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A B S T R A C T   

Wind and solar are increasingly cost-competitive as well as environmentally less harmful alternatives to the 
fossil-fuel generation that dominates most electricity industries. However, their highly variable and somewhat 
unpredictable output still requires high levels of dispatchable plants to ensure demand can be met at times of low 
renewables availability. While this capacity overhead has associated costs, it does offer potentially useful out
comes for dynamic operating reserves. We present a method for assessing these potential outcomes in electricity 
industry planning. We use an evolutionary programming-based capacity expansion model, NEMO, that solves 
least-cost generation mixes through full operational dispatch of candidate solutions, using high-temporal reso
lution demand and wind and solar profiles, over a year or more. We apply our method through a case study of the 
Java-Bali grid, considering future scenarios both with and without variable renewables, and under different 
carbon pricing scenarios, reliability targets, and minimum operating reserves requirements. Our study suggests 
that not only might high renewable penetrations reduce industry costs and emissions, their inclusion provides 
significantly higher operating reserves over most of the year, hence the ability to cover unexpected plant failures 
and other disruptions. Lower reliability targets reduce this capacity overhang but still see improved operating 
reserves.   

1. Introduction 

Solar photovoltaic (PV) and wind generation technologies are play
ing a key role in the low-carbon electricity industry transition around 
the world. They are increasingly cost-competitive alternatives to the 
conventional, carbon emission-intensive, fossil-fuel coal and gas gen
eration technologies that currently dominate the generation mix of most 
jurisdictions. However, growing penetrations of these highly variable 
renewable energy (VRE) technologies also raise security and reliability 
questions for electricity industry planners and policymakers (Kroposki, 
2017; IEA, 2017), and form the motivation for the study presented here. 

Early deployment of utility-scale PV and wind largely occurred in the 
electricity industries of OECD countries, and they now offer examples of 
successful integration at relatively high penetrations. However, VRE 
also shows great promise for the electricity sectors of emerging 

economies to address their affordability and environmental challenges. 
Solar and wind penetrations are climbing rapidly in many jurisdictions 
and are now being widely incorporated into electricity planning studies 
across the developing world (Senatla et al., 2018; Luz et al., 2018; 
Barasa et al., 2018). 

While solar PV and wind costs continue to fall, their highly variable 
and some unpredictable output does raise several challenges for secure 
and reliable power system operation. In particular, the need for suffi
cient generation capacity to meet demand at all times and locations, and 
periods of low PV and wind availability, means that even major VRE 
deployment still requires significant levels of highly dispatchable gen
eration (Monyei et al., 2019), which is conventionally provided by coal, 
gas, or hydro plant. Of course, these conventional generation options are 
also subject to occasional plant failures, and there are other possible 
risks to availability including fuel supply interruptions, droughts, 
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extreme weather events, and natural disasters (Gülen and Bellman, 
2015). Power systems therefore typically maintain some level of gen
eration operating reserves to cover periods where even generally highly 
dispatchable plants might prove unavailable. 

Wind and solar generation pose some difficulties for establishing 
appropriate levels of operating reserves given the highly complex and 
somewhat uncertain availability of the wind and solar resource looking 
forward in time (Dorsey-Palmateer, 2019), particularly if and as their 
penetrations climb. However, they also offer some advantages as they 
are typically deployed in a highly modular fashion – parallel strings of 
PV modules and inverters for solar farms and tens to hundreds of MW 
scale turbines for wind farms. As such, they do not tend to have the 
single points of failure that are present with large thermal plant units. 
Furthermore, periods of high wind and/or solar may represent times 
where the unexpected failure of some generation, renewable or con
ventional, can be more easily managed due to excess online generating 
capacity. Understanding operational uncertainty of the power system 
with high solar and wind penetrations is therefore one of the key factors 
for planners and utilities in ensuring the system meets reliability criteria 
(Go et al., 2020), including the level of reserves. 

An additional complexity is what level of reliability might be 
reasonably expected given the costs associated with higher reliability 
targets, regardless of the generation mix. This question is particularly 
vexed for the electricity industries of emerging economies where ach
ieved reliability is often considerably lower than for developed econo
mies, for a range of reasons that extend beyond insufficient operating 
reserves, and where increased industry costs must be carefully balanced 
against affordability concerns. 

