can be effectively and efficiently
reverse engineered to the original database, we can ap-
ply direct mapping to translate the relational database
to an RDF graph with OWL vocabulary as suggested
in [22|. Compared with literatures that extract infor-
mation from static pages for populating cross-domain
knowledge bases [2| or harvest structured facts to au-
tomatically add novel statements to DBpedia [14] deep
web data extraction can speed up the extraction pro-
cedure for data instances of the same relational schema
(even though we need to construct one wrapper for each
website).
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In this paper, we study the problem of web data ex-
traction from dynamic web pages which are generated
throngh web query interfaces upon users’ requests. We
focus on singleton pages, which contain details of a sin-
gle item in a page as opposed to list pages, which con-
tain a list of items in a web page. For example, a page
containing search result of a query is a list page, while a
page containing description of a item (like job vacancy)
is a singleton page (see Iig. 1). For the past decade,
most researches tried to solve record extraction from
list pages, e.g. CTVS [24] and Lu at al. [20]. Very few re-
searches focus on full schema induction for singleton
pages according to the surveys in [5,13]. In other words,
the performance evalnation usually focused on selected
data items of list pages, the performance on full schema
and item details still has a room for improvegment.

The difficulties of aligning singleton pages come from
several aspects. First, the number of data attributes
needs to be alned is much larger than that of data
records in list pages. For example, there are more rich
data types and more optional data to be processed in
singleton pages as shown in Fig. 2 (D).

Second, it is more likely to have multiple order attri-
bute-value pairs which lead to unordered data render-
ing. For example, “Job Function” and “Entry Level” at-
tributes come either before or after “Location(s)” and
are rendered on either left or right side in Fig. 2 (2).
For such cases, even visnal position or layout feature
extraction (as proposed by Hao at al. [15]) cannot solve
multi-order attribute-value pair problem completely.

Third, the data-rich section for singleton pages is
hard to define and can span to the whole page. There-
fore, we aim to induce the full schema for the whole
page. Because of this, there are more situations we need
to consider. For example, while the same text contents
usually play the same role in a page, some of them
might have different functions in the different position
of the page when considering the whole page. On the
other hand, while the same text contents usually have
the same path, some of them might have different paths
because of decorative tags. Last but not least, list data
(if any) inside the singleton pages nsually occupies a
small area and has less evidence for discovery as in list
pages.

In this paper, we propose a novel algorithm for un-
supervised web data extraction from singleton pages.
The proposed technique operates on leaf nodes of input
DOM trees. We adopt a Divide-and-Conquer approach
to recursively detect landmarks (called mandatory tem-
plates) via longest increasing sequence (LIS) for tem-
plate mining. By focusing on leal nodes with the same
text content (which are defined as landmark equiva-
lence class (LECSs)) and selecting LEC's with consistent
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Fig. 1: Examples of list pages and singleton pages

ordering in all pages as landmarks, we are able to rear-
range leaf nodes to achieve a better alignment for data
extraction.

We conduct experiments using real-world web pages
from the following three papers: WEIR [4], TEX (23],
and EXALG [1]. In terms of selected data items with
golden answer (5% of data columns) on WEIR dataset,
our approach (F = 0.96) outperforms the state-of-the-
art approaches like RoadRunner (9] (F = 0.66), WEIR
(F' = 0.88) and TEX (¥ = 0.5). For full schema eval-
uation with our manually annotated golden answers
on TEX and EXALG dataset, the proposed approach
(F = 0.95) shows even larger gap with TEX (F = 0.63)
and RoadRunner (F = 0.29).

The main contributions in this paper are (i) we
propose a novel data alignment technique for singleton
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Fig. 2: An example of multi-order attribute-value pair in singleton pages and the aligned result

ges, (#1) we apply LIS to deal with inconsistent land-
marks, i.e. multi-order templates, and (#i1) we extract
full schema from singleton pages and compare the cffec-
tiveness and efficiency of the divide-and-conquer align-
ment (DCA) with state-of-the-art technigues on three
bench datasets from several domains in real-world web-
sites.

The rest of paper is organized as follows. In the
next section, we compare the proposed problem with
related Web data extraction techniques. A formal prob-
lem statement and the motivation behind the algorithm
is introduced in Section 3. We describe our proposed
method in Section 4 followed by alignment phase in
Section 5. The performance evaluations are presented
and analyzed in Section 6. Finally, we conclude our pa-
per and propose our future work in Section 7.

2 Related work

The research of Web information extraction can be traced
back to the early stage of Web development in 1996.
Many information extractions (IE) approaches have been
proposed with diverse degree of automation (i.e. su-
pervised [10], semi-supervised [3,12], and unsupervised
[11]) [19]. Supervised IE approaches, which are origi-
nally designed for input pages from different websites
(i.e. with various structure), require annotated train-
ing web-pages to build a model. Unsupervised IE ap-
proaches, which are designed for input pages generated
from the same website (i.e. with the same template),
accept annotation-free deep web-pages as training set
and discover data-rich section for data extraction.

The possibility of unsupervised web data extraction
relies on the regularity of semi-structured web pages
or template pages. From early approaches like EXALG

[1], RoadRunner (9], RBM-TD [25], FiVaTech [19], ON-
DUX (7], and JUDIE [8], the challenging task contin-
ues to attract increasing attention from recent work like
CTVS [24], DE-SSE [30], TEX [23], WEIR [4], and CLG
[27], ete.

