
A Conceptual Schema Based XML Schema with Integrity Constraints
Checking

Oviliani Yenty Yuliana1, Suphamit Chittayasothorn2
1Department of Informatics Engineering, Petra Christian University, Surabaya, Indonesia

2Faculty of Engineering, King Mongkut’s Institute of Technology, Bangkok, Thailand
ovi@peter.petra.ac.id, suphamit@kmitl.ac.th

Abstract

The more popular XML for exchanging and
representing information on Web, the more important
Flat XML (XML) and intelligent editors become. For
data exchanging, an XML Data with an XML Schema
and integrity constraints are preferred. We employ an
Object-Role Modeling (ORM) for enriching the XML
Schema constraints and providing better validation the
XML Data. An XML conceptual schema is presented
using the ORM conceptual model. Editor Meta Tables
are generated from the conceptual schema diagram
and are populated. A User XML Schema base on the
information in the Editor Meta Tables is generated.
However, W3C XML Schema language does not
support all of the ORM constraints. Therefore, we
propose an Editor XML Schema and an Editor XML
Data to cover unsupported the ORM constraints. We
propose the algorithms for defining constraint in the
User XML Schema and extending validity constraint
checking. Finally, XQuery is used for extending
validity checking.

1. Introduction

XML is gradually accepted as a standard for
representing, accessing, and exchanging data in
internet applications. It poses many new challenges to
XML storages or XML repositories [1]. Therefore, it
increases the needs for storing data efficiently in a Flat
XML format which is validated by an XML Schema.
Additionally, intelligent editors become increasingly
important. In order to enrich XML Schema constraints,
we employ the ORM as the conceptual schema in our
research. There are several reasons [2]: (1) the ORM
models and the ORM queries are more stable, (2) the
ORM models may be conveniently populated with
multiple instances, and (3) the ORM is more uniform.

There are several XML Schema researches with
ORM approach [3-5]. Mapping the ORM conceptual

schema into XML Schema was proposed by [3, 4].
However, they did not cover up all of the ORM
constraints explicitly. One of the reasons is the W3C
schema language is not sufficient for defining all of the
ORM constraints. The XML Schema enclosed over all
the ORM constraints gives a credit to the normalized
XML Schemas techniques that developed by [5]. Other
researchers [6-8] also concerned with XML
constraints. XML constraints with a relational schema
approach for a DTD is studied by [7, 8]. Additionally,
[4] transformed the ORM to Object Database Schema
and [7] captured XML constraints with SQL schema.
Furthermore, [9] explained XQuery and XML Schema
can serve as an excellent vehicle for data and metadata
integration. So far, mapping the fully ORM constraints
into the XML Schema constraints and using the
XQuery for checking validity constraint are still not
addressed.

This paper is organized as follows. Section 2
overviews the ORM constraints. In section 3, we
present the XML Schema constraints and the XQuery
features. Section 4 discusses a mapping of the ORM
conceptual schema into the XML Schema and
demonstrates an extending validity constraints
checking. Finally, section 5 concludes the paper.

2. ORM constraints

The ORM is a primarily method for modeling and
querying information system at a conceptual level [2].
We modified the university case study conceptual
schema that proposed by [2] as shown in Figure 1. The
conceptual schema specifies the information structure
of the application: stored fact types, constraints, and
derivation rules [10]. This paper concerns with
constraints and derivation rules. Constraints are also
known as validation rules or integrity rules. A database
is said to have integrity when it is consistent with the
universe of discourse being modeled. Although most
relevant constraints can be neatly represented on

International Conference on Convergence and Hybrid Information Technology 2008

978-0-7695-3328-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICHIT.118

19

International Conference on Convergence and Hybrid Information Technology 2008

978-0-7695-3328-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICHIT.2008.271

19

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:10:17 UTC from IEEE Xplore. Restrictions apply.

BldgName

Building
(bldgnr)

has

is in
Room

roomnr

has

P

<c30>

oc
cu

pi
es

Academic
(empnr)

is used by/ uses

Extension
(extn)

has

Rank
(code)

Teacher

is audited by/ audits
0ir

en
su

re
s

{‘P’,’SL’,’L’}

AccessLevel
(code)

{‘INT’,’NAT’,’LOC’}

Professor

teaches

“Teaching !”

Subject
(code)

Rating
(nr)+

gets

...obtained...from...