An early key study established that wind variability and uncertainty 
need not be treated as a potential contingency, yet also highlighted the 
challenges of securing sufficient operating reserves at times of high 
demand and low wind (Holttinen et al., 2012). (Vos and Driesen, 2014) 
suggested that reserves should be dynamically calculated with ongoing 
economic/market dispatch, depending on the level of variable genera
tion, rather than statically fixing reserve capacity for extended periods, 
with the risk of over-estimating these needs. Possible reductions to 
conventional operating reserve requirements and hence generation cost 
savings were assessed using a probabilistic approach to forecasting wind 
power. (Krad et al., 2017) also argued for dynamic rather than static 
operating reserve requirements, including ramping reserves, to improve 
reliability and economic outcomes as renewable penetrations grow. 
Meanwhile, the value of geographical dispersion of utility renewables to 
smooth reserve requirements is highlighted in (Choukri et al., 2018). 
However, in this study wind generation estimates were produced by 
scaling up linearly from 12 % to 100 %, which does not account for 
spatial smoothing (Choukri et al., 2018). An international comparison of 
how different jurisdictions incorporate wind generation into their pro
cess for setting operating reserves is presented in (Milligan et al., 2010), 
which found that most jurisdictions apply a statistical approach such as 
Monte Carlo simulations, to handle wind variability when establishing 
regulating reserves, while some use methods like scenario analyses, and 
less than half of jurisdictions surveyed considered ramping reserve type 
in their integration studies. Of relevance to this paper, (Vos and Driesen, 
2015) used a unit commitment model to show the potential of wind as a 
downward operating reserve provider, and the impact on system 
scheduling and generation costs. (Vos et al., 2019) presented dynamic 
sizing methods, including machine learning methods, for determining 
the required sizing of frequency restoration reserve during risk periods 
due to increasing renewable generation. 

Our study seeks to address some key gaps in work around operating 
reserves and high VRE penetrations to date. To the authors’ best 
knowledge, these key gaps include: (i) detailed assessment of the op
portunity and impact of possible future high solar and wind penetrations 
on dynamic operating reserves, (ii) the implications of high PV rather 
than wind penetrations of these reserves, and (iii) the use of real-world 
high temporal resolution (hourly) wind, PV and demand data over the 

year time frame commonly used for assessing operating reserves within 
electricity generation planning. 

Our study considers very high VRE penetrations, particularly solar 
PV, in future generation scenarios and quantifies the opportunities that 
these penetrations might offer to improve the reliability and security of 
the grid, due to the extra dispatchable generation capacity required for 
those few periods of very low wind and solar availability. 

We introduce a novel approach for presenting operating reserves, 
based on plotting dynamic operating reserves against Load Duration 
Curves (LDC) over a typical year of operation. Our study also assesses 
the impact of different reliability standards on the magnitude of dy
namic operating reserves. This question is particularly relevant to the 
electricity sector in emerging economies where achieved levels of reli
ability are far lower than for developed economies for a range of reasons, 
and hence where very exacting reliability standards in generation ca
pacity planning might not always be appropriate. 

We apply an open-source generation capacity expansion model, 
National Electricity Market Optimiser (NEMO) (Elliston et al., 2013), 
which solves this techno-economic optimization using an evolutionary 
programming-algorithm that solves a full year of operational dispatch 
for all candidate solutions. We demonstrate its application for the case 
study of the Java-Bali grid in Indonesia. Future least-cost generation 
mixes are solved for a range of scenarios including ones that exclude as 
well as permit VRE, apply different levels of carbon pricing, and set 
different minimum operating reserve requirements. For each scenario, 
we assess the impact of different least-cost generation mixes on dynamic 
operating reserve levels, total industry generation costs, and CO2 
emissions. The Java-Bali grid presents a useful case study as the region 
has an excellent solar resource as well as abundant coal-fired generation 
potential, while facing growing environmental, affordability and reli
ability challenges as electricity demand continues to grow. 

This paper extends the analysis conducted in our previous study 
(Tanoto et al., 2019), as we now consider wider implications of different 
reliability requirements, as measured by Unserved Energy (USE) targets, 
on dynamic reserves, rather than just applying a single, reasonably 
stringent target. 

Our study is the first to explicitly model possible futures for the Java- 
Bali grid that include high wind and PV penetrations and assess oper
ating reserves, total industry costs, and emissions, over a yearly time 
horizon at a range of reliability standard levels. However, more broadly, 
the methods presented here apply to sustainable electricity industry 
planning in the growing number of jurisdictions considering possible 
future electricity sector development pathways with high solar and wind 
penetrations. 

The rest of this paper is organised as follows. Section 2 presents a 
brief overview of the capacity expansion tool, NEMO, used for our study. 
Section 3 introduces the Java-Bali grid case study and then details its 
implementation in NEMO. Results obtained from the analysis of a range 
of possible future scenarios for the Java-Bali grid are presented and their 
broader implications are discussed in Section 4. Finally, Section 5 pro
vides some concluding discussion of the findings and potential future 
work. 

2. Method 

2.1. NEMO modelling, simulation and optimization overview 

NEMO (Elliston, 2018) is an economic dispatch and evolutionary 
optimization model, which is implemented in Python 3 and has been 
used by a range of researchers to conduct optimization studies around 
future electricity industry capacity planning. 

