[CCIM Paper 27 july 2023

by Perpustakaan Referensi

Submission date: 07-Oct-2023 08:25PM (UTC+0700)
Submission ID: 2188407512

File name: e3sconf_iccim2023_05004.pdf (3.63M)
Word count: 6376

Character count: 31845



2
E35 Web of Conferences 429, 05004 (2023)

ICCIM 2|OT?3

https//doi.org/10. 1051 /e3 sconfi 202342905004

Adaptive mesh refinements for analyses of 2D linear elasticity
problems using the Kriging-based finite element method
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1 Introduction

The mesh configurations used for finite element
analyses of irregular structures must be properly
considered. To predict the stresses more accurately,
finer meshes are needed on some regions of the
structures, such as the regions near holes and hgntrant
corners. A uniform mesh refinement, however, results in
a large number of elements and a long computational
time. Hence, an automatic and adaptive Esh
refinement (AMR) procedure, can be chosen to get more
accurate results in an efficient manner. The AMR
procedure is divided into two stages [1]. Firstly, the
element errors are estimated using a selected error
indicator. Secondly, after estimating the element errors,
the mesh refinement is then carried out according to the
element errors.

There are several error indicators available in
literature. The strain energy error indicator [2-3] is
based on the difference bd¥een unaveraged and
averaged (smoothed) stresses. The gradient of effective
str error indicator [4-5] was first implemented for
the finite element analysis of shell elements. Based on
the value of Von Mises stresses, this error indicator can
identify the region with high-stress gradients. The
gradient of effective stresses error indicator has been

lemented by Pudjisuryadi [6] in the framework of
the meshless local Petrov-Galerkin method. The
element-free Galerkin strain energy error indicator [1, 7]
is based on the difference between the computed and
reference strain energy. The computed and reference
strain energy are evaluated on a different number of
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Gauss points. In addition, the super-convergent patch
recovery [8-12] is another type of error indicator that can
be used. P
The mesh refinement can be done by either h-
refinement, p-refinement, or a combination of the /- and
p-refinement [13]. The /s-refinement will change the
element size by doing an element subdivision or a
complete remeshing. On the other hand, the polynomial
order of an element will be changed through p-
refinement.

An alternative method for the classical finite element
mgud (FEM) to obtain more accurate analysis results
is ing-based finite element method (K-FEM)
[14-17]. T the K-FEM, Kriging interpolation (KI) is
employed ¢ e trial and test functions. The KI is
constructed not only using the element nodes but also
the satellite nodes swrounding the element.
Consequently, the domain of influence (DOI) of a node
can be formed by layers of elements. Thus, the K-FEM
is known as FEM with element-free shape functions. In
comparison to the classical FEM, more accurate results
can be achieved by the K-FEM with fewer elements by
simply increasing the layers. An AMR procedure for the
K-FEM has been studied by Masood [18] using the
Gaﬂ(in local residual error estimator.

is paper presents a study of three AMR
procedures for analyses of two-dimensional linear
clasticity problems using the K-FEM. The problems
considered are two benchmark problems of ple
elasticity models, that is, a holloWgRylinder and an
infinite plate with a central hole [19]. The Matlab Partial
Differential Equation (PDE) Toolbox [20] was used for
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generating meshes automatically with Delaunay
triangulation and for performing adaptive meshing using
the h-refinement. Moreover, element errors were
estimated by the three different error indicators, namely,
the strain energy error [2-3], the gradient of effective
stresses [4-6], and the eclement-free Galerkin strain
energy eror [1, 7]. The results in terms of the total
number of elements and the final mesh configurations
were then compared to find the most effective error
indicator.

2 Error indicators and adaptive mesh
refinement (AMR) strategies

2.1 Strain energy error (SEF%I

The SER error indicator [2-3] is based on the difference
between the eclement unaveraged and averaged
(smoothed) stress fields. The finite element unaveraged
stress field is discontinuous on the element boundaries
between neighboring elements. However, the element
averaged stress field, constructed from averaged stresses
at the element nodes, is continuous.

