
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Clustering based assessment of cost, security and environmental tradeoffs
with possible future electricity generation portfolios

Yusak Tanotoa,c,⁎, Navid Haghdadia, Anna Bruceb, Iain MacGilla

a School of Electrical Engineering and Telecommunications and Centre for Energy and Environmental Markets, University of New South Wales Sydney, Australia
b School of Photovoltaic and Renewable Energy Engineering and Centre for Energy and Environmental Markets, University of New South Wales Sydney, Australia
c Electrical Engineering Department, Petra Christian University, Indonesia

H I G H L I G H T S

• Near-optimal future generation portfolios considering cost uncertainties are mapped.

• Clustering techniques are applied to group technology mixes with similar patterns.

• Reliability-cost-emissions outcomes of the clustered technology mixes are compared.

• A wide range of technology mixes show reliable, low cost options to lower emissions.
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A B S T R A C T

The electricity sector has a key role to play in the sustainable energy transition. The falling costs of wind and
solar PV have added to both the opportunities yet also challenges of balancing sometimes competing industry
objectives of costs, security, and environmental impacts. This paper presents novel techniques for assessing
possible future industry generation portfolios in three ways: (1) incorporating explicit metrics for energy tri-
lemma objectives into modelling, (2) using the optimization process of evolutionary programming to map the
solution space of ‘high performing’, near least-cost, portfolio solutions, and (3) applying boundary min–max
cases and clustering to categorize these varied portfolios to better facilitate planning and policy making. We use
an open-source evolutionary programming tool, National Electricity Market Optimiser, to assess possible future
generation portfolios for Indonesia’s Java-Bali interconnected power system. Our findings highlight the wide
range of possible portfolios that might potentially deliver similar total industry costs, and their different security
and environmental implications. In particular, additional solar photovoltaic deployment appears a low-risk
opportunity to reduce costs and emissions compared to more fossil-fuel oriented mixes. Our novel techniques
may be useful for the energy modelling community seeking to better understand and communicate complex,
uncertain, and multi-dimensional choices for electricity industry planning.

1. Introduction

The Paris Agreement in 2015 has created momentum for mitigation
efforts from all jurisdictions, including developing countries, towards
internationally agreed targets to avoid the worst impacts of climate
change. The electricity industry has been recognized as a major con-
tributor to climate change [1] and meeting these climate goals there-
fore requires transitioning electricity industries in many developing
countries from heavily dominated by fossil-fuel based generation to low
emissions generation future pathways. This transition is expected to
include significant investment in large-scale renewable energy

generation, with capacity expansion also required to meet a more dy-
namic growing electricity demand in industrializing countries. While
the high cost of renewable energy technologies such as solar PV and
wind has historically presented a barrier to a low emissions transition,
the falling costs of these technologies now present a key opportunity,
not just for environmental sustainability, but also for reducing industry
costs and improving reliability by ensuring resource adequacy.

Electrical power systems can draw upon numerous potential gen-
eration options, including a range of low or zero operating emission
technologies, and deliver almost all energy services, including those
currently supplied by liquid fuels and natural gas. However, the
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physical characteristics of electricity, and the large interconnected
networks that most economically deliver it, also present specific chal-
lenges for managing security of supply, particularly in the context of
developing countries.

The high capital intensity and long lives of electricity sector assets,
their differing contributions to system security, and varied environ-
mental and wider societal impacts all pose considerable difficulties for
energy planners seeking to balance social objectives of access and af-
fordability, energy security and environmental sustainability. Indeed,
the term energy trilemma [2] is often used to emphasize the potential
tradeoffs involved across these objectives. A number of planning fra-
meworks have used various quantitative metrics for each of these ob-
jectives to assess and compare the present sustainability of different
electricity sector jurisdictions, changes in jurisdictions over time, and
possible future scenarios Common industry metrics include total in-
dustry costs as a partial measure of affordability, expected unserved
energy (USE) for security and carbon emissions (tCO2) for environ-
mental sustainability. These comparisons often highlight that only a
few developed countries have established the highest-balance scores for
all trilemma dimensions [3,4]. For developing countries, managing the
energy trilemma is generally even more difficult as electricity infra-
structure is typically insufficient to meet growing demand within an
acceptable range of reliability, budget limitations can reduce options
(particularly those with high upfront costs) while many of these
countries also face a scarcity of fossil fuel resources.

The extraordinary progress seen in wind and photovoltaic genera-
tion technologies over the past two decades has added to both the op-
portunities yet also challenges of jurisdictional industry planning to
balance this energy trilemma. Costs have fallen to the extent that they
are now competitive with conventional, largely fossil fuel-based options
in some cases, while they have no, or at most very low, operating en-
vironmental impacts. However, they are both highly variable and only
somewhat predictable, with no inherent energy storage [5], hence add
to the challenges of maintaining security of supply [6].

A large and growing number of studies are undertaking generation
capacity expansion planning with large scale renewable energy in-
tegration for different jurisdictions using various simulation and opti-
mization methods and tools, which have been applied specifically to the
task of assessing the total industry costs, achieved reliability and en-
vironmental outcomes [7,8]. While linear programming, mixed integer
programming, dynamic programming and evolutionary programming
are widely utilized in those studies, the very large uncertainties asso-
ciated with long term industry planning including future costs of dif-
ferent generation technologies, environmental policy drivers and pos-
sibly changing reliability preferences (particularly with new distributed
energy technologies) are, if considered at all, typically addressed
through the use of sensitivity studies and scenario analysis [9]. Other
than that, those studies on the context of developing countries – which
have very different levels of achieved reliability to that enjoyed by
industrialized economies – have applied reliability targets for highly
developed electricity sectors, for example by considering no unmet
energy in typical studies of developing countries’ long-term planning
with bottom-up accounting model [9], which may inappropriately slant
analysis outcomes towards higher cost solutions.