The tool has been applied to assess the technical and economic 
viability of different possible 100 % renewable electricity futures in the 
Australian National Electricity Market (NEM), as well as possible low- 
emission generation mixes including renewables as well as conven
tional fossil fuel options, carbon capture and storage (CCS) and nuclear 
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(Elliston et al., 2014). NEMO allows the user to set very high-reliability 
requirements and will solve least-cost generation mixes that ensure 
there is sufficient generation to meet even peak demand periods that 
coincide with low wind and PV availability (Elliston et al., 2012). These 
studies with NEMO have not only shown that high VRE penetrations are 
a key opportunity for delivering future highly reliable low-emissions 
electricity systems, but they can also reduce the risks associated with 
future fuel costs and emission reductions policies by comparison with 
future generation mixes that continue to rely primarily on fossil fuel 
options (Riesz and Elliston, 2016). 

NEMO’s evolutionary programming optimizer uses the Distributed 
Evolutionary Algorithms in Python (DEAP) platform, based on a robust- 
randomized search Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES) (Auger and Hansen, 2012). The CMA-ES parameters and 
working principles within the evolutionary programming process are 
described in previous work (Tanoto et al., 2019). 

2.2. NEMO inputs, settings and outputs 

NEMO inputs are as follows: 1) A high resolution chronological de
mand profile over the period of study (typically 30 min to hourly over a 
year). NEMO builds the generation mix to meet this demand profile; 2) 
Fixed capital and O&M, variable costs, and emissions intensities for all 
available generation technologies, as well as any constraints in terms of 
their total possible installed capacity. NEMO solves the least cost mix of 
available generation to meet this demand; 3) For wind and solar, 
chronological normalised generation profiles over the same time period 
as demand. Multiple locations for these options, each with their own 
traces, can be specified, and NEMO will find the least cost mix across 
these potential sites. 

Key NEMO settings beyond the evolutionary optimization parame
ters noted in the previous section are the minimum reliability required 
in the solution (defined as the allowed % unserved energy) and mini
mum reserve levels. Other constraints (not considered in this study) can 
include minimum renewable penetrations, minimum synchronous gen
eration penetrations and industry emissions limits. Rather than using 
hard constraints, NEMO can also incorporate reliability, security, and 
environmental objectives through the cost function – e.g. carbon pricing 
emissions from fossil fuel generation. 

NEMO outputs an ordered list of possible generation mixes to meet 
demand within constraints, ranked from least cost. Emissions and reli
ability outcomes for each generation mix are also calculated. Impor
tantly for this work, NEMO outputs include the least cost dispatch of the 
solution generation mix over the study period, allowing investigation of 
system operation including ramping rates, plant starts and stops and, 
key to this study, available generation capacity in excess of demand per 
time period. 

2.3. Assessment of dynamic operating reserves 

There are some complexities and choices in classifying different 
types of generation capacity reserves for power system planning 
(Dubitsky and Rykova, 2015) as well as different sizing methods for 
estimating operating reserves (Vos et al., 2019). While approaches for 
estimating operating reserves are often differentiated according to the 
nature and timing of reserves availability, we do not attempt to cate
gorise hot and cold reserves or any demand-side opportunities in our 
modelling. Instead, we focus on the impact of least-cost generation 
mixes with high VRE penetrations on the dynamic system operating 
reserves at an hourly resolution over a future simulated year of power 
system operation. 

These system dynamic operating reserves are calculated according to 
the level of undispatched-dispatchable fossil-fuel plants and any cur
tailed ‘surplus’ energy generated by VRE each hour. Given its very low 
operating costs, available VRE generation is dispatched by the model 
before any-fossil fuel generation is called upon. That displaced 

dispatchable generation is then available as reserves if and as required. 
When there is sufficient VRE to entirely meet demand and it is being 
curtailed, then this provides even greater reserves. Hence, hourly system 
operating reserves are calculated as (Tanoto et al., 2019): 

Sys resh = Undispatched disp resh + VRE spillh (1)  

where Sys resh is the system operating reserves in hour h, 
Undispatched disp resh is those reserves obtained from undispatched 
conventional plants in hour h, and VRE spillh is any surplus VRE during 
hour h. 

A plot of dynamic reserves can be created by sorting a year of power 
system operation into an LDC from highest to lowest hourly demand and 
then plotting the actual operating reserves for each of those hours. Given 
the potentially considerable hour to hour variability in such operating 
reserves, we use a moving average (2 day) windows to better show the 
trend in dynamic reserves. 

3. Case study - the Indonesia’s Java-Bali grid 

3.1. Current Indonesian electricity industry context 

The Indonesian electricity sector is currently largely vertically inte
grated and government owned, with generation, transmission, and dis
tribution largely undertaken by a single state-owned monopoly, 
Perusahaan Listrik Negara (PLN). Private sector participation is 
currently limited to Independent Power Producers (IPPs) who generate 
electricity and sell it to PLN as the industry’s single buyer. 

Total national installed capacity was 58 GW in 2018, with some 72 % 
of capacity owned and operated by PLN, around 27 % held by IPPs 
contracted with PLN, and the remainder of generation capacity rented 
(PLN, 2019). In the larger and more populated islands, including Java 
and Sumatra, electricity is delivered via large, interconnected grids. 
Smaller grids in Sulawesi and Kalimantan (Borneo) are planned to be 
fully connected within each island in 2021 and 2023, respectively. 