Degree
(code)

University
(code)

{1..7}<2a3d>

is contracted till

Date
(mdy)

Is tenured
{true,false}

has

Works for

U

EmpName

heads

Teaching
Prof

ho
ld

s

serves on

Committee
(name)

Dept
(name)

ha
s

re
se

ar
ch

 b
ud

ge
t o

f

ha
s

te
ac

hi
ng

 b
ud

ge
t o

f

* h
as

 to
ta

l b
ud

ge
t o

f

Chair
(name)

MoneyAmt
(usd)+

has head with home-

Phonenr

1-2

A

B

R

D

E

F

G

H

I

J

KL

M

N

T

O

P

Q

C

S

U

c1

c2 c3

r1 r2

c5

c8

r6r5

r9 r10

c7

c6

c9 c10

c4

r16

r17r14 r15

c15 c16

c59

c17

c20
c21c22

c23

c58

c57

c56

r20

r25

r21

r26

c55

c54

c53
c52

c48 c47

c43

r23

r24

r35 r36

r37

r38

r33 r34

r39 r41 r43

r44r42r40

r29 r30

r31 r32

r27 r28

r22

r18 r19

r11 r12 r13

r7 r8

r3 r4

c11

c12

c14

c13

c18

c19

c25
c24

C60

c26

c27c28

c29
c30

c45 c44
c46

c42

c41
c49

c50

c51

c3
8

c3
9

c4
0

C33

C34

C35 C36
C37

C31

C32

c61

conceptual schema diagrams, some constrains (e.g.
dynamic constraints) need to be represented in other
ways (e.g. by logical formula or program code).
Derivation rules provides a list of functions, operators
and rules that may be used to drive information not
explicitly stored in the database. These may involve

mathematical calculation or logical inference. There
are seven constraints in the ORM, i.e. uniqueness,
mandatory role, value, comparison, subtype;
occurrence frequency and ring.

Figure. 1. The Modified ORM Conceptual Schema Diagram for University Case Study

Uniqueness constraint (UC) is used for restricting
repetition in a role or a role sequence spanned by a
constraint. There are two kinds UC, i.e.: an internal
(UCi) and an external (UCe). UCi applies to one or
more roles of a single predicate (one-to-one, many-to-
one, one-to-many, or many-to-many). D and B in
Figure 1 respectively represent the one-to-one and the
many-to-many UCi. UCe is shown by a connecting
two or more roles from different predicated. There are
two kinds UCe, i.e.: uniqueness (UCeU) and
uniqueness constraint primary (UCeP). For instance,
R and C in Figure 1 respectively represent the UCeU

and the UCeP. Another constraint that relates with UC
is referential integrity constraint. It restricts foreign key
to match the value of some primary key.

A role r is mandatory (MR) for an object type A
iff, each member of pop(A) is known to play r;
otherwise the role is optional. A mandatory role is
indicated by a large dot where the role connects to the

object type. For example, see a mandatory (G) and an
optional (F) role constraints in Figure 1. Some entity
can be a member of two entity types or two different
types have the same unit or dimension, therefore
combine the entity types into one. Furthermore, if a
fact type is arithmetically derivable from others, so
provide a derivation rule. If the fact type leaves on the
diagram, it mask with “*”. For example, see the
MoneyAmt combined entity type (H) in Figure 1.

Value constraints specify the members of a value
type. It may provide a full listing (FL) or an
enumeration of all the value, e.g. {‘INT’, ‘NAT’,
‘LOC’} (J). It may specify a subrange definition
(SD), e.g. {1..7} (K). Or it may indicate a format
pattern (FP), e.g. <C30> (I) allows any string of up to
30 characters, and <aaddd> or <2a3d> (L) requires
two letters follows by three digits.

Comparison constraints restrict a way of
population a role, a role sequence, or a population of

2020

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:10:17 UTC from IEEE Xplore. Restrictions apply.

another. Let rs1 and rs2 be role sequence (of one or
more roles) played by compatible object type. A subset
constraint (SC) from rs1 to rs2 is denoted by a dotted
arrow (M), indicating pop(rs1) ⊆ pop(rs2). An
equality constraint (EqC) is equivalent to SC in both
directions, and is shown by a dotted arrow with two
heads, demanding that pop(rs1) = pop(rs2). An
exclusion constraint (ExC) among two or more role
sequences is shown by connecting them to ⊗ (S)
with dotted lines: this means their populations must be
disjoint, indicating pop(rs1) ∩ pop(rs2) = {} and no a
plays both r1 and r2.