To obtain the SER, nodal averaged stresses ina DOI
under consideration are first defined by Equations 1-2.

a
1 e
(ﬁave)j == ﬁj (1)
a
e=1
where:
(tra\,e)j : nodal averaged stress vector at node j
a : number of elements surrounding node j
o'je : element unaveraged stress vector at node /,
Viz.
e e €
Uf =(0 Iy Yxyj) (2)

Afterward, the element smoothed stress field is
constructed by interpolating the average stresses at the
nodes in the DOI using the finite element shape
functions by Equation 3.

n
[ Z Nj(aave)j 3)
=

where:
¢° : element averaged (smoothed) stress field
N e function associated with node j
n  : number of nodes in the domain of influencing
nodes EY]

The element stress and strain energy error can then
be calculated using the following Equations 4-5.

of. = 6°— 0° (4)
1
Ug, = [ E“ET’ E-lo§, dV (5)
v

where:

6, vector of element stress error
Ug, : element strain energy error
E : elasticity matrix

~E

2.2 Gradient of effective stresses (GES)

The GES error indicator [4-6] can detect regions with
high-stress gradients. These regions are identified by
high-stress error values. A triangular clement K (shaded
area) with a central point Py is shown in Fig.1. The
element is surrounded by other elements with one side
in common with element K. Each surrounding element
has a central node Py;. The gradient of the effective
stress is calculated by comparing the value of effective
stresses at Py to each Py;.

Fig. 1. [llttiangular (100 CUIOK (00 C DT IONT IO T

The GES error indicator (E) can be defined using
the following Equations 6-8.

Ey = hygg (6)
dx = Ige(PK) - Ue(PKI)I )
« d(Py. Py)
g.(Py) =

15 1
1 (o- "’y)z +(ay - ‘72)2 + [ ®
V2|(o, — 0)% + G{rf,y A ik 3 )

where:

e : the smallest side length of a triangular
element K

I : maximum gradient of effective stress at Py
o.(Pyg) : Von Mises stress at Py

d(Py, Py;) : the distance from Py to Py;

2.3 Element-free Galerkin (EFG) strain energy
error

The EFG strain energy error [1, 7] was first
implemented for the AMR proce@f@ of meshless
methods. The element strain energy error is defined as
the difference between the computed and the reference
strain energy. The computed strain energy (Ugomp) is
calculated using m, number of Gauss points. On the
other hand, the reference strain energy (Upep) is
calculated using ng number of Gauss points (1,<my).
These can be seen in the following Equations 9-10.

g
- T (9)
Usomp = Z 404" £y°
g=1
g
Urer = Z CIO'IETSIB [10]
=1

where ¢; and ¢ are the corresponding integration
weights of Gauss points.
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The eclement strain energy error can then be
calculated using the following Equation 11.

Ug, = IUcomp = Upes (11)

2.4 Refinement criteria

In this research, the criterion for selecting the elements
to be refined was based on Equations 12-14 [4]:

Numel
- Eps
g%ps = ——— e (12
Numel K )
k=1
tps
£ = K (13)
K = Feps
‘fK -1> ﬂa,lol (14)
where:
atps . average crror of elements in the whole
domain
Numel : total number of elements
£
eK"s element error
Betol . tolerance level

Based on the definition described above, an element
will be refined if the error is larger than the average error
with a particular level of tolerance (f,4). In this
research, the value of f, ) was used as the input of the
program. F@jdetermining this value, firstly, the authors
tried to run the K-FEM analysis for a linear polynomial
basis function with one layer of elements. Subsequently,
the range of f, ;) was chosen by considering the relative
strain energy error (RSER) in the first iteration. The
value of fi, 1, tended to be lowered as the value of RSER
increased. A high value of RSER shows a less level of
accuracy. By lowering the value of §, 1, more elements
would be refined, and a better level of accuracy might
be achieved. However, a low value of ¢, could also
result in an ineffective total number of elements and a
distributed refinement process. Thus, the total number
of elements and the final mesh configurations should
also be considered for choosing the value of fg 0. In
this research, the range of f, ;, was between 0.25 and
0.55, as these values could result in an effective total
number of elements and final mesh configurations.