Indonesia’s largest interconnected electricity network, the Java-Bali 
grid, served around 167.5 TWh of electricity consumption in 2018 – 
equivalent to around 71 % of total national consumption, and a 4.7 % 
increase from 2017, with a peak demand of 27 GW (PLN, 2019). The 
current generation mix for this grid is dominated by coal (68.8 % of 
energy), followed by gas (24.7 %), hydro (3.9 %), geothermal (2%), and 
insignificant diesel (0.7 %) (PLN, 2019). Until very recently, no 
utility-scale solar PV and wind generation had been integrated onto the 
grid despite major cost reductions over recent years for these technol
ogies, and the significant resource potential, particularly solar, of the 
region. 

The Indonesian government does have an ambitious target of 23 % 
renewable energy share, equivalent to around 45 GW of renewable 
generation in 2025, increasing to a 31 % share in 2050 (MEMR, 2014). 
While the share of coal-fired generation in the national mix is expected 
to fall to 55 % in 2025, the new renewable generation is expected to be 
mostly hydro and geothermal, while the contribution of utility-scale 
solar and wind would remain insignificant until 2027 (PLN, 2018). 
Continuing cost reductions in wind and solar, however, suggest that 
more ambitious renewable targets might be achievable. 

Improving system reliability is one of the Indonesian electricity 
sector’s major challenges, including in the Java-Bali grid. PLN’s grid 
planning studies generally set the required operating reserves at 30 % of 
the system’s peak load (PLN, 2018). However, in practice, actual system 
reserves have been observed mostly less than this, particularly during 
high demand periods, with consequent reliability and security risks. The 
Java-Bali outage in August 2019 was triggered by multiple gas turbines 
failures and impacted Indonesia’s capital and its neighbouring cities 
(Adamczyk, 2019). It has heightened PLN and energy policymaker’s 
concerns regarding the potential limitations of relying on 
fossil-fuel-based generation and seasonally affected hydropower plants 
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to provide sufficient system reserves to cover unexpected generating 
unit failures and other possible disturbances. More generally, many re
gions of Indonesia still face relatively poor standards of electricity ser
vice reliability, often due to network-related issues. 

Therefore, it is important to examine reasonable levels of reliability 
to target at a system-level given this reality and given the costs of having 
higher reserves. This challenging context motivates our study into how 
future high wind and solar penetrations might impact on operating re
serves under a range of reliability targets. 

3.2. Future Java-Bali grid scenarios 

NEMO optimizations for this study were carried out to solve the 
least-cost ‘greenfield’ (i.e. all new build) generation mixes for reliably 
meeting projected 2030 Java-Bali grid demand. NEMO provides a ‘least- 
cost’ capacity and generation mix of the available technologies, overall 
annualised total industry generation costs (including both operating and 
investment costs) and expected total annual industry CO2 emissions. 

The scenarios considered include the case where solar and wind are, 
or are not available, where three possible future carbon prices (CPs) are 
applied - $0/tCO2 (CP0), $30/tCO2 (CP30) and $60/tCO2 (CP60) - and 
where minimum operating reserve levels are set at zero or 30 % of peak 
demand. As in (Elliston et al., 2012), NEMO’s two most important pa
rameters for the evolutionary optimization, the number of generations 
(g) and σ, are set at 100 and 2, respectively. 

A key feature of the NEMO optimization is the ability to set a reli
ability target for this ‘least cost’ generation mix. This reflects the plan
ning reality that the costs of ensuring all demand is always met can be 
considerable, and some small level of USE is generally acceptable. In 
previous work, we used a fixed 0.005 % upper USE limit reflecting a very 
high-reliability requirement. 

In this work, we now also explore the implications of 0.5 % and 1 % 
up to 5 % USE limits in all simulations without reserves constraints. 
Thus, we assess the implications of different reliability standards on 
least-cost generation capacity mixes, overall industry costs and CO2 
emissions, and more importantly dynamic operating reserves. 

We apply actual 2015 hourly demand – to capture daily and seasonal 
demand variability and uncertainty – of the PLN’s Java-Bali electricity 
grid as a baseline for modelling the 2030 demand profile. This baseline 
demand profile is scaled up assuming an annual (PLN would argue 
conservative) growth of 5 %, which results in almost 350 TWh demand 
and peak demand of 50 GW in 2030 (Tanoto et al., 2017). 

3.3. Renewable energy generation potential 

This study models Java-Bali wind and solar potential using Renew
ables Ninja, an online open-source renewable energy simulation tool, 
which can estimate an hourly PV and wind generation traces for an 
historical year at any global location. The PV output traces are provided 
based on the NASA MERRA2 weather dataset (Pfenninger and Staffell, 
2016), while the wind traces are obtained from a global Numerical 
Weather Prediction (NWP) model. For our study, we provided NEMO 
with a normalised PV generation profile over the year 2015 for six 
different sites across the Java-Bali region, one in each province, 
following a methodology used in earlier studies (Tanoto et al., 2017; 
Simaremare et al., 2017). 