While all these researches claim to be unsupervised,
they target on different extraction tasks specified by
input and output. For example, an extraction target
may be the search result records from list pages (e.g.
DEPTA [29]) or attribute-value pairs from singleton pa-
ges (e.g. DE-SSE). As another example, CETR focuses
on the extraction of main (news) content from article
web pages [26], while CLG deals with non-article (tem-
plate) pages. In addition, ONDUX and JUDIE aim to
extract continuous text containing implicit semi-struc-
tured records.

In this paper, we are particularly interested in al-
gorithms that are designed for full page web data ex-
traction rather than record or major content extraction.
Some of the major work include RoadRunner, EXALG,
FivaTech, and TEX. According to the web page genera-
tion model defined in EXALG, a web page is generated
by encoding an instance x of its data schema S into
a predefined template T'(S), where the template for a
schema T°(S) is defined as a function that maps each
type constructor of S into an ordered set of strings.

RoadRunner learned a union-free regular expression
by generating a base template from the first web page
then it compared literately with another web page using
a string alignment algorithm. Meanwhile, Road Runner
applied a backtracking algorithm for detecting optional
and repetitive patterns.

EXALG operates on strings of word and HTML
tag tokens. The idea is to detect templates from large
and frequent equivalence classes (LFEQs) that have the
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same occurrence vectors across the input pages. By it-
eratively removing some of the invalid LFEQs that vi-
olate the ordered and nesting properties, the algorithm
then uses the ordered set of nested LFEQs for template
construction. The major problem with EXALG is the
limitation to deal with an inconsistent data sequence
and choose the right equivalence classes resulted from
optional templates.

FiVaTech induced the template and schema for a
set of given pages from a common DOM tree structure
generated from input. It applied a tree edit distance
to measure the similarity between two sibling nodes at
the same level of alignment. FiVaTech also employed a
mining technique to mine the repetitive patterns and
several heuristics to detect optional information.

TEX found and discarded the shared longest se-
quence tokens amongst web documents until finding
the relevant information that should be extracted from
them. In other words, TEX extracted various informa-
tion from web documents and removed information that
belongs to the template.

3 Problem definition

In this paper, we formulate the problem of Web data
extraction as aligning leaf nodes from the DOM trees of
m input pages (each DOM tree becomes a row of input
Tablel) into a table (TableA) of m rows and [ columns
such that leaf nodes with the same role are aligned in
the same column. Intuitively, template columns usu-
ally have same text contents while data columns often
contain various contents. In addition, columns could
be mandatory or option if there are missing elements
in pages. Note that the problem definition ignores list
data and treats each record independently as multiple
columns. In other words, we define the output of the
problem to be the aligned matrix such that either tem-
plate columns or data columns could be mapped di-
rectly with some schema for data extraction.

Compare to the problem definition of EXALG or
TEX, which aligns HTML tags and word tokens, leaf
nodes are more complete as a processing unit, whereas
tags and word tokens are usually part of a larger infor-
mation unit. Operating directly on them nsually results
in more noise and complexity. The challenge here is that
(2) leaf nodes of the same template may have different
path because of decorative tag or CSS, (i) leaf nodes
with the same text content or path in input pages may
play the different role, (i) aligning leaf nodes of the
same role may rely on various similarity measures, and
(#v) multi-order attribute-values pairs need to be re-
ordered for a consistent alignment.

?The proposed method

In this paper, we propose a divide-and-conquer align-
ment (DCA) algorithm that processes all input sequences
at the same time (like EXALG and TEX), rather than
iteratively merging two input web pages as Road Runner
does. We define leaf nodes with the same text content
and similar paths as landmark equivalence class (LEC)
and select landmarks with the same occurrences across
all pages for possible templates. We then examine the
first occurrence positions of these candidate templates
in each page for order-consistency checking. The insight
here is that we enforce the order constraint on landmark
selection via the longest increasing sequence (LIS) al-
gorithm and break down the problem into several sub-
problems. Therefore, the proposed DCA algorithm only
needs to focus on one equivalence class that involve all
landmarks with the same occurrence count across all
pages, instead of dealing with many LFEQs and check-
ing for their validities (ordered and nested) with respect
to other LEEQs like EXALG.

Template Mining
LEC Generation » MT Detection Web Pages
Tablel Data
Segmentation Preprocessing
Divide-and-
Removing False i Conguer
Positive MTs OTDetection Alignment
b Alignment Phase
Multi-order Merging

A-V sets

Columns

Fig. 3: System architecture

Eue proposed algorithm first performs data prepro-
cessing and then divide-and-conquer alignment as shown
in Fig. 3. In data pre-processing, we parse all the given
web pages into DOM trees, collect features for each leaf
node from DOM trees, and arrange all leaf nodes into
a table called Tablel as an input for next step. The
divide-and-conquer algorithm can be further divided
into template mining phase and alignment phase. The
template mining phase discovers LECS [rom Tablel
and divides the table into segments by detecting Manda-
tory Template (MT) from LECSs with the same occur-
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rence count across all input pages. To avoid incorrect
segm@gtation, the template mining phase further de-

‘ts Optional Templates (OT) and merges them across
segments to remove false positive mandatory templates.
Finally, in the alignment phase, we align leaf nodes
Pat are not templates to generate a consistent ontput
or multi-order attribute-value pairs and merge simi-
lar/disjunctive columns to generate the ontput matrix
TableA.