An object type A is a subtype (SO) of B iff (A ≠ B
and) for each database state, pop(A) ⊆ pop(B). The
SO is shown by a solid arrow from A to B (N) in
Figure 1. If A is a SO B, and B is a SO of C then it is
transitively implied that A is a SO of C; such indirect
SO links should not be displayed.

An occurrence frequency constraint (OF)
indicates that an entry in a column (or column
combination) must occur there exactly n times (n), at
most n times (1-n), at least n times (≥n), or at least n
and at most m times (n-m). For instance, see O in
Figure 1.

A ring constraint may apply only to a pair of roles
played by the same (or a compatible) object type. The
role pair may form a binary predicate or be embedded
in a longer predicate. Let R be the relation type
comprising the role pair. R is reflexive (over its
population) iff for all x playing either role, xRx. R is
symmetric (Rsym) iff for all x, y, xRy yRx. R is
transitive iff for all x, y, z, xRy and yRz xRz. These
positive properties tend to be used for derivation rather
than as constraints. The following negative properties
may be marked as ring constraints next to the role pair
(or role connector in embedded cases). R is irreflexive
(oir, Rir) iff for all x, ~xRx. For example, see Rir (P)
in Figure 1. R is asymmetric (oas, Ras) iff for all x, y,
xRy ~yRx. R is antisymmetric (oans, Rans) iff for
all x, y, x ≠ y & xRy ~yRx. R is intransitive (oit,
Rit) iff for all x, y, z, xRy & yRz ~xRz. Ras and Rit
each imply Rir. The exclusion implies Ras (and Rir). A
recursive ring constraint which may be difficult to
enforce is: acycliticy (oac, Rac).

3. XML schema constraints and xquery

3.1. XML schema constraints

W3C [11-13] define XML Schema constraints
language for identities, occurrences, global elements
for data types, and facets. The XML Schema identity
constraints are defined by unique and/or key elements.
The unique constraints definition asserts uniqueness,

with respect to the content identified by {selector} of
the tuples resulting from the evaluation of the {fields}
XPath expression(s). The key constraint definition
asserts uniqueness as for unique. Furthermore, the key
asserts that all selected content actually has such
tuples. To enforce the constraints use key and keyref
elements. The keyref constraint definition asserts a
correspondence, with respect to the content identified
by {selector}, of the tuples resulting from evaluation of
the {fields} XPath expression(s), with those of the
{referenced key}.

The XML Schema occurrence constraints are
declared by minOccurs and maxOccurs attributes. If
minOccurs and maxOccurs attributes are omitted, the
element must appear exactly one. For a Flat XML
Schema, maxOccurs is one and minOccurs can be 0 or
1. MinOccurs=”0” and minOccurs=”1” are used to
represent optional and mandatory occurrence
respectively. In addition, nillable=”true” can be used
for representing optional occurrence.

The XML Schema facet constraints are a value
space defining, such as length, minLength, maxLength,
pattern, enumeration. Length is the number of units of
length. MinLength is the minimum number of units of
length. MaxLength is the maximum number of units of
length. The value of length, minLength, and
maxLength must be a nonNegativeInteger. Pattern is a
constraint on the value space of a datatype which is
achieved by constraining the lexical space to literals
which match a specific pattern. The value of pattern
must be a regular expression. Enumeration constrains
the value space to a specified set of values.

3.2. XQuery

XQuery is a declarative language, currently being
developed by W3C [14-16]. It has been designed to
query and transform XML data. The XQuery main
module comprises a prolog and a query expression.
The prolog can consist of several statements, such as
namespace declarations, schema import statements,
and/or function declarations, that determine the context
in which the query expression is to be evaluated. A
function may be either user-defined, with its
implementation provided by the user in the form of an
XQuery expression, or externally-defined, in which
case the function’s implementation is provided by
some implementation-defined external mechanism.
XQuery also defines a notion of reusable library
modules that consist of a prolog preceded by a module
declaration.

4. The mapping of an ORM conceptual
schema to an XML schema

2121

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:10:17 UTC from IEEE Xplore. Restrictions apply.

4.1. Conceptual framework

We propose a conceptual framework for creating
the Editor Meta Tables from the User Conceptual
Schema, mapping the Editor Meta Tables into the User
XML Schema and the Editor XML Schema, and
checking validity constraints in the User XML Data
base on the information in Editor XML Data. The
framework is shown in Figure 2 and the Editor Meta
Tables relational schema is shown Figure 3.