We chose several potential wind generation placements across the 
Java-Bali grid based on the Indonesia wind prospecting map (A/S, 2017) 
and provided normalised hourly traces for these locations for 2015 to 
NEMO. We should note that there is considerable uncertainty regarding 
the total potential scale of wind and PV deployment in Indonesia. Some 
studies have made fairly conservative estimates of the potential total 
installed capacity for each technology (Veldhuis and Reinders, 2013; 
NREEC, 2017; IRENA, 2017). However, we chose not to limit the 
maximum capacity of either wind or solar in the NEMO optimization, 
given the still very high uncertainty regarding the underlying wind and 

solar resources across the Java-Bali region. 
For geothermal and hydro generations, however, we constrained the 

total potential capacity of each to a maximum of 10 GW and 8 GW, 
respectively based on (IRENA, 2017). The resource potential of these 
technologies is arguably easier to assess provided their more restricted 
underlying resources, and the extensive existing work assessing their 
potential availability. 

3.4. Fuel and technology capital and operating costs 

We assess least-cost generation capacity mixes drawn from a broad 
range of fossil fuel and renewable generation technology candidates - 
geothermal, hydropower, coal-fired steam cycle, Open Cycle Gas Tur
bine (OCGT), Combined Cycle Gas Turbine (CCGT), biomass combus
tion, as well as of course, solar PV fixed axis plant and onshore wind 
farms. Technology capital costs are annualised assuming a discount rate 
of 5 % and standard economic plants lives, while Indonesian coal and 
gas prices in 2030 are taken to be $3.50/GJ and $10.90/GJ, respectively 
based on (IRENA, 2017). Our study applies mid-level 2030 technology 
cost estimates compiled from recently available reports (DEN, 2017; 
DEN, 2016), and are as shown in Table 1 (Tanoto et al., 2019). 

4. Results and discussion 

The simulation results in terms of 2030 electricity generation mix in 
the Java-Bali grid, with or without a reserves constraint, are categorised 
in two groups, (i) with large-scale VRE integration, and (ii) without VRE. 
The simulation results for the least cost mix without VRE consist of coal, 
OCGT, hydro and geothermal, and are similar to that planned by PLN in 
the latest 10-year plan of 2019–2028, which contains neither wind nor 
solar PV, whereas the least-cost mix with VRE comprises coal, CCGT, 
hydro, geothermal, solar PV and wind. These results allow us to compare 
the total generation cost and CO2 emissions due to the presence or 
absence of large-scale VRE in the system. 

4.1. Simulations without reserves constraint and with 0.005 % upper USE 
limit 

In the case of no reserves constraints and a minimum 0.005 % USE 
requirement, wind and solar both reduces total industry costs as well as 
CO2 emissions, even in the absence of a CP. Setting a CP delivers even 
greater industry cost and emission reductions, as shown in Fig. 1. The 
generation technology capacity mixes for these least-cost mixes both 
with and without VRE are shown in Fig. 2. 

It is perhaps surprising that the CP has a remarkably limited impact 
on the least cost capacity mixes, or on total industry CO2 emissions, 
when VRE is unavailable. This is a result of the high assumed cost of gas 
in 2030 compared with coal which means there is a little substitution of 
coal with lower emission gas-fired generation, even at CP60. 

The higher costs in this scenario represent the impact of a carbon 
‘tax’ on generation, and we note also that this ‘tax’ represents revenue 
which could be used to compensate energy users for higher costs. Hence, 
caution is required when presenting total industry costs in the presence 

Table 1 
2030 mid-level technology cost components.  

Technology Capital 
($/kW) 

Fixed O&M($/kW- 
year) 

Variable O&M 
($/MWh) 

Geothermal 3,200 16.7 0.7 
Hydro 2,000 35.8 3.8 
Coal 1,360 35.8 3.8 
OCGT 400 22.5 3.8 
CCGT 700 22.5 3.8 
Biomass 1,600 43.8 6.5 
Wind onshore 1,310 52 0.8 
Solar PV fixed 610 12.5 0.4  
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of a CP. 
In the least cost generation mixes with VRE available, the key reason 

for lower industry generation costs in the CP0 scenario is reduced coal 
operation due to the presence of PV, and higher efficiency CCGT 
replacing some coal and OCGT capacity. For the CP30 and CP60 sce
narios, the increasing total costs of the generation mixes is an outcome of 
both the capital costs of more PV plants capacity (and for CP60 also wind 
capacity), with far less reduction in coal capacity, as well as the carbon 
tax imposed on industry CO2 emissions. 

Fig. 3 shows cases of operating reserve duration curves resulting 
from NEMO optimizations with and without VRE, ordered according to 
the corresponding estimated 2030 Java-Bali LDC. 