2.5 Relative strain energy difference (RSED)

In this research, the limit of RSED was used as the
termination criteria of the AMR strategy. Therefore, the
analysis would stop only when the RSED of the current
iteration was already below the limit of the RSED
chosen. This criterion is calculated using the difference
between the total strain energy of the current iteration
(Ug) and the previous iteration (Uy_,) by Equation 15

[21].

U, = U,_
RSED:M (15)
Uy

The limit of RSED is chosen based on the user’s
desired level of accuracy. However, the limit of RSED

should be lower than the value of RSED between the
first and second iterations. Moreover, it is recommended
to choose a limit lower than 5% (0.05). This is because
a low limit of RSED indicates a more stable value of
total strain energy. The total number of elements and the
final mesh configurations should also be considered for
choosing the suitable limit of RSED. Based on these
criteria, in this research, the limit of RSED was taken
from 0.003 to 0.05.

2.6 Relative strain energy error (RSER)

4

The RSER 15 defined as the difference between the exact
or reference (Ugy) and K-FEM (Uyg_pgy) total strain
energy (Equation 16). For problems without exact
solutions, the reference total strain energy is calculated
by running the K-FEM analysis for a cubic polynomial
basis with three layers of clements using very fine
meshes.

Ueyx — Uk
RSER=I€XUA (16)

ex

In this research, the RSER was only used as a
checking criterion to evaluate whether the value of £ 1
was suitable or not. Therefore, the AMR procedure
could still be done without the exact solution.

2.7 Matlab Partial Differential Equation (PDE)
Toolbox

The Matlab PDE Toolbox can be used to solve many
problems, such as plane stress, plane strain,
clectrostatic, 1 retostatic, heat transfer, and diffusion
[20]. Using a graphical user interface provided by the
PDE Toolbox, the user can easily draw the geometry of
the problem being analyzed. Furthermore, this toolbox
can be used for generating unstructured meshes using
Delaunay triangulation and performing the AMR using
the element subdivision /s-refinement. The data of the
unstructured meshes generated from the PDE Toolbox,
namely, the point, edge, triangle, geometry, and
boundary condition matrices, can then be exported to the
main workspace. These mesh data are used as the inputs
of the AMR K-FEM program.

In this research, the AMR procedure was carried out
using the three error indicators described above. The
formulation of the error indicator in the PDE Toolbox
AMR function (adaptmesh) was then modified into
those three error indicators. Moreover, the refinement
criterion was also modified. Furthermore, the longest
edge refinement was chosen as the refinement method.
By choosing this method, the AMR procedure would be
done by bisecting the longest edge of selected triangles
and introducing new nodes on the divided edges. Thus,
the point and triangle matrices would be updated. In
addition, the divided edge entries in the edge matrix
would also be updated by two new entries. Fig. 2 shows
the h-refinement procedure using the longest edge
refinement around elements that do not pass the
refinement criteria.
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(2) (®)
Fig. 2. The a) initial and b) final stages of the f-refinement
procedure with the longest edge refinement.

3 Kriging interpolation (KI)

The Kriging interpolation (KI) of an element is

constructed on the basis of nodes comprising layers of

Fments [14-17]. This concept can be seen in Fig. 3.
1g. 3 shows the domain of influencing nodes of an

element that consists of one, two, and three layers of

Fments, The global field variable can then be obtained
y combining the KI of all elements in the domain.

P

Ome layer |:| Two lavers J Three layers
Fig. 3. Domain CTIT IO 00 IRRT) I 1

The KI possesses the Kronecker delta and
consistency properties [14-17, 22], which are important
in the implementation of FEM. Furthermore, the K-
FEM and the conventional FEM use a similar
computational frocedure. Therefore, a conventional
FEM program can be easily modified to include the K-
FEM concept.