Figure 2. Mapping and checking constraints
conceptual framework

Constraint (ConstraintNr, ConstKindCode)
ConstraintValue (ConstraintNr, Value)
ObjectPredicate (ObjectTypeName, RoleNr)
ObjectType (ObjectTypeName, OTKindName,

RefModeName)
Role (RoleNo, ObjectTypeName, PredicateName,

PositionNr)
RoleConstraint (RoleNr, ConstraintNr)
RoleType (RoleNo, RoleType)
SubtypingObject (SubType, SuperType)

Figure 3. Relational schema editor meta tables

The algorithm for creating, mapping, and checking:
Step 1: Editor Meta Tables is populated by User
Conceptual Schema (e.g. see Figure 1).
Step 2: Uniqueness (UCi, UCeU, and UCeP),
mandatory role (MR and DR), and value (FL, SD, FP)
ORM constraints in Editor Meta Tables are mapping
into identity, occurrence, and facet User XML Schema
constraints respectively. For further discussion see
section 4.2.
Step 3: W3C does not support schema languages for
defining comparison (SC, EqC, and ExC), subtype
(SO); occurrence frequency (OF), and ring (Rsym, Rir,
Ras, Rans, Rac, and Rit) ORM constraints. Therefore,
map the Relational Schema Editor Meta Tables into the
Editor XML Schema and create the Editor XML Data
base on the Editor XML Schema. Furthermore,
populate the Editor XML Data with data form Editor
Meta Tables which constraint kind code

(ConstKindCode) are SC, EqC, ExC, SO, OF, Rsym,
Rir, Ras, Rans, Rac, and Rit.
Step 4: The User XML Schema is used as the structure
for creating and modifying the User XML Data.
Moreover, the User XML Schema is paid for checking
well formatted and well validated the User XML Data.
Step 5: The Editor XML Schema is used for
modifying and validating the Editor XML Data.
Step 6: Because of not all of the ORM conceptual
schemas are mapping into User XML Schemas, the
Editor XML Data is used for fully validate User XML
Data. For further discussion see section 4.3. As an
alternative, we proposed XQuery for validity checking
the User XML Data.

4.2. The defining constraints in user XML
schema

The mapping from the ORM conceptual schema
into the XML Schema i.e.: generating a type definition
for each ORM object type, building a complex type
definition for each major fact type grouping, and
creating a root element for the whole schema have
already studied by [3, 4]. For that reason, in this
section we only concern for defining XML Schema
constraint base on the Meta Tables contents. The
algorithm for defining constraints in the User XML
Schema:
Step 1: Define a key element for every entity type
which OTKindName is Entity and ConstKindCode is
UCi. The reference mode (RefModeName) of the
OTKindName becomes a field xpath attribute.
Additionally, define a key element for every a
compound UCi. RefModeName that play on roles in
the predicate become field xpath attributes. Finally,
define a key element for every UCeP. The
RefModeName or value types (ObjectTypeName) that
play in the roles which are related with UCeP becomes
field xpath attributes.
Step 2: Define a unique element for each UCi
ConstKindCode (one-to-one). RefModeName or
ObjectTypeName which plays in UCi optional role
becomes field xpath attribute. Define a unique element
for each UCeU as well. RefModeName or
ObjectTypeName which play in the roles that are
connected by UCeU becomes field xpath attributes.
Step 3: Define a keyref element for each a referential
integrity constraint.
Step 4: Declare attribute minOccurs = ”0” or nillable =
”true” for each optional role constraints.
Step 5: Define a facet for every value constraint.
Define enumeration for every ConstKindCode is FL.
Moreover, define a minInclusive, a maxInclusive, a
minExclusive, or a maxExclusive facet for each

User
Conceptual

Schema

Editor Meta
Tables

User
XML Schema

Editor XML Schema
(Unsupported constraints
by W3C XML Schema)

User
XML Data

Well formatted Well validated

Editor XML Data
(Unsupported constraints
by W3C XML Schema)

Well validated/
Checking by XQuery

2222

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:10:17 UTC from IEEE Xplore. Restrictions apply.

ConstKindCode is SD. Furthermore, define a
maxLength, a pattern, or a Length facet for every
ConstKindCode is FP.