For the least cost generation mixes without VRE available, the 
operating reserves curves are almost equal for all CP scenarios. Given 
that in our study, NEMO is not configured to model stochastic generating 
plant availability, the least cost mix with only dispatchable generation - 
coal, OCGT, CCGT, hydro, and geothermal - will typically have total 
generation capacity just below or equal to peak hourly demand over the 
year. Hence, there will be some periods of no or low reserves, particu
larly during the higher demand periods in most of the first 2,000 h of the 
LDC, as highlighted in the lower part of Fig. 3. 

Meanwhile, the least cost generation mixes with VRE available, 
including different levels of Coal, CCGT, hydro, geothermal as well as 
now also PV and wind depending on CP, all deliver significantly higher 
levels of operating reserves for most of the year. Even without any 
carbon tax (CP0), the Java-Bali grid gains significant additional reserves 
during most of the first 4,000 h of the LDC compared to the case of least- 
cost generation mixes without VRE. With a carbon tax (CP30, CP60), 
dynamic operating reserves are pushed even higher during those pe
riods, and over the year, given the greater penetrations of wind and solar 
in the least cost generation mixes. 

Based on the 2 day operating reserves moving average, the minimum 
system reserves corresponding to the periods of highest system demand 
are now 0.57 GW, 1.12 GW and 3.58 GW for the carbon tax scenarios 
CP0, CP30, and CP60, respectively, while the maximum system reserves 
are now 34.89 GW, 43.30 GW and 44.16 GW respectively. It is clear that 

the least cost generation mixes when VRE is available always provide 
some improvement in minimum available operating reserves and far 
higher levels of reserves for much of the year than when VRE is not 
present. 

Fig. 4 shows how the VRE spill (curtailment) rises as VRE penetra
tions increase with higher CP under the 0.005 % upper USE limit and 
without a reserve constraint. Without a carbon tax (CP0), energy spilled 
by a total capacity of 24.7 GW PV is insignificant and only occurs during 
a few periods (around 30 h) of the lowest demand. Thus, we can 
conclude that the CP0 operating reserves curve is effectively formed by 
undispatched fossil-fuel plants displaced by high PV generation during Fig. 1. Total industry costs and CO2 emissions of the least-cost generation 

mixes with 0.005 % upper USE limit and no reserves constraint. 

Fig. 2. Least-cost capacity mixes for all CPs at 0.005 % USE limit without reserves constraint and (left) without VRE, (right) with VRE.  

Fig. 3. Operating reserves curves of least-cost mix with and without VRE vs 
LDC with 0.005 % upper USE limit and no reserves requirement for all CPs. 

Fig. 4. Energy spills from least-cost mix solutions with VRE for each CP at 
0.005 % upper USE limit and without any reserve requirement. 
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daylight hours. 
In simulations with CP30 and CP60, the least cost mix solutions 

result in almost double the PV capacity (in CP30) than without carbon 
tax, and eventually with the significant wind (in CP60), generate greater 
spill over more hours of the year. Increased spill in CP60 even during 
high demand periods (most of the first 4,000 h) is mainly contributed by 
wind and pushes the corresponding operating reserves curves slightly 
higher. 

4.2. Simulations with VRE, no system reserves and with 0.5 % – 5 % 
upper USE Limit 

Relaxation of the system reliability requirement in the NEMO opti
mization by increasing the USE limit constraint up to 5 %, reduces both 
total industry generation costs and CO2 emissions of the least-cost ca
pacity mixes with VRE available and no reserve constraint, for all CPs as 
shown in Fig. 5. 

Total generation cost reductions of around 11–15 % are achievable at 
the expense of accepting a 5 % USE limit by comparison with a much 
stricter reliability requirement. The cost reductions arise from reduced 
generation capacity requirements and operating costs to meet those 
infrequent periods of high demand and low VRE availability. 

CO2 emissions of all least-cost capacity mixes decrease as the carbon 
tax increases. Nevertheless, some variation of CO2 emissions exists 
within the same CP as the reliability requirement changes due to ca
pacity trade-off between coal and gas in some of the least-cost mix 
solutions. 

Fig. 6 highlights some of the complex interactions of different CPs 
and reliability requirements on the least cost capacity mix. Total ca
pacity generally falls with a higher USE limit. The share of fossil-fuel 
plant capacity in the least cost mix solutions decreases as USE and CP 
increases whereas the share of solar PV increases as carbon tax imposed. 

The composition of coal and gas plants also changes although there 
are some complexities in gas generation capacity as a CP is introduced, 
reflecting the trade-off between the higher capital costs and emissions, 
yet lower operating (fuel) costs of coal versus gas generation. VRE ca
pacity share in the least cost mix solutions increases as CP increases in all 
USE limits, with a substantial addition of PV built in CP30. 

Similar shares of solar PV between CP30 and CP60 are seen across all 
USE limits presented in Fig. 6, and eventually wind contributes to the 
VRE capacity in CP60. Considering a range of different USE limits, the 
average capacity share of VRE is around 41 %, 54 %, and 66 % of the 
total capacity in the least cost mix solutions with CP0, CP30, and CP60, 
respectively. It is notable that this increase is entirely due to wind and 
solar PV given the maximum capacity constraint of hydro and 
geothermal renewables on the Java-Bali grid. 