In this section, the fmﬂllatiun of KI is explained
based on reference [15]. A continuous field variable
u(x) is defined in a domain Q repr{@knted by a set of
nodes X;,i=1,2,...,N. Consider a point X, in the
domain, the estimation value of u(X,) can be obtained
using KI. The Ve of u(x,) estimated by KI is
represented by u"(x,), a linear combination of
u(x,),..., u(x,), as described in Equation 17.

n
uh(xo) = ) Au(x) a7
i=1

where A; are the Kriging weights and n is the total
number of nodes in the DOI of point xJfiThe functions
u(xy),..., u(x,) are considered as realizations of
random variables U(X,),..., U(X,). As a result,
Equation 17 can be written as Equation 18.

n
Ut(xg) = ) AU(x) (18)
=

The Kriging weights are determined by making the
U"(x,) unbiased by Equation 19.

E[U"(x0) = U(x0)]1 =0 (19)

Moreover, ge variance of the estimation error, viz
(Equation 20).

var[U" (xo) — U(xo)] (20)
is required to be minimized.
Using the Lagrange interpolation, the Kriging
interpolation system can be obtained into Equations 21-
22,

RA + Pu = r(x,) 2n
9 PTA = p(x,) 2]
where R is an n x n matrix of covariances and P is an
n x m matrix of polynomial values at the nodes. A is an
n x 1vector of Kriging weights and p is anmfl 1 vector
of Lagrange multipliers. Furthermore, r(X,) is annx 1
vector of covariance betwed) the point Xy and the
surrounding nodes. p(x,) is an mx 1 vector of
polynomial basis at X ;. A more detailed explanation can
be found in Wong and Kanok-Nukulchai [15].
Using Equations 21-22, the Kriging weights can be
obtained into Equations 23-25.

AT = #xo)A + r'(x,)B (23)
A= PR 'P)'P'TR! (24)
B =R {(I-PA) (25)

where I is an n x n identity matrix. Therefore, Equation
17 can be written into Equations 26-27.

uh(x,) = ATd (26)

d= [u®xy) .. )l @)
where d is an n x 1 vector of nodal values. Changing the
symbol Xy, by X, Equation 26 can be written into
Equation 28.

n n
W) = N@d =) N@w  (29)
i=1
Here, N(x) is matrix of shape functions. For
constructing  the iging shape functions, the
polynomial basis function and the covariance function
are needed. The complete and incomplete polynomial
bases can be used as the polynomial basis function. On
the other hand, the correlation function is defined by
Equations 29-30.

p(h) = Cf:) (29)
a? = var[U(x)] (30)

where p(h) is the correlation function and h is a vector
separating the points x and x + h. In fl}s research, the
value of o2 was taken as 1. Moreover, the quartic spline
(QS) correlation function was used. The QS correlation
function for 0 < 33 < 1 is described by Equation 3 1.

p(h) =

3

o(ol) ool sy
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h L -
For 6 1 > 1, the QS ccmel;“m function 15 defined

as 0. Here, h is defined as the Euclidean distance
between the points x and x + h, d is the maximum
distance between points in the DOT and @ is known as
the correlation parameter. The QS correlation parameter
function for n = 10 is 1. For 3 < n < 10, the value of
8 is defined by Equation 32.

8= 013291 — 03290 (32)

Based @ the previous research [15], it was found
that there is a minimum num@g of layers for an m-order
polynemial basigffunction. The minimum number of
layers for linear, quadratic, and cubic polynomial basis
functions are one, two, and three, respectively. The
linear polynomial basis function with one layer of
elements is the same as the conventional FEM.