A recent study conducted evaluation of different energy scenarios
that are supporting a more resilient low carbon energy system [10].
While energy trilemma index has been utilized in the analysis, this
study was focused on the assessment of single optimum solution con-
ducted using a mix-integer programming tool considering several gen-
eration scenarios and interconnection options. Moreover, key un-
certainties surrounding future electricity industry planning, such as
future costs and environmental policy drivers, however, have not been
addressed. Other study has conducted assessment on the required CO2

abatement costs from electrification and CO2 mitigation tradeoffs for
the future generation mix in Java-Bali grid system, Indonesia, given
various emissions reduction targets [11]. While this study has stressed

on the tradeoffs analysis between electrification and emissions reduc-
tion targets, none of the technical characteristics associated to variable
renewable energy penetrations, such as temporal variability and/or
uncertainty due to resource output fluctuation, is discussed and applied.

Few recent studies have explicitly incorporated uncertainties be-
yond the use of sensitivity and scenarios analysis within the context of
generation expansion planning. Uncertainty regarding the costs of dif-
ferent generation technologies involving coal, OCGT and CCGT have
been explored to obtain a range of expected generation costs of port-
folios, expected CO2 emissions, and standard deviation of cost using a
Monte Carlo simulation platform, in which capital cost uncertainty, fuel
price, carbon price, and demand uncertainty and elasticity have been
taken into account [12]. Meanwhile, multiple uncertainties comprising
electricity demand, capacity factor of variable renewables, and en-
vironmental policy have been considered in exploring the optimal mix
of generation technologies using a two-stage stochastic model [13].
Other study considered capacity factor of variable renewables plus
hydro to assess output probability distribution and generate renewable
energy sources scenarios through Monte Carlo simulation combined
with a deterministic generation expansion planning model to find op-
timal capacity mix [14]. While these studies have shown an in-depth
and useful analysis in identifying and modelling uncertainties around
electricity industry future, however, these studies focused on the
probability density approach and frontier optimal generation mixes.

Based on this literature review, our study seeks to fill these fol-
lowing three major gaps and limitations – as key concerns with much of
the work undertaken to date around electricity industry planning with
high variable renewable penetrations, particularly in the context of
developing countries. These three gaps are, firstly, none of these studies
explicitly and comprehensively explore the tradeoffs, yet also potential
synergies, of future generation portfolios across the entire energy tri-
lemma objectives of cost, security and environmental impacts. This is
despite such tradeoffs being a key challenge for policy makers and
planners, and despite the considerable variation in prioritization that
may be seen across jurisdictions. Secondly, many of existing studies
have used optimization techniques that can be problematic for ex-
ploring the implications of future uncertainties for energy trilemma
objectives, as optimization techniques typically seek a single ‘lowest’
cost solution. However, this lowest cost solution will depend on the cost
and constraint assumption ‘inputs’. A relatively small change in esti-
mated future costs for particular generation technologies (PV is a par-
ticularly pertinent example here) may entirely change the ‘least cost’
outcome. And it may be that a very different generation portfolio is only
slightly more expensive but has extremely desirable characteristics for
planners in terms of, for example, local industry participation and re-
duced reliance on fuel imports. Thirdly, none of the existing studies
have utilized clustering techniques to present a highly complex choices
as a result of managing energy trilemma objectives in the area of
electricity generation expansion planning. Where efforts to map such
tradeoffs have been undertaken partially in very few studies, there is
the challenge of presenting potentially highly complex choices in a way
that is useful to planners and energy policy makers.

Our study therefore presents a novel approach that allows a com-
prehensive assessment and exploration of energy trilemma key metrics
performance of electricity generation planning with high variable re-
newable penetrations using three integrated methods. Firstly, our
modelling approach explicitly explores energy trilemma tradeoffs be-
tween estimated future costs, reliability and environmental impact ra-
ther than treating one or more of them as constraints. Secondly, we use
an optimization tool based on evolutionary programming that can, with
modest modifications, provide far more information on the shape of the
solution space by explicitly mapping ‘near optimal’ generation mix
solutions. Other optimization techniques such as linear programming
and dynamic programming do provide some guidance on the near so-
lution space – for example, shadow pricing binding constraints, and
mapping all state transition costs. However, evolutionary programming
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techniques explicitly solve the costs of a wide ‘population’ range of
possible generation solutions as they evolve better solutions, and so-
lutions that are only slightly more expensive than the least cost solution
can be analyzed through ‘cost relaxation’ as we explain below. Thirdly,
we apply a range of techniques including clustering analysis to present
this highly complex ‘near optimal’ generation mix solution space in
more informative ways for electricity planners and policy makers.

To demonstrate our proposed approach, we apply it to the particular
context of the Indonesian Java-Bali interconnected power system. The
Indonesian electricity industry presents an interesting and important
opportunity for analysis. The world’s fourth most populous nation is in
a period of rapid economic growth that is stressing the existing industry
and demands major capacity expansion in the coming decades. While
Indonesia has plentiful coal, it also has excellent renewable, particu-
larly hydro, geothermal and solar, resources. Reliability is a challenge
while the environmental impacts of its coal dominated generation
sector are also an issue, particularly if future developments focus on
coal generation expansion. The government has developed a power
plan that incorporates growing renewables yet a continued reliance on
coal [15]. Whilst other groups have presented alternative visions for
Indonesia’s electricity industry future [16], our study is intended to
make a further contribution to the deliberations of Indonesian elec-
tricity industry planners and policy makers in an increasingly uncertain
context of planning.