Figs. 7–9 show dynamic reserves curves – which correspond to the 
projected 2030 Java-Bali LDC – of the least cost capacity mixes without a 
reserves requirement and with VRE over upper USE limits varied from a 
0.5 % up to 5 % USE limit, for all CPs, respectively. 

The operating reserves for the case of USE 5 % and no VRE are also 
plotted for comparison and, along with Fig. 3, highlights that while 

lower reliability requirements still see VRE adding to operating reserves, 
there may now be some periods when operating reserves are actually 
greater for least-cost mixes without VRE (evident from the 5 % USE 
curve with VRE falling below that without VRE for some periods during 
lower periods of demand over the year). 

Without a carbon tax, the maximum availability of the dynamic re
serves is up to around 10 GW during most of the first 4,000 h of the LDC, 
as shown in Fig. 7. With a carbon tax of CP30, however, the availability 
of dynamic reserves is considerably higher as a result of the higher VRE 
penetration, as shown in Fig. 8. 

There is less additional impact as carbon pricing increases to CP60, 
as shown in Fig. 9. Still, CP30 and CP60 provide higher reserves up to 
almost 20 GW during some periods of the first 4,000 h (higher demand 
periods) of the LDC. Higher USE does, unsurprisingly, reduce the levels 
of these operating reserves but it is notable that for CP60, it is very rare 
for reserves even at 5 % USE to fall below the level available if no VRE is 
in the least cost mix. 

Table 2 (Tanoto et al., 2019) presents a comparison between hours 
with system reserves less than 30 % of that hour’s demand, and hours 
with zero reserves, for the least-cost generation mixes both with and 
without VRE available and given no reserves constraint. 

Hours with low system reserves decrease as CP increases, and hence 
the VRE penetration increases. Both the number of hours with operating 
reserves less than 30 % of hourly demand, as well as hours with zero 
reserves increase with higher CP. At CP60, only around 27 % of the year 
sees reserves less than 15 GW or 30 % of peak demand – 30 % being the 
system reserve requirement stipulated by PLN for its planning studies. 
Meanwhile, less than 10 % of hours across the year have less than 5 GW 
operating reserves across all CPs in the case with VRE. As you might 
expect, those hours with operating reserves less than 10 % of the de
mand are typically periods of higher demand. 

4.3. Simulations with 15 GW system reserves 

Next, we consider least-cost generation mixes with a minimum of 15 
GW dynamic reserves requirement (representing 30 % of expected 2030 
peak demand). As with the results obtained in the simulations with 
0.005 % upper USE limit, total generation costs and CO2 emissions of the 
least cost mixes with VRE are lower than those without VRE. As ex
pected, however, costs are now higher with the reserve constraint, due 
to the additional capacity that must be built. Generation costs and CO2 
emissions of the least cost mixes for all CP scenarios with this minimum 
15 GW reserve constraint are presented in Fig. 10. 

The installed capacities of each technology for these least-cost ca
pacity mixes are presented in Fig. 11. For both the VRE and non-VRE 
least-cost mixes, we now see the addition of considerable OCGT plant 
as the lowest cost option for assured additional dispatchable capacity. 
When VRE is not available, there is relatively little change to the ca
pacity of this OCGT even for the higher CP scenarios. By contrast, the 
proportion of OCGT/CCGT increases significantly with the higher CP 
scenarios when VRE is in the mix. 

Fig. 12 depicts the 2-day moving average of dynamic operating re
serves for the 2030 Java-Bali grid for all scenarios with the 30 % (15 
GW) minimum reserves constraint. When VRE is not present, these 
reserve curves are almost equal for all CPs, as highlighted in the lower 
part of Fig. 12. Minimum and maximum operating reserves are around 
15 GW and 44.6 GW, respectively. With VRE in the mix higher system 
operating reserves are present due to the higher VRE penetrations, and 
these reserves increase with the higher CP scenarios (CP30 and CP60). 
The 2-day moving average curve indicates that an average of more than 
30 GW of dynamic operating reserves are available across the highest 
2,000 h of demand, in marked contrast to the case with no VRE. Again, 
these dynamic operating reserves are higher for the CP30 and CP60 
scenarios. 

The VRE curtailment component of the dynamic operating reserves 
curves of the least cost mixes with VRE, with a minimum 15 GW reserves 

Fig. 5. Generation costs and CO2 emissions of least-cost generation mixes as 
the upper USE limit is varied from 0.5 %-5 %, and without reserves constraint. 
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constraint, and at 0.005 % upper USE limit is presented in Fig. 13. In the 
case without a carbon tax (CP0), energy spilled by a total capacity of 
25.5 GW PV (a slightly higher-capacity build than without reserves 
constraint) during the few lowest demand periods of LDC rises to more 
than three times that seen without a reserve constraint. In simulations 
with a CP (i.e. CP30 and CP60), higher VRE curtailment results during 
most of the lower 50 % of the LDC by the least-cost mix solutions due to 
the substantial addition of PV capacity seen in CP30, and even further 

Fig. 6. Comparison of the least cost capacity mix solutions of all CPs without reserves constraint and with 0.005 % - 5 % upper USE limit and VRE.  