4 Numerical examples

Two-dimensial linear elasticity problems of a hollow
cylinder and an infinite plate with a central hole [19]
were considered. Fig. 4 shows a plane stress(ffoblem of
a hollow cylinder under internal pressure. Due to the
symmetry, only one-quarter of the problem domain was
analyzed. Pin supports are located along the sides x =0
and y = 0. The geometrical and material parameters of
the problem are a = 1.0, b=5.0,p=1.0, E = 1.0 x 10%,
and v = (.25, Any consistent unit can be used.

R

Fig. 4. L0101 M T hinder (M TTTTIITCOTTT L (T

Fig. 5 shows a planeg‘ain problem un infinite
plate with a central hole. Due to symmetry, only one-
quarter of the problem was modeled. The geometrical
and material parameters are a = 1.0, b=5.0,P=1.0, E
= 1.0 x 10°, and v = 0.25. Analytical surface tractions
are applied along the sides x =5 and y = 5. Pin supports
are also located along the sides x = 0 and ¥ = 0. Any
consistent unit can be used.

In this research, all computations of stiffness
matrices and nodal forces used six Gauss sampling
points. However, for calculating the element errors
using the EFG emor indicator, two different numbers of
Gauss sampling points were used (my = 6 andny = 1).

To run the AMR procedure, the initial mesh was
first determined. Afterward, the point, edge, triangle,
geometry, and boundary condition matrices were
exported to the main workspace as the input data of the
program. The value of By, and the limit of RSED were
also determined based on the criteria described above.
The results presented for each problem are the final

sh configurations obtained with the K-FEM using
near, quadratic, and cubic polynomial basis functions.

One and two layers of elements, two and three layer
elements, and three layers of elements were used for
linear, quadratic, and cubic polynomial basis functions,
respectively.

NEREE
1

Fig. 5. minfmite plate with a central hole [19].

4.1 Hollow cylinder

The initial mesh with 40 clements, shown in Fig. 6, was
used for this problem. The value of g was 0.25 and
the limit of RSED was 0.05. Moreover, the exact total
strain energy (Ugy) was 0.00105.

R Hallow Cylinder

] 1 i H 1 5
s

Fig. 6. Initial mesh of the hollow cylinder problem.

4.1.1 SER error indicator

The final meshes for the linear, quadratic, and cubic
polynomial basis functions presented are shown in Fig.
7-9.

o Cytmdnr

(@ ®
Fig. 7. The final mesh configurations of the hollow cylinder
problem obtained using the SER error indicator for a linear

polynomial basis function with (a) one and (b) two layers of
elements.

Fig. 8. The final mesh configurations of the hollow cylinder
problem obtained using the SER error indicator for a
quadratic polynomial basis function with (a) two and (b)
three layers of elements.
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Wi
Fig. 9. The final mesh configuration of the hollow cylinder
problem obtained using the SER error indicator for a cubic
polynomial basis function with three layers of elements.

4.1.2 GES error indicator

The final mesh configurations for Elcar, quadratic, and
cubic polynomial basis functions are shown in Fig. 10-

Fig. 10. The final mesh configurations of the hollow cylinder
problem obtained using the GES error indicator for a linear
polynomial basis function with (a) one and (b) two layers of
elements.

i Gytinder . Hiellz Cplnsar

I
AN/
VAV

[€)) (b)
Fig. 11. The final mesh configurations of the hollow cylinder
problem obtained using the GES error indicator for a
quadratic polynomial basis function with (a) two and (b)
three layers of elements.

Fig. 12. The final mesh configuration of the hollow cylinder
problem obtained using the GES error indicator for a cubic
polynomial basis function with three layers of elements.

4.1.3 EFG error indicator

The final meshes for the linear, quadratic, and cubic
polynomial basis functions presented are shown in Fig.
13-15.

Hatow Gyl

(@
Fig. 13. The final mesh configurations of the hollow cylinder
problem obtained using the EF G error indicator for a linear
polynomial basis function with (a) one and (b) two layers of
clements.

Fig. 14. The final mesh configurations of the hollow cylinder
problem obtained using the EFG error indicator for a
quadratic polynomial basis function with (a) two and (b)
three layers of elements.