4.1 Data preprocessing

As mentioned above, we use leaf nodes of DOM trees as
our basic processing unit. The reason is that the num-
ber of leaf nodes is much smaller than the number of
tag and word tokens. As an illustration, the average
number of leaf nodes for TEX dataset (with an average
size of TTKB from 26 websites) is 798, while the aver-
age mumber of tag and word tokens is 4,548. Beside, leaf
nodes carry information that can be used to differen-
tiate the roles of each leaf node. The features that we
collect for each leaf node include Leaffndex, Path, I1D-
Seq, ClassSeq, Content, and TypeSet as shown below.

LeafIndex is the index of the leaf node | in a page.
Path is the sequence of tags from the root to the
leaf node L.

1D8Seq is the sequence of id attributes from all tags
in the Path.

— ClassSeq is the sequence of class attributes from all
tags in the Path.

Content is the text content of a leaf node.
— TypeSet is the union of token types for
Content as defined in Eq. (1), where |l.C'ontent| is
the mumber of tokens in the text content.

|!.l’.'-'fmtr:n!\
TypeSet(l) = U type(l.Content|c]) (1)

c=1

tokens in

Token Type

1: mix characters 5: percentage 9: email

2: all capital letiers 6: date 10: currency
3: all small letters T: time 11: decimal
4: fimst capital letter & URL 12: inte ger

Fig. 4: Token types
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Fig. 5: Data preprocessing framework

gote that fype() function is implemented based on
regular expression and returns one of the 12 token types
for input as defined in Fig. 4.

In summary, given m input pages with the same
template, we parse each input page p;, 1 < j < m using
CyberNeko! into a DOM Tree and collect all leaf
nodes d[j][1], d[j][2]....,d[j][n;] of this page into d[j]
in one row in Tablel as shown in Fig. 5. Note that
if the last tag of a given Path is a decorative tag® or
{br/}, we remove such tags from Path to Content.

4.2 DCA algorithm overview and definitions

Divide-and-conquer alignment (DCA) is the core of our
work in this paper. In the template mining phase, we re-
gard leal nodes with the same content and similar path
as landmarks and prioritize landmarks into Mandatory
Template (MT), Optional Template (OT), and data
nodes types. The divide-and-conquer align@ent is done
by a recursive call he MT alignment (4.3) followed
by OT alignment (4.4) for each segment. The proce-
dure stops when no M7 is detected in a segment. While
the heuristic definition of MT, i.e. landmarks with the
same occurrence count in each page, and OT, i.e. land-
marks with the same oceurrence count or missing in
a page, may include false positive templates, ghe uti-
lization of LIS and merging reoceurring OT (4.5) can
detect such mistakes by maintaining a consistent order
of templates.

In the aligm@@nt phase, the proposed algorithm han-
dle mul-tiorder attribute-value pairs via a two-pass pro-
cedure during data nodes clustering (5.1), where leaf
nodes with different contents are clustered into groups
based on node similarities. Finally, disjunctive colimns
or low-density and similar colummns are merged to re-
duce the number of output columns (see 5.2). The com-
plete algorithm is shown in Algorithm 1.

_ght-t-p: / / nekohtml.sourceforge.net,
Parser, accessed 10 January 2017

2 DecorativeTag = {a, b, big, cite, dfn, font,em, i,mark,
small, span, sub, sup, strike, u, strong}

CyberNeko HTML
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Elgorithm 1 DCA

1: procedure DCA(Tablel )

2: LECTable + LECGENERATION(TableL)

final MTTable + MTDETECTION(LECT able)
final OTTable « OTDETECTION(LECT able)
TLEC® +—  ReMoveFPMT!(final MTTable,
final OTTable)

6: TLEC + MO_AV_SETY(TLEC)

7 TableA «— I\IEm;EC.fOLd(’i‘LE‘C,_’i'abEeL)

return TableA

9: end procedure

ook

¢ TLEC denotes TemplateLEC

¥ RemoveFPMT denotes Removing False Positive M Ts
¢ MO_AV_Set denotes Multi-order A-V sets

¢ MergeCol denotes Merging Columns

We start with leaf node encoding for LEC genera-
tion.

Definition 1 (Equivalent nodes) Two leaf nodes u
and v are considered as equivalence leaf nodes if they
have the same Content and the similar Path, i.e. Sim (
w.Path, v.Path) in Eq. (2) is greater than or equal to
a given Path threshold (#paen ).

We define sim(u,v) of two strings s, and s, as:

LCS(u,v)

Sim(u,v) = maz(ul, o) (2)
where LCS is the longest common subsequence, |s|
and |s,| are the length of two strings s; and s,. Note
that if a Content contains decorative tags, we consider
<b>Z<strong> and <i>=<em> during similarity cal-
culation. This is because people could use either tags to
emphasize their idea. For encoding purpose, we consider
them to be the same in order to highlight the pattern.

With the definition of equivalent nodes, we can gen-
erate LECSs from Table L and compute their occurrence

vector and first position vector as follows.

Definition 2 (Landmark Equivalence Class) All
equivalent leaf nodes of the same class form an LEC
with a unique LECTd.