Our study makes three new contributions to the body of knowledge
around electricity industry planning, particularly to the energy mod-
elling community’s suite of methods and tools for exploring possible
sustainable electricity industry futures as we: (1) explicitly map the
near-optimal solution space of generation mixes that perform nearly as
well as the ‘optimal’ solution – and which may of course actually could
be better given future uncertainties; (2) explicitly categorize these high
performing generation portfolios according to some key metrics for the
energy trilemma; and (3) use clustering to better understand the key
performance tradeoffs across these metrics. In summary, the innovation
of our study is in the use of cost relaxation to get many reasonably low-
cost solutions and then clustering techniques to identify key aspects of
this range of solutions. We also hope that our study can provide some
specific insights for Indonesian energy planners and policy makers as
well as wider communities contemplating their options for a more
sustainable energy future.

The rest of this paper is organized as follows. We outline our
methods in Section 2 while Section 3 presents results obtained from the
case study of Indonesia’s Java-Bali grid. Finally, concluding remarks
and thoughts for possible future work are presented in Section 4.

2. Methods

2.1. The methodological framework

In this study, we develop a framework to assess possible future
electricity generation portfolios given the multiple objectives of the
energy trilemma, and significant uncertainties, particularly related to
future technology costs. The framework integrates two different
methods. To incorporate uncertainty, multiple near least cost genera-
tion portfolios are collected from a stochastic optimization model. To
assess performance across multiple objectives, clustering is used to
examine the performance of the generation portfolios with respect to
energy trilemma key metrics. The conceptual framework is presented in
Fig. 1, while the framework’s components are further elaborated in
subsequent sections.

2.2. Simulation overview and dataset

Our method for exploring possible future electricity industries in-
volves first selecting a set of possible generation options for con-
sideration. Some of these options are context specific – for example, our

Indonesian Java-Bali grid case study incorporates coal, geothermal,
power constrained hydro, coal-fired plant, Combined Cycle Gas Turbine
(CCGT), Open Cycle Gas Turbine (OCGT), biomass, solar PV fixed axis
and onshore wind farm options. The Indonesian coal-fired generation
mix is coal-dominated. However, all of these generation options, in-
cluding some small-scale grid-connected solar PV have been deployed
in Indonesia, and later on followed by a breakthrough project of 75 MW
wind farm located in Sidrap, Sulawesi island [15], and the latest
commissioned of 60 MW wind farm located in the same island, while a
number of assessments have highlighted some reasonable and pro-
mising solar and wind generation options, as mentioned in Indonesia’s
renewable energy prospect report [5], Indonesian wind map [17], and
the catalogue for Indonesian power technology dataset [18]. Estimated
annualized capital costs, fixed O&M, fuel cost, variable O&M, and the
carbon emission intensity of each option is specified. Furthermore, any
variable renewables require location specific generation profiles (typi-
cally 30–60 min interval over at least a year). An estimated demand
profile of equivalent time steps and duration is also required.

Evolutionary programming tools generally create a feasible popu-
lation of possible mixes of generation technologies and locations and
then simulate their operation over the year or more of dispatch.
Reliability may be set by putting a high price on any unserved energy,
or as a constraint for feasible solutions. Similarly, carbon emissions can
either be priced ($/tCO2) or set as a constraint for the overall power
system over the year. Evolutionary mechanisms are used to evolve this
population of feasible solutions towards a least cost generation mix.
Importantly, this evolving mix of generation portfolios can be tracked.

In this study, we use an open-source evolutionary programming-
based techno-economic optimization model, National Electricity
Market Optimiser (NEMO), as the primary simulation tool. Written in
Python1, the source code can be found in [20]. Like the majority of
capacity expansion models, NEMO is designed to search for a single
least cost generation investment option to satisfy the constraints ap-
plied. NEMO has been used in this way to model high renewables
scenarios for the Australian National Electricity Market [19] and In-
donesia [21]. However given the uncertainties associated with future
costs and opportunities, particularly estimates of technology costs, it is
important for planners to appreciate the characteristics of a set of
portfolios that can potentially achieve the planning goals at near least
cost, rather than a single modelled solution. This study, therefore, uses
a novel approach, extending the tool functionality allow assessment of a
large number of near least-cost generation portfolios with total costs
that fall within 5% of the least cost solution found by the model. The
study also adapts the tool to the generation expansion planning context
of Indonesia’s Java-Bali 2030 electricity grid.

NEMO contains a chronological dispatch model that is used to test
portfolios of conventional and renewable electricity generation tech-
nologies and uses an evolutionary programming approach, Distributed
Evolutionary Algorithms in Python (DEAP), to search for a near-least
cost solution. DEAP is an evolutionary computation framework im-
plemented in Python covering most common evolutionary computation
techniques such as genetic algorithm, particle swarm optimization, and
differential evolution [20]. NEMO implements the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), a stochastic method for sol-
ving continuous domain optimization of non-linear non-convex func-
tion problems [22]. Fig. 2 shows the generic optimization framework of
NEMO, which is unveiled by exploring the source code in [20], and the
extension conducted in this study to the original framework as we en-
hance the functionality of the tool. It is intended to provide readers

1 Python is an open-source high-level programming language which is inter-
preted, interactive, object-oriented. It has a large and comprehensive standard
library to support the development of a wide range of applications. Python is
community driven and has an organization called The Python Software
Foundation (PSF).
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with an idea on the foundation of our work and our new contribution to
the field area.