Heliow Cylindar

K asis

Fig. 15. The final mesh configuration of the hollow eylinder
problem obtained using the EFG error indicator for a cubic
polynomial basis function with three layers of elements.

4.1.4 Discussion

Table 1 shows the total number of elements, RSER, and
RSED of the linear, quadratic, and cubic polynomial
bases for the final mesh configurations obtained using
the SER, GES, and EFG error indicators.

In general, the most effective error indicator can be
found based on its ability to detect areas with stress
concentration. This is done by considang the fmal
mesh configurations generated with each error indicator.
Moreover, the total number of elements, the value of
RSER, and the value of RSED may also be considered
as the criteria for determining the t effective error
indicator. However, those values based on the total
strain energy may not be the most reliable criteria
because of several factors that can influence the results.
One of the factors affecting the results is the element
distribution. The RSED value may not also be the most
reliable criterion as it depends on the difference between
the total strain energy of the current and previous
iterations. In addition, the most effective error indicator
must be independent of the type of problems being
analyzed. This means, for all problems, the most
effective error indicator must have the capability to
properly detect elements that must be refined.
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Table 1. Total number of elements, RSER, and RSED of
final mesh configurations for the hollow cylinder problem
using the SER, GES, and EFG error indicators.

Error Linear (1 Layer)
Indicator Elements RSER RSED
SER 293 0.02150 0.01666
GES 266 0.04173 0.04902
EFG 985 0.01570 0.00428
Error Linear (2 Layers)
Indicator Elements RSER RSED
SER 207 0.02553 0.03208
GES 294 0.04319 0.02204
EFG 219 0.03502 0.02687
Error Quadratic (2 Layers)
Indicator Elements RSER RSED
SER 221 0.00882 0.02602
GES 300 0.04143 0.03101
EFG 253 0.04891 0.02218
Error Quadratic (3 Layers)
Indicator Elements RSER RSED
SER 190 0.02053 0.03380
GES 269 0.03883 0.01771
EFG 266 0.04852 0.01654
Error Cubic (3 Lavers)
Indicator Elements RSER RSED
SER 170 0.01793 0.00737
GES 292 0.04431 0.01193
EFG 132 0.12124 0.03231

For the conventional FEM, gcd on the total
number of elements, RSER, and RSED, it could be
observed that the SER indicator might be the most
effective error indicator. However, the refinement
process tended to distribute throughout the problem
domain. This behavior could be observed more clearly
on the final mesh configuration for the cubic polynomial
basis function. On the other hand, considering the values
of RSER and RSED, the GES error indicator could be
viewed as the second most effective error indicator for
almost all polynomial basis functions. Nevertheless,
based on the final mesh configurations, this error
indicator appeared to perfggf well for all polynomial
basis functions, especially for the quadratic and cubic
polynomial basis functions. Unlike the SER error
indicator, the AMR procedure tended to be consistently
concentrated around the inner radius comer.
Furthermore, the EFG error indicator tended to give the
lowest value of RSER for the conventional FEM.
However, in this case, this error indicator geueratcmc
largest number of elements. This was because this error
indicator is based on the element strain energy error. In
the conventional FEM, the stress within the element is
constant throughout the element. As a result, the
difference between the strain energy errors calculated
using a different number of Gauss integration points is
certainly very small. Therefore, the effectiveness of this
error indicator is low. Nevertheless, as the order of the
polynomial basis functions increased, this error
indicator tended to perform better. 3

From the results, it was also found that mitial mesh
configurations, refinement criteria, and termination
criteria affected the total number of elements. The
authors tried to use a different initial mesh with 68
elements. Fig. 16 shows the initial (68 elements) and

final (457 eclements) mesh configurations for the
conventional FEM using the GES error indicator. It can
be seen that finer meshes tend to generate more
clements. In addition, the AMR can be distributed more
evenly around the inner radius corner in comparison to
the results obtained with 40 elements.