Definition 3 (Occurrence Vector and First Po-
sition) The Occurrence Vector (OV) of a landmark
equivalence class LEC, is a vector of occurrence count
0, of LEC, leaf nodes in each d[j], i.e. OV, = [o1,00,- -,
om|. The First Position (FP) of an LEC. is a vector
FP. = [p1,pa.- ], where p; is the first occurrence
position of LEC, in d[j] or -1 if missing in d[j]. That
is, p; is the smallest i for all d[j][i] with LECTd = e.

To generate LEC table (LECTable), the system ap-
plies a single-pass clustering to all leaf nodes in Tuble L

colnmn-wise (as shown by the vertical blue arrows in
Fig. 5). The detail of LEC' generation process is shown
in Algorithm 2. After reordering, each LEC has an in-
dex in the LECTable in addition toghECId. In the
following, we use LEC([i| and LEC, to refer the i-th
LEC in the LECTable and an LEC with LECTd = e,
respectively.

Algorithm 2 LEC generation

1: procedure LECGENERATION({TableL )
2: Initialize LECTable[ld = 1] with leaf node d[1][1],

OVy = [1,0,-,0/8hd FP=[1,-1,-~1]
for j + l.marc@ido // the largest leaf index
o/

3

4: for i+ 1,m / the # of input documents

5: if d[i][] is equivalent to some LEC. then

6: OVe = [o1,+++,0i++, <+, 0m] an
assign F'P.[i] with j if FP.[i] = -1

T else

B: Initialize a new LFEC. with index e =
Id++ and leaf node di|[j], FP.[i] = 1,
OV [i| = 1, and FP.[k] = -1, OV.[k] =0

g for k # i.

O end if

10: end for

JINIE end for

12: MinF P, = min{FP.[i]|FP:[i] >0,1<i<m
Reorder LECTable by MinFP. and LECITd if the
MinF P for two LECSs is the same.

13 return LECT able

14: end procedure

Example 1 An illustration of generating LECTable
from Tablel is shown in Fig. 6, where the top table
shows the leaf nodes from 5 input pages and the bottom
table shows the constructed LECTable. The leaf nodes
in the first column of TableL (with Content = “Ca-
reer Center”) and the second column (with Clontent =
“<h=Job ID: =") form two equivalence classes LEC-
Id = 1 and 2 respectively, while the leaf nodes in the
third column, with different text content, form five L EC's.
LEC), (see @), with missing Content=“<b> Loca-
tion(s): </b>" in d[3], has rrence vector OV, =
[11,0,1,1] and FPy = [6,12,-1,6,12]. LECs, (see (B))
with two occurrences of Content="<br/>" in d[3], d[4],
d[5] has OVay vector= [1,1,2,2,2] and F'Vap=[14,14,12,
14,14].

4.3 Mandatory template (MT) detection

Givegghe LECT able, the next step is to identify manda-
tory templates for web page segmentation and divide-
and-conguer. We first consider LECS with the same
occurrence count in each document as a candidate land-
mark for mandatory template detection.
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ig. 6: Example of generating LECTable

Beﬁnition 4 (Candidate Mandatory Template) Algorithm 3 MT detection

An LECs with the same occurrence count k (k: a posi-
tive integer) in each d[j]. i.e. OV =k is called an candi-
date Mandatory Template (MT). (k denotes a vector. )

However, not all such LECs could be used because
of inconsistent order in documents. As shown in Fig. T,
two candidate MT Lgflﬁ and LECy; (both with OV =1)
have FP; = [10,6,6,10,6] and FP,; = [8,8,8,8,8],
which means LEC,; may either appear earlier or later
than LEC,.

To maintain a consistent order of these MTs, we
apply LIS, which can be implemented by finding the
longest common sequence between the input sequence
and the sorted input sequence, to keep an increasing
FP order for all selected MTs in each page. In other
words, LIS will EBlect M T's with consistent P to en-
sure MTTable [k].FP[j] < MTTable[k'].F P[j] for ev-
ery index k < k' in all j (where M TTable is the can-
didate MT selected from LECTable). The complete al-
gorithm for mandatory template detection and divide-
and-conquer procedures are shown in Algorithm 3.

Example 2 As shown in Fig. 7, the system selects can-
didate MTs with OV = k into MTTable. Next, the
system applies LIS on FPs in each document. Since
FP of these MTs (LECId= 1, 2, 8, 15, 21, 26, 33)
unordered in d[1], i.e. {1, 2, 4, 10, 8, 12, 15}, LECy;5 18
removed as shown at the final M TTable in Fig. 7. These
selected MT are then used for segmenting Tablel into
5 segments.

1: procedure MTaTE(:TION{LECTaHe)

2: MTTable + select candidate MT's from LECT able,
ie. LEC, with OV, =k
final MTTable + apply LIS on the F Ps of s from
MTTable for each d[i] (where i = 1,- -+, m) to remove
inconsistent M7T's g
4 if final MTTable = () then
o return
6: end if
7: Use the F'Ps in final MT T able for segmenting TableL
into subT'ableLs
8: for each subTablel do
0: newL ECTable «+ LECGENERATION (subTableL)
9: MTDeTECTION(new LECT able)
| end for
12 return final MTT able

13: end procedure

2

E}r each segment, we need to assemble new LECTable
and re-evaluate the F/P and OV for each LEC in each
segment. This is because an LEC may appear in more
than one segment. For example, LEC| ; with Content =
“<b>Location(s):< /b>" appears in both segment s[2]
and s[4] because of different orders in documents, whereas
LE with Content =“<br/>" appears in segment
s[4] and s[5] due to multiple occurrences. Therefore, the
F'Ps and OVs have to be evalnated for each segment.
Once new LECTables are prepared, MT detection is
then called for each segment recursively. For example,
LEC3; in Seg[4] becomes a MT.
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Fig. 7: Example of detecting and selecting M T's

4.4 Optional template (OT) detection

Next, we define optional template and conduct optional
template detection for each segment in a way similar to
MT detection but dealing with LECs with OV[j] =
k or (. For these possible optional templates, we also
apply LIS to filter inconsitent OT’s.