The dispatch program in NEMO takes inputs such as the projected
hourly demand, hourly solar and wind output traces, coal and gas
emissions intensity, discount rate, fuel and technology costs data and
dispatches all generation technology candidates according to the pre-
determined dispatch order to meet the projected demand in each par-
ticular hour, applying a number of constraints and limits, including the
predetermined reliability standard, technology capacity built limit,
hydro energy generation limit, and other policy-based constraints.
NEMO searches for the least cost generation portfolios using the CMA
evolution strategy, for a specified maximum number of iterations. In
each generation of the search, several populations are established by
the algorithm, and total generation cost (operational and capital) along
with penalty (if any), any unused surplus energy, achieved unserved
energy, and total CO2 emissions are calculated for each population
within each generation. The algorithm then compares the least cost

solutions obtained in the current generation with the previous, to find
the all-time least cost. In this study, NEMO is adapted to produce set of
near least cost solutions by relaxing the cost constraint such that all
generation portfolios with total generation cost fall within 5% least cost
solution are retained.

Given the low penetration of variable renewables in the Java-Bali
grid, our study does not consider grid capacity to manage variable re-
newable energy, the impact of distributed energy or energy storage
technologies. This is aligned with, and allows the results to be com-
pared with the published planning documents for the Java-Bali elec-
tricity grid. Nevertheless, technical integration studies would be bene-
ficial to understand the characteristics, potential and limitations of the
modelled scenarios, while exploration of the role of distributed energy
and energy storage technologies would certainly add value in future
studies.

We simulate 2030 generation portfolios for Indonesia’s Java-Bali
electricity grid, using 2015 hourly grid demand as a baseline. Data for

Fig. 1. The framework for assessing possible future generation portfolios.

Fig. 2. The generic optimization framework in NEMO [20] and the extension in this study.
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gridded hourly PV and wind power output traces across the Java-Bali
region are obtained from Renewables Ninja, an online renewable en-
ergy simulation tool [24] and Indonesia wind prospecting map [17],
respectively. We select six locations dispersed within six provinces in
the Java-Bali region to deploy solar PV and wind by considering the
temporal and spatial variability, capacity factor, and potential output of
both technologies [21]. We apply capacity-build limits for geothermal
and hydro in 2030 according to [5]. NEMO’s two key parameters for
evolutionary optimization, i.e. number of generations and initial stan-
dard deviation of the distribution, are set at 100 and 2, respectively, as
in [19]. We prioritize dispatch of variable renewable energy generation
with the lowest variable O&M cost, then determine the hourly dispatch
order of the synchronous generation candidates according to operating
cost: geothermal, followed by hydro, coal, OCGT, CCGT, and biomass.
For technology cost dataset, we use 2030 mid-level (base case) tech-
nology costs which are gathered from official sources [18,23] as pre-
sented in Table 1. These are reasonably comparable to other interna-
tional databases.

2.3. Modelling scenarios and assumptions

In this study, we firstly use a fixed USE limit of 0.005% as a relia-
bility constraint, which is arguably a high reliability standard for the
context of a developing country electricity industry. Secondly, we apply
carbon prices of $0/tCO2 (CP0), $30/tCO2 (CP35) and $60/tCO2

(CP60) to reflect possible future policy settings to achieve Indonesia’s
emissions reduction commitments, but also to capture some aspects of
uncertainty around future coal and other fuel costs, and costs associated
with financing these increasingly risky projects. It should be noted that
there is no specific carbon policy for the Java-Bali grid, however there
is a government target of 23% renewable energy share on generation
mix by 2025 countrywide [25]. We do not consider transmission net-
work investment requirements.

Assumptions incorporate in our generation planning model include
a non-synchronous penetration of 0.75, no minimum capacity reserves
constraint, a 5% discount rate on annualized technology capital cost
and a conservative annual demand growth of 5% from 2015 to 2030
[21], which is based on the historical average annual growth during a
decade before and several years after 2015. As consequences, we obtain
an energy demand profile of 346.5 TWh and 50 GW peak load for our
modelling. Meanwhile, coal and gas prices in 2030 are assumed to be
$3.5/GJ and $10.9/GJ, respectively [5,6].

2.4. Clustering analysis and evaluation of clusters

Clustering analysis has been increasingly applied in some areas of
electricity industry, such as in studies around load profile identification
and demand estimation incorporating different datasets, such as load
time series [26], smart metering data [27], demand profiles [28], oc-
cupant activity data [29], in addition to other applications covering
smart energy system [30] and air-conditioning energy performance

[31]. However, literature in the topic of clustering application for
electricity generation expansion planning, is currently lacking. A recent
clustering study in the area of capacity expansion planning is related to
capturing the effect of variable renewables and energy storage [32] and
time-period clustering for optimal capacity expansion planning with
storage [33].

Clustering techniques are applied in this study to map various
possible solutions lead to secure-affordable-low emissions technology
mixes. This study primarily applies k-means clustering technique con-
sidering to its simplicity, efficiency, expandability, and ability to handle
big data despite few possible drawbacks shown in some cases, such as
sensitivity to the initial selection of cluster centers and chance to pro-
duce local optimum solution as mentioned in the study using smart
meter data [27], demand profiles [28], and study on residential air
conditioner control [34]. The step-by-step working principle of k-means
clustering, in which the solution space is divided or partitioned into
several cells containing data points with similar patterns, is summarized
in [35]. Neural-network based-Self Organizing Map (SOM) is then used
to compare the clustering results. The overall SOM algorithm is sum-
marized in [36]. Neural network based-SOM clustering has been ap-
plied, for example, in estimating load for microgrid planning [37] and
calculating load profile [38].