4.3. The extending validity constraints
checking

The Editor XML Data can be exploited for
extending validity constraints checking that are not
supported by W3C schema language. The Editor XML
Data instances are used for validity checking the
constraints of: SC, EqC, ExC, SO, OF, Rir, Rit, Rac,
Ras, Rans, and Rsym. The algorithm for checking
validity constraints:
Step 1: If “SC” is found at ConstKindCode element in
Constraint complexType then check subset constraint
validity. By the content of ConstraintNr elements find
all of the rule number in RoleConstraint complexType.
Along with the rule number find all of
ObjectTypeName in Role complexType and the role
types in RoleType complexType instances, i.e. subset
and superset. The instances in subset predicate must be
a subset of the instances in superset predicate.
Step 2: If “EqC” exists at ConstKindCode element in
Constraint complexType then check equality constraint
validity. The process is similar with the subset
constraint but without role type checking in RoleType
complexType because the subset constraints in both
directions. It means the instances in the related
predicate are equal.
Step 3: If “ExC” presents at ConstKindCode element
in Constraint complexType then check exclusion
constraint validity. Base on the content of ConstraintNr
element. All of the role numbers can be found in
RoleConstraint complexType. Through the role
numbers, all of the ObjectTypeName elements can be
retrieved in Role complexType. Only one of the
ObjectTypeName elements must have an instance in
User XML Data.
Step 4: If “SO” is found at ConstKindCode elements
in Constraint complexType then check subtype
constraints validity. Base on constraint numbers from
Contraint complexType, find all of the role number
instance in RoleConstraint complexType. Than by the
role numbers find all of object type name in Role
complexType. Furthermore, to know the type of object,
i.e. subtype or supertype, retrieve the object type name.
Every subtype become an option element in the
supertype complexType and need additional element to
decide what element should have content instance. The
constraint checks the option element instance.
Step 5: If “OF” exist at ConstKindCode elements in
Constraint complexType then check occurrence
frequency validity. By the content of ConstraintNr

element, the constraint value can be found in
ConstraintValue complexType and the role number can
be found at RoleNr in RoleConstraint complexType.
The constraint value can be used for restricting the
occurrence. It could be n, 1-n, ≥n or n-m for exactly n
times, at most n times, at least n times or at least n and
at most m times respectively. In addition, the role
number can be used to getting the object type name
which instances occurrence will be checked in User
XML Data.
Step 6: If “Rir”, “Rit”, “Rac”, “Ras”, Rans”, or
“Rsym” is found at ConstKindCode elements in
Constraint complexType then check ring constraints
validity. By the constraint number find the role number
in RoleConstraint complexType to know the object
type name in Role complexType. The ring constraints
are implemented by defining another element from the
element as a key element. The validities checking
depend on the ring type. Rir checks for iff for all x,
~xRx validity. Rit checks validity iff for all x, y, z, xRy
& yRz ~xRz. Ras checks validity iff for all x, y,
xRy ~yRx. Rans checks validity iff for all x, y, x ≠
y & xRy ~yRx.

As an alternative, this paper demonstrates XQuery
for checking validity constraints. For instance, the first
XQuery for checking invalid exclusion constraint is
shown in Figure 4. The second XQuery for checking
invalid irreflexive ring constraint is shown in Figure 5.
The third XQuery for checking the invalid occurrence
frequency constraint is shown in Figure 6. The fourth
XQuery for validity chair is shown in Figure 7. The
last XQuery for validity subset checking is shown in
Figure 8.

for $a in doc("XMLFile ORM.xml")//Academic
where ($a/tenured) and
 (fn:year-from-dateTime($a/enddate)>0)
return
<InvalidEndDate>
 {$a/empnr}
 {$a/tenured}
 {$a/enddate}
</InvalidEndDate>

Figure 4. Exclusion constraint checking XQuery

for $e in doc("XMLFile ORM.xml")/ORM/Academic
where $e/empnr=$e/auditor
return
 <InvalidIrreflexive>
 {$e/empnr}
 {$e/empname}
 {$e/auditor}
 </InvalidIrreflexive>

Figure 5. Ring constraint checking XQuery

for $j in fn:distinct-values(
 fn:doc("XMLFile ORM.xml")/ORM/CteeMember/committee)
let $p := fn:doc("XMLFile ORM.xml")/ORM/CteeMember
 [committee = $j]

2323

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:10:17 UTC from IEEE Xplore. Restrictions apply.