Definition 5 (Candidate Optional Template) A
candidate Optional Template (OT) is an LEC with the
same occwrrence count k (a positive integer) or null (0)
in each d[j], and the support of the LEC (i.e. ratio of
non-null documents) is greater than or equal to a given
threshold (#ao7).

_ =iPlrov)
|D| ‘

1, z2>0
0, otherwise

Supp(LEC.)

-

biggest difference between OT detection and
MT detection is that the candidate OTs not selected by
LIS will be gllded back to the OTTable. For each can-
didate OT, that is not selected by LIS, we will find an
index p to insert the removed OT, such that OT,. . FP|j]
?s between OT Table|p] .F P[j] and OTTable[p+1].F P[j]
ch d[j] where OT, occurs (i.e. OT,..FP[j] # —1).
fter mandatory template and optional template
tection, then we combine all the detected MTs and
T's ing@Template L EC table based on the segment se-
quence as shown in Fig. 8(a) and examine the validity of

(3)

gese templates again as described next. To save space,
we use TLEC(t] as a short hand for Template LEC(t]
in the following.

4.5 Removing false positive MTs

While recursive detecting MT can effectively recover
templates that are filtered by LIS, not all detected MT
are true templates. In addition, becanse of multi-ordering
attribute-value pairs, some L EC's could be separated in
several segments resulting incoma:ent order of LECs.
For example in Fig. 8(a), LECy; with Content =*<b=
Posted: </b>" is incorrectly recognized as a MT, which
further separates LECy, and LEC; into different seg-
ments. Thus, the system tries to remove false positive
MTs by detecting recurring OTs across segments to
keep a consistent order. Formally, we define recurring
07T as follows.

finition 6 (Recurring OT) A recurring OT is an

(' which occurs in more than one segment and has

mplement occurrence vector, ie. two LECS in the

EPnplateLEC table such that TLEC[i] and T LEC[']
A < i') has the same LEC Id and the summation of the
Bcurrence vector is less than 1, i.e. TLEC[i|. LECId =
TLEC[i").LECId and TLEC|i].OV + TLEC[i'].0V <
1.
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Fig. 8: Example of removing false positive MT’s and merging recurring OT's to obtain template LEC's [28]

ga recurring O7 is detected, the system will merge
TLEC[i] and TLEC[i'] and replace the MTs between
them by changing the type into OT as follows.

1. @hange the mandatory template TLEC|c].Type to
Ji<e<i
2. Mark TLEC([i].Type as MP. 9
3. Update the first position of T LEC([i] by max (T LEC|i].
FP, TLEC[i'|.FP) and the occurrence vector of
TLEC[i| by TLEC[i].OV + TLECIi].0V.
4. Remove TLEC[i'].

Example 3 Consider TLEC[5] and TLEC[8|, bothgms
LECId=15 (Content =*“<b>Job Function:</b>", see
(D in Fig. 8), since TLEC [5].0V + TLEC[8].0V =1,
LEC); is a recurring OT. Thus, the system merges
TLEC[5] with TLEC|8] and changes the type of the
TLEC[6] from MT to OT. The first positions and oc-
currence counts of I'L FC[5] are updated to [10,6,6,10,6]
and [l,l,l,l,l]a:spectively as shown in Fig. 8(b). Sim-
ilarly, LEC14 18 also a recurring OT". The system will
merge TLEC(4] and TLEC(12] accordingly.

In the above example, LEC)5 (the pruned MT in
the LIS procedure for MT detection) and LEC,, (an
OT in two separate segments with two M T's in-between)
present two recurring OT's which could not be aligned
well. This is a scenario caused by multi-order attribute-
wvalue pairs, which will be addressed by a two pass align-
ment procedure as described below.

5 Alignment phase

After deteting template LECS, the next step is to
align LECS that are not in the Template LEC table.
We show how to align the corresponding leaf nodes from
TableL into an aligned table called T'ableA. There are
three kinds of templates including MT, OT, or M P in
Template LEC' table. For each segment between two
adjacent MTs: TLEC[b| and TLEC[V| (where b <
b), in the TLEC table, if there is no TLEC|[t] (b <
t < b') of type MP in-between, e.g. TLEC|2] and
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TLEC3] in Fig. 8(b), the leaf nodes will index be-

tween TLEC[b].FP[j] and TLEC[b'].FP[j] for all d[j]

are aligned into T'able A as follows.

~ Phase 1 (Aligning leaf nodes belonging to
TemplateLEC): For each template TLEC|t] (b <
t < b') gge align the corresponding leaf nodes TLEC
[t].FFH-th leaf node in each d[j] to the same col-
umn, and label it as an attribute column in TableA
and assign type to be MT if the occurrence vector
is 1 or OT otherwise.