We apply the Calinski-Harabasz (CH) [39] and Davies-Bouldin (DB)
[40] rules to evaluate the optimal number of clusters. In principle, these
methods work by applying two important criteria, cluster compactness
and separation. The first criteria measure the closeness of the member
in each cluster to reflect cluster compactness while the second criteria
measure the distance between clusters to reflect separation among
clusters. The optimum number of clusters according to CH rule is de-
tailed in [41]. DB rule measures the average of similarity between each
cluster and its most similar one [42]. To follow the evaluation criteria,
better number of clusters is represented by the lower-resulted DB index.
Although there are some other evaluation rules available, the decision
regarding number of clusters is eventually rather subjective depending
upon the objective of analysis and details of the variability that the
users would expect.

2.5. Adoption of capacity mix parameters into energy trilemma

For each generation portfolio, the simulation of a year of operation
provides three representatives ‘energy trilemma’ metrics – achieved
reliability (% USE), total industry costs – both capital and operating –
($/year) and carbon emissions (tCO2). We use CO2 emissions as a re-
presentative environmental metric since CO2 emissions represent the
most significant long-term environmental risk. While coal-fired power
plants, for example, release other greenhouse gasses such as methane
and nitrous oxide, many official electricity generation planning and
statistics, reports and other literature use CO2 emissions as an im-
mediate representation of the air pollutants released by electricity
generation and its value in quantifying the impact to environment.
These are not complete representations of the trilemma; industry costs
in particular do not capture the complexities of equity and affordability
[1] while there are environmental impacts other than carbon emissions
associated with different technology choices.

Although we set a USE constraint of 0.005%, this is an upper con-
straint and it is of course possible that candidate generation portfolios
deliver lower USE. The conversion of the numerical values from actual
achieved USE into a security score (magnitude) is, for simplicity, a
linear interpolation from USE 0.000 to 0.005 equivalent to security
scores from 100 to 75. We only consider security scores between 75 and
100 in this modelling exercise given the relatively high constraint. We
conduct 2 steps of values conversion through normalization and scaling
procedure to obtain the score for economic and environmental sus-
tainability dimensions as follows:

(i) Sort candidate generation portfolios from the smallest to the largest

Table 1
The 2030 Indonesian Java-Bali grid mid-level generation technology cost
components.

Technology Capital
($/kW)

Fixed O&M
($/kW-year)

Variable O&M
($/MWh)

Geothermal (G) 3200 16.7 0.7
Hydropower (H) 2000 35.8 3.8
Coal fired (C) 1360 35.8 3.8
OCGT (OC) 400 22.5 3.8
CCGT (CC) 710 22.5 3.8
Biomass (B) 1600 43.8 6.5
Solar PV fixed axis (PV) 610 12.5 0.4
Onshore wind (W) 1310 52 0.8
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value.
(ii) Determine the position (magnitude) of each value in the trilemma

by normalizing the sorted values as following equation:

= −Normalized value Old value
Old value

1i
i

max (1)

(iii) Determine the scale of the normalized values. The minimum and
maximum scale for economic and environmental sustainability
dimensions are set to 25 and 100, respectively, for visual clarity in
the presentation of results. This provides the scale range of 75. The
scaling operation to obtain the new values within a certain range of
old values is carried out using the following equation:

= ⎡
⎣⎢

− × ⎤
⎦⎥

+Newvalue
Old value Old value New range

Old range
Scale

( )
i

i min
min

(2)

=Old range Normalized valuemax (3)

= −New range Scale Scalemax min (4)

There is one further complexity in industry costs – the treatment of
carbon costs. The role of carbon pricing is to change the relative
competitiveness of different generation technologies by changing their
operating costs according to their emissions intensity. While it is of
course possible to then include these costs (price times total annual
emissions) in total industry costs, these costs do actually represent
carbon revenue (CR) that can go towards helping pay for other industry
costs or reduce taxes elsewhere. We therefore distinguish between in-
dustry costs in some of our analysis. Analyses in this study are con-
ducted according to the following steps:

(i) Relaxing cost minimization: Using NEMO, we determine the set of
candidate generation portfolios who costs fall within 5% of the
least cost solution for a predetermined 0.005% USE limit and each
carbon price scenario.

(ii) Mapping candidate generation portfolios.
(iii) Pre-processing (pre-clustering analysis 1): We analyze the candi-

date portfolios that have the highest and lowest PV capacity alto-
gether with the mixes with the highest and lowest coal capacity,
the highest and lowest gas capacity and the least cost mix. The
three associated parameters of the mixes, i.e. cost, USE and CO2

emissions are then mapped and analyzed as well. In this regard, we
also analyze the realized costs with CR component included and
without CR component included.

(iv) Pre-processing (pre-clustering analysis 2): We convert all asso-
ciated parameters of the mixes (cost, reliability, emissions) into 3
dimensions of energy trilemma and map all values of the three
dimensions of all seven portfolios (the highest and lowest PV, coal,
gas and least cost portfolios) using radar charts. The charts depict
the characteristic of different generation portfolios with respect to
all dimensions in energy trilemma.