return
 if (fn:exists($p) and count($p/committee)>2) then
 <InvalidMaxOccurece>
 <committee>{$j}</committee>
 <Coutcommittee>{fn:count($p/committee)}</Coutcommittee>
 </InvalidMaxOccurece>
 else ()

Figure 6. Occurrence frequency constraint
checking XQuery

for $d in doc("XMLFile ORM.xml")/ORM/Academic
where not ($d/rank="P") and not ($d/chair="")
return
 <Invalidchair>
 {$d/rank}
 {$d/chair}
 </ Invalidchair >
Figure 7. Valid chair checking XQuery

for $d in doc("XMLFile ORM.xml")//Department,
 $a in doc("XMLFile ORM.xml")//Academic
where ($d/deptname=$a/deptname)
 and ($d/headempnr=$a/empnr)
 and (($a/tenured=false) or (not($a/rank="P")))
order by $d/extn
return
 <InvalidSubSet>
 {$d/deptname}
 {$d/headempnr}
 {$a/empname}
 </InvalidSubSet>

Figure 8. Invalid subset checking XQuery

5. Conclusion

The ORM constraints that could be mapped to the
XML Schema constraints are uniqueness, mandatory-
optional, and value constraints. However, the other
ORM constraints i.e. subset, equality, exclusion,
subtyping, occurrence frequencies, and ring are not
covered by W3C XML Schema languages. To support
all of the ORM constraints we generate Editor Meta
Table. The User XML Schema and the Editor XML
Schema are created base on information in Editor Meta
Tables. The editors use the Editor XML Data and the
User XML Schema for validity checking the User
XML Data. In our work, we also demonstrate the
capability of XQuery as alternative for checking
validity constraints. As result, the XML Schema
formalism and XQuery can be used for better well-
formed and well-validated Flat XML.

6. References

[1] Ferreira R., Jaão M., Ramiro M., and Marta P., “XML

Based Metadata Repository for Information System”, Proc
IEEE Artificial Intelligence, Portuguese, 2005, pp. 205-213.

[2] Halpin T., Object-Role Modelling (ORM/NIAM),
Handbook on Architectures of Information System, Springer-
Verlag, Berlin, 1998.

[3] Bird L., Andrew G., and Terry H., “Object Role
Modelling and XML-Schema”, Proc. 19th International
Conf. on Conceptual Modelling, USA, 2000, pp. 1-14.

[4] Chankuang N. and Suphamit C., “An Object and XML
Database Schemas Design Tool”, Proc. IEEE Conf. on ITCC,
USA, 2004, pp. 421-424.

[5] Yuliana O. and Suphamit C., “XML Schema Re-
Engineering Using a Conceptual Schema Approach”, Proc.
IEEE Conf. on ITCC, USA, 2005, pp. 255-260.

[6] Fan W., “XML Constraints: Specification, Analysis, and
Applications”, Proc. 16th IEEE Workshop on DESA.

[7] Liu Y., Hao Z., and Yi W., “Capturing XML Constraints
with Relational Schema”, Proc. 4th IEEE Conf. on CIT,
2004, pp. 309-314.

[8] Liu Y., Hao Z., and Yi W., “XML Constraints
Preservation in Relational Schema”, Proc. IEEE Conf. on
CEC, 2004, pp. 188-195.

[9] Reveliotis P. and Michael C, “Your Enterprise on
XQuery and XML Schema: XML-based Data and Metadata
Integration”, Proc. 22nd IEEE Conf. on DEW.

[10] Halpin T., Conceptual Schema And Relational Database
Design Prentice Hall, Australia, 1995.

[11] W3C, XML Schema Part 0: Primer Second Edition,
http://www.w3.org/TR/xmlschema-0/, 2004.

[12] W3C, XML Schema Part 1: Structures Second Edition,
http://www.w3.org/TR/xmlschema-1/, 2004.

[13] W3C, XML Schema Part 2: Datatypes Second Edition,
http://www.w3.org/TR/xmlschema-2/, 2004.

[14] W3C, XML Query Use Cases,
http://www.w3.org/TR/xquery-use-cases/, 2007.

[15] W3C, XQuery 1.0 and XPath 2.0 Functions and
Operators, http://www.w3.org/TR/xpath-functions/, 2005.

[16] W3C, XQuery 1.0: An XML Query Language,
http://www.w3.org/TR/xquery/, 2007.

2424

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:10:17 UTC from IEEE Xplore. Restrictions apply.