~ Phase 2 (Aligining leaf nodes not belonging
to TemplateLEC): For the remaining leaf nodes
with iygfex between TLEC[t|.FP[j] and TLEC[t +
1].FP[3] for all d|j], they are considered as value
nodes and will be clustered respectively based on
their similarity defined by a weighted average of
Path, IDSeq, ClassSeq, and TypeSet with weight 0.3,
0.2, 0.2, and 0.3, respectively.

NodeSim(f1, £2) gmSim(f1. Path, f2.Path) x we +

Sim(fl.IDSeq, f2.I05eq) » wy +

Sim(fl.ClassSeq, f2.ClassSeq) = we +

Sim( f1.TypeSet, f2.TypeSet) x wr

(4)

5

Two leaf nodes f1 and f2 are considered in the same

group if NodeSim(f1, f2) is greater than or equal to

ﬁN.sxm = 0.5

5.1 ﬁlﬂti-order AV-pair alignment

The challenging task here is how to align data nodes
and deal with multi-order attribute-value pairs. While
most templates and data are arranged in a consistent
order across all pages, attribute-value pairs (AV-pair)
can sometimes break the rule and render arbitrarily in
different pages. For example, we can see that all leaf
nodes of TLEC[t] (3 < t < 11) are unordered in all
documents except for d[3] as shown in the first positions
of these TLEC(t] in Fig. 8(b). Therefore, the procedure
in phase 2 could not work properly.

Since each document has its own ordering of attribute-
value pairs, we need to record such ordering for each
document to align non-template leaf nodes. Assuming
each T'LE C/[] represents some attribute and the follow-
ing leaf nodes before the next template LEC will be the
value of this attribute, we define the end position EP
for each TLEC|t] in d[j] as follows:

ﬁEC[t],EP[j] =min{TLEC[]].FPj] | b<i< b',

TLEC[i].FP|j| > TLEC|t|.FP[j}

Ermally, when there exists TLEC(t] of type MP
between two M T's, e.g. LECh4 and LEC ; between two
MTs TLEC[3] and TLEC[11] in Fig. 8(b), we record
the minimum FP that is larger than TLEC[t]. FP[j]
(b <t < V) in each document d[j]. During Phase 2, we
collect leaf nodes with index between TLEC[t].F P[j]
and TLEC[t] .EP[j| in each d|j] and cluster them based
on their similarity. We then insert each cluster to a
data column between two template column TLEC|t]
and TLEC([t + 1]. Similarly, the leaf nodes with index
between TLEC(b] and the first template TLEC([b + 1]
will be clustered respectively and inserted to a data
column before all template /attribute columns. Finally,
we label data columns to be mandatory data (M D) if
the support is 1 or optional data (OD) otherwise.

Example 4 For the ent between two adjacent MTs
TLEC(3] and TLEC|L1], there exisggwo M Ps, ie.
LEC,, and LEC,5, and several OT’s. In Phase 1, leaf
nodes corresponding to the same template LEC are
aligned in the same column. For instance, the leal nodes
specified by TLEC[4].F P = 6,12, —1,6,12], i.c. [1][6].
d[2][12], d[4][6], and d[5|[12] of TableL in Fig. 6, are
aligned in column 6 of T'able A in Fig. 8. Since TLEC[5],
TLEC|6] and TLEC|8] all have occurrence vector 1,
their type are changed to MT. As for TL EC[4], which
is of M P type with ocenrrence vector unequal to 1, we
change its type to OT.

In Phase 2, we first compute the end position for
each TLEC[t] (b <t < b') in each document d|j]. For
example, the first position for TLEC4] is [6,12,-1,6,12],
thus the end position for TLEC[4] is [8,14.-1,8,14]. We
consider the leaf nodes d[1][7], d(2][13], d[4][7], and d[5]
[13] as value nodes and cluster them into column 7
of TableA. As another example, the first position of
TLEC|6] is [8,8,8,8,8] and the end position for T'L EC|6]
is [9,9,10, 10,10]. Since there are no leaf nodes between
the first position and end position in d[1] and d[2], we
could only cluster leaf nodes d[3][9], d[4][9]. and d[5][9].
In other words, it is possible that no leaf nodes be-
tween twoggemplate LECs. The process repeats for each
TLEC[] Jor £ < 11.

5.2 Merging disjunctive/similar colnmns

In reality, the system may misalign data columns as
template during OT detection (called false positive OT,
e.g. column 12, 14, and 15 of Tabled in Fig. 8c). On
the contrary, there are also false negative OT because of
different occurrence count in documents or small sup-
port. These will result in incorrect alignment of leafl
nodes and generate a sparse matrix with a large num-
ber of columms. To handle this problem, we rearrange
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leaf nodes between two adjacent M T's in Table A[b] and
TableA[b'], by merging disjunctive columns, similar co-
lumns, and low density columns as follows.

~ Merge disjunctive columns: for two adjacent co-
lmmns ¢ and t + 1, if their oceurrence vectors are
disjunctive, i.e. TableA[t].OV +TableA[t+1].0V <
1. mer, ableA[t + 1] into TableA[t] and remove
TableA[t + 1]. For example, column 11 and 12 are
digjunctive columns.

~ Merge similar columns: for two adjacent columns
t and t+1, if both columns have col Density smaller
than the given #p.,,,, and thggolumn similarity be-
tween Table A[t] and Table Alf +1] is lower than the
given iy, we megRe TableA[t] with Table At + 1]
and delete Table At + 1].