(v) Clustering analysis 1: We apply the k-means clustering technique
into the 5% least cost technology mixes with different CPs to ob-
tain group of technology mixes. We consider 6 clusters and use the
k-means clustering algorithm in MATLAB. We use 1000 repetitions
to obtain a stable clustering membership number and configura-
tion for each carbon price scenario. For comparison, we also use
SOM clustering technique using nctool in MATLAB. As we obtain
very similar results using SOM, we only present the results ob-
tained from k-means clustering. Applying the CH and DB rules
(briefly discussed earlier in Section 2.4) to evaluate the number of
clusters to be used, the suggested number of clusters based on these
rules are mostly fall between 4 and 6 clusters. In this study, we
choose 6 clusters to better capture the variability of the associated
parameters that possibly emerge from the analyses.

(vi) Clustering analysis 2: For each CP, we analyze the 3 associated

parameters of each cluster using the boxplot and compare cost and
CO2 emissions, as the two key parameters (given the reliability
level is on the expected range) of all clusters. From this point, 2
distinct clusters can be identified, i.e. the cluster with least cost
mix and the cluster with less emissions mixes.

3. Results and discussions

3.1. Base case results – Least cost capacity and generation mix

We first solve least cost generation portfolios for the three different
carbon price scenarios and the 0.005% USE limit. We save all feasible
generation portfolios during the search whose overall costs ($/year) fall
within 5% of the eventual least cost solution. Note that NEMO can in-
corporate existing generation but undertakes what is effectively a single
investment step – in our case for 2030, rather than a sequence of in-
vestment steps.

Results for the ‘least’ cost generation portfolio with a 0.005% re-
liability constraint are shown in Fig. 3 for the three carbon price sce-
narios. Note that there are constraints on maximum hydro and geo-
thermal capacity, as proposed in [21]. For CP0, there is substantial PV
generation capacity in the least cost mix, but coal still predominates,
with only a limited role for gas. CP35 sees more than double the PV but
little other change in capacity. For CP60, PV capacity barely changes
but wind generation now enters the mix, as does CCGT. Renewables
climbs to over 70% of generation. These results might suggest certain
choices and strategies for policy makers. However, the question arises
of how sensitive they are to the specific 2030 cost assumptions, and
what other generation mixes might offer relatively similar industry
costs but perhaps quite different policy pathways.

Results obtained for the case with no carbon price (CP0) are in-
tended to reflect the latest single-scenario planning made by PLN [25],
in which no carbon price is considered, to provide a basis for com-
parison and as a baseline for policy development. We therefore in-
corporate similar generation technology candidates to the published
planning document. The results show that the renewables generation
share by 2030 could achieve more than Indonesia’s 23% renewables
target [25], with solar capacity within the technical potential for In-
donesia [5,43]. This is in contrast to official planning, which shows
only 18% share of renewable energy, while our least cost portfolios also
show coal capacity less than that in the planning document (Fig. 3).

By achieving about 55% renewable energy share in the generation
mix, notably including a high solar PV penetration as shown in Fig. 3
(right), our least cost mix results in 146 mtCO2, while the CO2 emissions
of the government’s BAU projection for 2030 (for the Java-Bali region)
would be around 397 mtCO2.

2 The targeted 29% reduction commitment

Fig. 3. (left) Least cost capacity mix and (right) least cost generation mix with
fixed 0.005% USE limit for all CPs.

2 This value is an approximate amount of CO2 emissions in Java-Bali elec-
tricity grid in 2030. We calculate this value based on the energy related
emissions of 1669 mtCO2, which is specified in the Indonesian Nationally
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would correspond to approximately 282 mtCO2. Our scenario results in
approximately 48% less emissions.

This highlights concern regarding Indonesia’s pathways to de-car-
bonize the electricity industry in the future [44], and the role of coal.
According to Indonesian government regulation no. 79/2014 on Na-
tional Energy Policy, the coal share in the primary energy supply mix
should be minimum 30% in 2025 and minimum 25% in 2050 [45].
However, based on the results presented in our study, we see a pro-
mising opportunity to reduce emissions at low cost.

3.2. Fixed USE limit at 0.005%, cost relaxation up to 5% least cost
technology mix

As we obtained a range of different least cost technology mixes
presented in Fig. 3 (left), we expand each one of these three mixes into a
spectrum of near least cost generation portfolios as shown in Fig. 4. This
spectrum of portfolios, for each carbon price, is obtained by relaxing
the overall industry cost up to 5% of that of the least cost mix presented
in Fig. 3 and collating all generation portfolios that fall within this cost
range.

The spectrum of near least cost portfolios, for example at CP0,
consists of some 600 technology mixes. We obtain a wide capacity
range across coal OCGT, solar and in some cases wind capacity. While
geothermal and hydro capacity in 2030 remain at maximum potential
for all carbon prices up to 10 GW and 8 GW, indicated with a downside
arrow, the simulations result in both smaller and greater capacities for
other technologies, indicated with two-way arrows.

The spectrum of technology mixes highlights the potentially wide

range of generation investment futures. At CP0, there are evident op-
tions for greater or lesser coal, more OCGT and much more or less PV.
At CP35, the role of gas including now CCGT could be quite substantial
and the range of PV capacity increases and its range narrows. At CP60,
coal capacity falls, CCGT climbs, PV capacity climbs further and wind
becomes an option (from negligible to over 30 GW) across all candidate
generation mixes. It is clear that the spectrum provides a richer set of
insights for policy makers regarding their options and allows wider
policy considerations to come into play – for example, concerns about
future gas availability, or social acceptance of wind generation.
However, it is less clear how these choices map to each other given that
there are numerous candidate generation mixes presented, and choices
in one technology capacity will, to at least some extent, dictate capacity
choices in others.