Fig. 7. Operating reserves curves of least-cost mix with VRE vs LDC at 0.5 % - 5 
% upper USE limit and without reserves requirement for CP0 and their com
parison with reserves curve without VRE at 5 % upper USE limit. 

Fig. 8. System operating reserves curves of least-cost mix with VRE vs LDC at 
0.5 %-5% upper USE limit and without reserves requirement for CP30, and their 
comparison with reserves curve without VRE at 5 % upper USE limit. 

Fig. 9. System operating reserves curves of least-cost mix with VRE vs LDC at 
0.5 % - 5 % upper USE limit and without reserves requirement for CP60, and 
their comparison with reserves curve without VRE at 5 % upper USE limit. 

Table 2 
Generation costs and CO2 emissions of all least-cost generation mixes with no 
reserve constraint.  

CP 

Least cost mix with VRE Least cost mix without VRE 

Hours with reserves 
< 30 % hourly 
demand 

Hours with 
zero reserves 

Hours with reserves 
< 30 % hourly 
demand 

Hours with 
zero reserves 

0 3,640 48 5,580 50 
30 2,854 23 5,580 50 
60 2,386 15 5,580 50  
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with the wind capacity added in CP60. 

5. Conclusion 

This paper presents a study extending previous work using the NEMO 
capacity expansion optimization tool to assessing dynamic reserves for 
different least-cost generation capacity mixes. The assessment approach 
was demonstrated for the case study of Indonesia’s Java-Bali grid We 
solved least-cost generation capacity mixes for an assumed 2030 Java- 
Bali power system demand, based on actual 2015 Java-Bali electricity 
grid hourly demand scaled at a 5 % annual growth rate, and with 
simulated hourly solar and wind output traces for that same year. 

We constructed reserves curves by plotting a 2-day moving average 
of hourly dynamic operating reserves against the total grid demand LDC, 
over a simulated year of power system operation for a range of scenarios, 
including the availability or otherwise of wind and solar and three CP 
scenarios, a set minimum of 30 % planning reserves requirement, and a 
range of reliability targets ranging from 0.005 % to 5 % upper USE 
limits, reflecting the complex tradeoffs present in the electricity sectors 
of emerging economies where improved reliability must be traded off 
against the higher industry costs involved. VRE energy spills curves were 
also plotted for the least-cost mix solutions at 0.005 % USE and with and 
without reserves constraints, for all CPs. 

Our case study results found that the least-cost mixes with VRE 
available exhibited lower total industry generation costs and CO2 
emissions compared to those mixes without VRE, for all CPs. With higher 
VRE penetrations, with or without a minimum reserve constraint, higher 
levels of dynamic operating reserves are available at all time periods, 
including at times of high demand, than are present without VRE in the 
mix. This is due, of course, to the increased build of the dispatchable 
plant to cover times of low VRE. The amount of additional operating 
reserves does, however, vary considerably over the year given the 
variability of VRE. 

In the scenarios with different upper USE reliability requirements, 
increasing from 0.5 %–5 % upper USE limit, the share of fossil-fuel plant 

capacity in the least cost mix solutions decreases across all USE limits, 
and as CP increases. Higher reliability targets for the same CP provide 
the system with higher dynamic operating reserves curves for most of 
the year, including during the periods of high demand. 

While these findings are specific to the Java-Bali grid, the insights 
have broader relevance for electricity industry planners and policy
makers in other jurisdictions, particularly in encouraging emerging 
economies to increase their share of solar and wind penetrations to
wards a more sustainable electricity industry. 

As always, there are limitations to the modelling that suggests 

Fig. 10. Total industry costs and CO2 emissions of all least-cost mixes with 
minimum 30 % (15 GW) reserves constraint for all CPs. 

Fig. 11. Least-cost capacity mixes for all CPs with 15 GW reserves constraint and (left) without VRE, (right) with VRE.  

Fig. 12. System operating reserves curves of least-cost mixes both with and 
without VRE vs LDC and with minimum 30 % reserves constraint for all CPs at 
0.005 % upper USE limit. 

Fig. 13. Energy spills from least-cost mix with VRE for each CP in the system 
with 30 % reserves constraint and 0.005 % upper USE limit. 
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caution in a direct interpretation of the results. Better categorising these 
reserves in terms of ‘hot’ and ‘cold’ availability is one area for future 
work. Another would be more careful consideration of operation 
without any conventional dispatchable plant running – a situation that 
does occur in our results for the higher CP scenarios. Still, the general 
finding would still seem to hold; higher VRE penetrations can offer 
future electricity industries higher dynamic reserve margins. 
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