~ Merge low density columns: for contiguous op-
tional columns TableA[t] ~ Table A[t'] (where t <
t') with colDensity and secDensity less than the
given threshold 6 p.,,, we replace Tuble A[t] by [, -,
TableAli] and delete TableAi] for t <@ < ¢

Here, the column density col Density(t), the column
similarity between two columns colSim(t1,t2), and the
secDensity for a section of contignous columns are de-
fined in Eq. (7), Eq. (6) and Eq. (8), respectively.

2 le desin columnt
!mensity[c] _ #leafno T;T" corumn (6)

ColSim(t1,t2) = (Sim(t1.Path,t2 Path) +
Sim(tl.IDSeq,t2.IDSeq) + (7)
Sim(tl.ClassSeq, tQ,C!assSeq));‘ﬁ

#leaf nodesincolumn (t1 ~ 12)
(t2—tl +1) = |D|

secDensity & 2] =

6 Experiments

As mentioned in the introduction, we focus on attribute-
value pairs data extraction from singleton pages. Since
many algorithms have been proposed for data record
extraction in list pages [20,24] and tables [6,17,21], so
we do not take data set containing tables into account.

e use three datasets: WEIR?, TEX?, and EXALG®
Er the following experiments. We exclude website con-
taining tables and select only 22 from 41 websites (660
webpages) in TEX and 4 from 9 websites (152 single-
ton webpages) in EXALG. For WEIR, we use all 40
websites (24,038 webpages). Table 1 shows the averages

* http:/ /www.dia.uniroma3.it/db /weir
T hitp:/ /www.tdg-seville.info/Hassan /TEX
5 http://infolab.stanford.edu/arvind /extract/

umber of web pages, leaf nodes for each website as
well as the number of template and data columns, and
golden answer of selected data items per website. We
manually label an average of 208 template and 52 data
columns based on the output of DCA for full schema

evamition.

e follow TEX [23] and define precision () and
recall (R,) for each data column ¢ and average the pre-
cision and recall for the selected data colummns (C) for
evaluation of selected data items.

_ ffeorreet aligned lea f nodes in the extracted column

P,
“ #leaf nodesinthe extracted column
®
Ro— #Heorrect lea f nodes in the extracted column (10)
T #leaf nodes in the golden answer column
1€ 1]
5 _2emale 5 Yoo Be
P=== R= == (11)
'] 1€
C=2xchRc‘F=ZL(;|LFC &)

For full schema evaluation, we count the number
of correctly extracted columns (ec), where a colmn is
considered correctly extracted if R, > 0.85. By divid-
ing ec by the number of data columns in TableA or
the number of golden data columns ge, we obtain full
schema precision (Pr) and full schema recall (Rp), re-
spectively.

2P Rp

AR 13
Pr 1 Ry (13)

Pr=— Rp=— Fr=
ec >
g}r the following experiments, we set defanlt thresh-
old of path similarity fp,;; to 0.8, OT faor to 0.3, leaf
node similarity @y ., to 0.7, and section density 8.,
to 0.7.

6.1 Performance comparison

First, we compare DCA with RoadRunner, WEIR, and
TEX on the selected data columns of WEIR dataset.
We run TEX application on WEIR dataset, however,
TEX can deal with only 28 websites of WEIR dataset
(a total 40 websites). The statistics for RoadRunner
and WEIR are obtained from [4]. As shown in Fig. 9,
DCA presents the best average performance (P = 0.99,
R =10.93, F =0.96) for four categories in books, stock
quotes, video games, and soccer players, followed by
WEIR with average performance (P = 0.92, R = (.85,
F ) 88).

ext, we evaluate DCA on the selected data columns
of TEX-22 dataset with RoadRunner, FivaTech and
TEX using the statistics from [23]. As shown in Fig.
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Table 1: Data description
Datasst #Pages F#Leaf F#Template #Data  #Golden Data
per Site  Nodes Columns  Columns Answer  Density
EXALG-4 38 213 140 41 5 0.910
TEX-22 30 202 215 48 5 0.885
WEIR-40 601 439 267 66 G 0.915
Average 223 315 208 52 G 0.903
books stock guotes videogames soccer players
ngA 9: Performance comparison of four methods on selected data columns of WEIR dataset [4]
R 83 97 oom s
o oo o oo 10 : : 100
Loo .\ =] 8 m =
g o8 N 5 o ¢ 80
g 075 H o . =] o °
[ £ 06 LN 60 g
£ 05 k] S NN =
g -] 04 o o 40
i s * 02 - 20
0
RR* FivaTech® TEX* DCA RR TEX DCA
P R B =@ StdEnF G p G R G P =@ * HTime fsec |

glgA 10: Performance comparison of four methods on
selected items of TEX-22 dataset [23]

%. DCA presents the best performance (P = (.99,
R =099, F = 0.99) followed by TEX performance
(P =096, R = 098, F = 0.97). Note that FiVaT-
ech deals with only 22 websites and RoadRunner can
process only 11 web sites as reported in [23].

Finally we consider all data columns of TEX-22
and EXALG-4 datasets and show the number of data
colmmns generated and processing time per website as
shown in Table 2. The performances on all data columns
is degraded (P = 0.60, R = 0.69, F = 0.63). The aver-
age mumber of data colnmns for the golden answer is 47
columns per website and DCA generates the closest col-
umn number (46). RoadRunner merged more columns
and produced the smallest number of data columns.
On the contrary, TEX suffered from false positive data
attributes and produced the highest number of data
columns, resulting low precision.