3.3. Pre-clustering analysis

To better understand the tradeoffs, Selected candidate generation
mixes, characterized according to those technologies whose capacity
varies the most, are shown in Fig. 5. For CP0, it is interesting to note
that there is not a very strong tradeoff between coal and PV capacity;
indeed, the highest coal capacity mix actually has slightly more PV. The
reverse also holds across the highest and lowest capacity of PV, which
do not see great variation in coal capacity. The clearest tradeoff would
actually appear to be OCGT and PV. For CP60, by comparison, there is
an evident tradeoff between coal and CCGT generation, as well as with
PV generation.

These highest and lowest generation mixes for each key technology
with 5% of least cost are further investigated in terms of emissions and
USE in Fig. 6. For CP0, it is notable that the lowest cost mix has the
highest USE, and higher emissions that all except the L-PV and H-OCGT
cases. It appears that for around $400 m/year it would be possible to
reduce emissions by around 20mtCO2/year by deploying more PV. For
CP35, the H-PV mix has mid-range costs yet the lowest emissions and
USE. For CP60, the least cost mix is considerably lower cost than the
other options and has mid-range emissions (they are of course priced at

Fig. 4. Possible technology mix by relaxing cost up to 5% least cost mix and by fixing USE limit at 0.005% for CP0 (left), CP35 (middle) and CP60 (right).

Fig. 5. Generation mixes with the highest and lowest possible capacity of PV, coal and gas, as well as the least cost mix, for each CP scenario.

(footnote continued)
Determined Contribution to United Nations Framework Convention on Climate
Change (UNFCCC). Reducing the energy related emissions by about 15%, we
get 1418 mtCO2 to exclude non CO2 greenhouse gas emissions, then reducing
this CO2 related emissions by 60%, and finally by another 30%, we get the
approximate CO2 emissions for electricity generation sector in Indonesia and in
Java-Bali grid, respectively.
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$60/tCO2) but lower reliability than all the other options. Excluding the
carbon price revenue from total industry costs, on the basis that this
money can be used to compensate energy consumers, has interesting
implications in making the higher emission H-coal mix more attractive.
When carbon revenue is excluded from industry costs, it is also inter-
esting to note that CP35 makes the least cost mix only around $200 m/
year more expensive, yet reduces emissions by over 25 mtCO2/year,
which would seem to represent relatively low-cost abatement. CP60
costs around $2.4b/year but reduces emissions by around 75mtCO2/
year, considerably higher cost abatement.

These outcomes for the min–max technology mixes can also be
characterized using the trilemma indicators outlined earlier, and then
plotted with radar diagrams as presented in Fig. 7. Note that these plots
use industry costs excluding carbon price revenue, as this could be ar-
gued to involve double counting of the environmental impacts. Also, as
noted above, the security metric for all these candidate generation
mixes only varies between 75 and 100 reflecting the very low USE seen
in all cases.

These radar diagrams nicely illustrate the tradeoffs involved

between choosing particular min–max technology mixes. There are no
clearly superior candidate generation mixes across all the trilemma
dimensions. However, there are a number of candidate mixes which
would seem to have secure-affordable-low emissions alternatives – for
example, the L-OCGT mix in CP0 and CP35 and the L-cost in CP60.

3.4. Results on clustering analysis

Considering the min–max technology deployment mixes is useful in
bracketing the possible variation in mixes whose costs fall within 5% of
the least-cost mix. However, to better characterize the solution space
we use k-means clustering to group all solutions into six clusters. Fig. 8
(left) shows 6 capacity clusters for CP0 case. The y-axis scale limits are
made equal for all clusters to enable quick visual comparison of clus-
tering patterns. The mean capacity mix for each cluster is shown using a
black color line to help identify the spread of each of the clustering
patterns.

As shown in Fig. 8 (left), all clusters are characterized with little
variations in coal capacity yet considerably more on PV. Higher

Cost (Incl. CR)

Emissions

USE

Cost (Excl. CR)

Fig. 6. The mapping of USE, total cost, and CO2 emissions of generation mixes with the highest and lowest capacity of PV, coal, and gas, as well as the least cost mix
for the three CP scenarios.

Fig. 7. Radar charts of security (S), economic (EC) and environmental sustainability (ES) dimensions for each min–max technology (economic indicator is calculated
excluding CP revenues from industry costs).
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capacity mixes of PV are clustered together in cluster 5 with a wide
range of OCGT. This differentiates cluster 5 from cluster 4 despite both
clusters having a similar pattern as seen from their mean capacity.
Capacity clusters are further identified based on their USE, cost and CO2

emissions, and the range of these are shown, and can be compared, in
Fig. 8 (right). Cluster 2 has the lowest average cost. However, cluster 1,
which has a similar range of costs to cluster 2, has a lower range of CO2

emissions. The range of generation capacities in these two clusters are
shown Fig. 9. It is interesting to note that a modest increase in costs
allows greater PV and OCGT deployment.

Using the same analysis approach, clustering results of the tech-
nology mixes in CP35 and CP60 along with the results around least cost
mix cluster and less emissions cluster identification are presented in
Figs. 10–13.

While keeping the coal capacity range remain unchanged or with
only little, insignificant variations, as shown in Fig. 9 (right), 11 (right)
and 13 (right), higher PV capacities are deployed in all technology
mixes in the less emissions cluster for all CPs compared to those shown
in the least cost clusters. This increased PV deployment and hence re-
duced emissions comes at what would seem to be fairly low additional

costs. The spread of the emissions and costs in the clusters also offers
potentially valuable insights for policy makers in terms of what stra-
tegies driving particular technology deployment patterns might involve
in terms of cost or emission risks.