In terms of efficiency, the processing time of DCA
(12 seconds) is the fastest compared with RoadRunner

ggA 11: Performance comparison of full schema on
TEX-22 and EXALG-4 datasets

(E seconds) and TEX (16 seconds) as shown in Figure
11. We attribute this advantage to DCA’s divide-and-
conguer mechanism and the use of leaf nodes as process-
ing units (thus reducing the number of units processed).

6.2 Sensitivity analysis

There are four major parameters in the proposed DCA
algorithm including path similarity of two leaf nodes
Hparn (for LEC generation), ocenrrence vector support
flor (for OT detection), node similarity 5. (for data
node clustering), and column/section density #p., To
see how these parameters affect the performance and
determine the thresholds, we conduct sensitivity anal-
ysis based on EXALG-4 and TEX-22 datasets.
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Fig. 12&&0“'5 the distribution of path similarity and
the performance with the varying (from 0.1 to 0.9) path
similarity threshold, # 5. As we can see, most (83.6%)
leal nodes with the same content have path similar-
ity higher than 0.9, however, there are still leaf nodes
with very different path, which we consider as incorrect
landmark. Second, the F1 performance ranges varies
between 0.94 and 0.95, showing that using leaf nodes
with the same text content is a good choice for LEC
even withont path similarity. However, increasing #p,;,
will exclude false positive M T’s, thus reducing the mum-
ber of divide-and-conquers (DC) iterations (from 56 to
48). Therefore, We define f p, 4, = 0.8 for two leaf nodes
with the same text content to be considered the same
LECs, ie Eq(2) > 0.8.

Fig. 12b shows the distribution of LEC support
and the performance w.r.t varyingflor threshold. Here,
most (93.9%) LECSs have support less than 0.1 since
most data leaf nodes form an LEC with 1 occurrence.
Increasing o will reduce the number of optional tem-
plates OTs. DCA achieves the best performance when
flor = 0.3 and remains good (F1 = 0.92) from 0.1
to 0.6. When the 6y threshold is set too larger, we
lose true positive OTs. Therefore we define #or = 0.3
for an LEC to be considered an optional template, i.e
Eq.(3) > 0.

Fig. IZC’EO\US the distribution of leaf node similar-
ity for data node clustering during the alignment phase.
As we can see, most (85.4%) leaf node pairs have a sim-
ilarity higher than or equal to 0.7. Second, for different
similarity thresholds, the performance of the proposed
DCA has little change (between 0.94 and 0.95 in F'1),
showing the robustness of the proposed algorithm. The
best performance is achieved wheill e, = 0.7 in our
experiment. Therefore, we set Eq.g = 0.7 for two leaf
nodes to be clustered in the same column.

Finally, Fig. 12d shows the distribution of section
density for contiguons columns between two A4 Ts. The
distribution '151ite average between () and 1. Section
density plays an important role in the DCA perfor-
mances. The best performance (P = 0.96, R = 0.93,
F = 0.95) is achieved when #p.,,, = 0.7 as shown in Fig.
12d. Without this merging mechanism, the F'1 perfor-
mance could only be 0.75.

In summary, support threshold #o7 and section den-
sity threshold #p,., are the two major parameters that
could affect the performances of DCA. From the above
experiments, DCA obtains good performance (F1 mea-
sure between (.92 to 0.95) for 0.1 < #or < 0.6 and
0.6 Den = 0.8. Furthermore, only path threshold
#pasi has an impact on the number of divide-and-conquer
iterations.

7 Conclusions and Future Work

In this paper, we present an unsupervised approach for
web data extraction on singleton pages. We define land-
mark equivalence class (LEC') as leaf nodes with the
same text content and similar paths and use them for
template mining. (In comparison, WEIR requires leaf
nodes to have the same path and sets 40% support for
optional templates.) We then prioritize the discovery
of templates in order of mandatory and optional via
occurrence vectors and ensure the consistency of such
templates through LIS (longest increasing sequence) al-
gorithm. Then, the discovered MTs divide the input
table into segments for recursive processing.

Since there might be false positive templates dur-
ing the template mining phase, we design the merging
of recurring OT's to remove such M7T's and mark them
for multi-order AV-pair alignment via end position to
locate the value leaf nodes for each template attribute.
Finally, DCA adopts a similarity measure for data node
clustering based on Path, IDSeq, ClassSeq, and Type-
Set. Therefore, the system can decide how to merge leaf
nodes to get final result.

We conducted experiments on real-world datasets
from WEIR, TEX-22 and EXALG-4. Overall, DCA out-
performs RoadRunner, TEX, and WEIR not only on
the selected data items but also on complete data columns
(with 0.95 F-measure) in terms of full schema evalua-
tion (compared with 0.63 F-measure for TEX and 0.29
F-measure for RoadRunner). In addition, we conduct
sensitivity analysis to show the robustness of the DCA
algorithm with various parameter thresholds for path
similarity, OT support, leaf node similarity, and section
density.

For future work, we will design dynamic encoding
for leaf node abstraction to enhance the alignment per-
formance on data columns. Furthermore, we will extend
the proposed approach to handle list and table extrac-
tion inside singleton pages. Finally, we will implement
a wrapper generation module for efficient extraction on
testing pages.
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