3.5. Shared area of possible technology mixes

In Fig. 14 we present a method to compare possible technology
mixes for each of the CP scenarios in Fig. 4. This visualization allows us
to see the possible range of capacity deployment of each generation
technology, and gain insights into the possible capacity trade-offs

Fig. 8. (left) Six capacity clusters (y-axis = GW of capacity for each available
generation option along the x-axis) and (right) unserved energy, cost and CO2

emissions of all clusters CP0.

Fig. 9. (left) Generation technology mixes in the least cost cluster (C-2) and
‘less emissions’ cluster (C-1) for 5% least cost capacity mix with CP0.

Fig. 10. (left) Six capacity clusters (y-axis = GW of capacity for each available
generation option along the x-axis) and (right) unserved energy, cost and CO2

emissions of all clusters CP35.

Fig. 11. (left) Technology mixes in the least cost cluster (C-6) and (right)
technology mixes in the ‘lower’ emissions cluster (C-5) for 5% least cost port-
folios with CP35.

Fig. 12. (left) Six capacity clusters (y-axis = GW of capacity for each available
generation option along the x-axis) and (right) unserved energy, cost and CO2

emissions of all clusters CP60.

Fig. 13. (left) Technology mixes in the least cost cluster (C-5) and (right)
technology mixes in the ‘lower’ emissions cluster (C-1) for 5% least cost port-
folios with CP60 and fixed 0.005% USE limit.

Fig. 14. Overlapping areas of the possible technology mixes of all CPs and its
intersections.
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across both conventional and variable renewables.
It is interesting to note that the range of coal generation capacities

in for CP0 and CP35 overlap almost entirely, despite more solar PV and
wind capacity in CP35. A higher total generation cost in CP35 than in
CP0 results from more capacity built, although coal fuel costs are re-
duced. CP60, by comparison, has low coal capacity and, a very different
pattern of CCGT deployment, which sees almost no OCGT deployed.
This reflects of course the higher emissions intensity but lower capital
costs of OCGT versus CCGT. A higher carbon price increases the com-
petitiveness of CCGT, even for low capacity factor operation.

The results indicate that if a relatively high social cost of carbon is
considered, policy should be directed to deploy large-scale variable
renewables penetrations, particularly solar PV. The results also indicate
that limiting Java-Bali future coal capacity, in this case to less than 40
GW, it a low cost option either with or without consideration of the cost
of carbon.

4. Concluding remarks and future work

Electricity industry planning for a more sustainable energy future is
enormously challenging given the potentially conflicting objectives of
affordability, security and environmental impacts, and the very high
levels of future uncertainty regarding their prioritization, as well as in
generation technology progress and costs. Developing countries face
particular challenges in all these regards. While there is a wide and
growing range of simulation and optimization tools to assist in such
planning, they have inevitable limitations in terms of incorporating
these uncertainties and mapping tradeoffs.

Our study sought to advance existing tools and methods in three key
ways – identifying explicit metrics of the energy trilemma that could be
used to assess different possible future electricity industry generation
portfolios across all key dimensions, mapping the solution space of
‘high performing’ if not absolutely ‘least cost’ generation portfolios in-
cluding through the application of clustering, and exploring ways to
present the solution space to planners and policy makers.

We applied this to the question of possible future generation in-
vestment pathways for the Java-Bali interconnected system. Our tech-
niques highlight the very diverse generation portfolios that delivered
costs close to the ‘least cost’ portfolio. Given the uncertainties involved
in these cost estimations, notably future technology and fuel costs, it is
clear that policy makers and planners have a wide range of possible
pathways towards a more sustainable electricity industry future. There
are important tradeoffs, particularly between costs and emissions, in
these choices. These techniques, as well as these particular findings,
would seem to have wider relevance to the electricity industry planning
and policymaking communities, especially in assisting them unveiling a
wide range of possible generation portfolios mixes that are suitable to
their preference pathways and electricity industries’ context, given the
techno-economic potential of high variable renewable energy penetra-
tions.

On the other hand, the potential deployment of large-scale variable
renewable energy technologies, has been unfortunately hindered by a
range of barriers, including lack of supportive regulations and in-
centives for investment, and poor coordination between national and
local government. The coal sector has to date received more support
compared to large-scale renewables. The barriers of integrating solar
and wind in Indonesia have been comprehensively presented and dis-
cussed in [46].

Given the range of potential generation portfolio options that could
improve system reliability and offer a better environmental outcome at
low cost, our results highlight the importance for policy makers in
developing countries of considering a range of options to satisfy the
trilemma objectives. This is particularly important given the un-
certainties around technology costs.

While imposing a carbon tax on the supply side would be expected
to increase electricity costs, our results show that a faster shift to high

penetration renewables could in fact be relatively low cost, and there-
fore improve access and affordability with lower risk around the future
costs of emissions and fossil fuels.

As indirect emissions such as those produced during solar cell
manufacturing are insignificant compared to operational emissions
from burning fossil fuels [47], we do not include these in our study.
However, a more detailed study of environmental impacts for genera-
tion expansion planning could incorporate all life cycle pollutants. As
the techniques presented here could be used to applied to these pro-
blems and a broader range of electricity industry planning problems
where multiple objectives are to be satisfied, future work could also
seek to address some of the limitations of the existing modelling fra-
mework including adding transmission costs and a greater role for
different storage technologies, also to use more nuanced, weighted
metrics of the trilemma.
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