Furthermore, the mesh configuration could influence
the effectiveness of the K-FEM itself. The K-FEM tends
to work more effectively for a uniform mesh
configuration. A significant difference in distances
between nodes can reduce the effectiveness of the K-
FEM as it will affect the correlation matrix. Moreover,
the @B FEM is nonconforming (incompatible) [15]. The
KI 1s not perfectly continuous along the edges of the
elements. This is becaus@the KI of two adjacent
elements can be formed by a different set of nodes. For
a particular mesh configuration, the degree of error may
be influenced by the degree of incompatibility. In
consequence, as ubservﬁ in this research, the total
number of elements for the K-FEM with a quadratic

lynomial basis function could be larger than the one
with a linear polynomial basis function.

The total number of elements could also be affected
by the refinement criterion (f, ). The lower the value
of B, 101, the more the elements chosen to be refined.
Similarly, the lower the limit of RSED, the higher the
total number of elements could be.

4.2 Infinite plate with a central hole

Fig. 17 shows the initial mesh consisted of 40 elements.
The value of 5, ;4 was 0.55 and the limit of RSED was
0.003. Moreover, the exact total strain energy (U, ) was
0.01217.

Piste with & Hals.

Fig. 17. Initial mesh of'the infinite plate with a central hole
problem.

4.2.1 SER error indicator

The final meshes for the linear, quadratic, and cubic
polynomial basis functions presented are shown in Fig.
18-20.
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Pista wih & Hale

(a) )
Fig. 18. The final mesh configurations of the infinite plate
with a central hole problem obtained using the SER error
indicator for a linear polynomial basis function with (a) one
and (b} two layers of elements.

Pl with 8 Nose

s

K

@ qb)
Fig. 19. The final mesh configurations of the infinite plate
with a central hole problem obtained using the SER error
indicator for a quadratic polynomial basis function with (a)
two and (b) three layers of elements.

Piats with aHolw

1 H 3 4
s

Fig. 20. The final mesh configuration of the infinite plate
with a central hole problem obtained using the SER error
indicator for a cubic polynomial basis function with three
layers of elements.

4.2.2 GES error indicator

The final mesh configurations for EICBI‘, quadratic, and
cubic polynomial basis functions are shown in Fig. 21-
23.

4.2.3 EFG error indicator

The final meshes for the linear, quadratic, and cubic
polynomial basis functions are shown in Fig. 24-26.

Pita i x o
CTE i

s e

B s

(@ (b)
Fig. 21. The final mesh configurations of the infinite plate
with a central hole problem obtained using the GES error
indicator for a linear polynomial basis function with (a) one
and (b) two layers of elements.
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Fig. 22. The final mesh configurations of the infinite plate
with a central hole problem obtained using the GES error
indicator for a quadratic polynomial basis function with (a)
two and (b) three layers of elements.
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Fig. 23. The final mesh configuration of the infinite plate
with a central hole problem obtained using the GES error
indicator for a cubic polynomial basis function with three
layers of elements.
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Fig. 24. The final mesh configurations of the infinite plate
with a central hole problem obtained using the EFG error
indicator for a linear polynomial basis function with (a) one
and (b) two layers of elements.
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Fig. 25. The final mesh configurations of the infinite plate
with a central hole problem obtained using the EFG error
indicator for a quadratic polynomial basis function with (a)
two and (b) three layers of elements.
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Fig. 26. The final mesh configuration of the infinite plate
with a central hole problem obtained using the EFG error
indicator for a cubic polynomial basis function with three

layers of elements.
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4.2.4 Discussion

The total number of elements, RSER, and RSED ufge
linear, quadratic, and cubic polynomial basis functions
for the final mesh configurations obtained with the SER,
GES., and EFG error indicators are shown in Table 2.

Table 2. Total number lements, RSER, and RSED of
final mesh configurations for the infinite plate with a central
hole problem using the SER, GES, and EFG error indicators.

Error Linear (1 Layer)
Indicator Elements RSER RSED
SER 154 0.00495 0.00245
GES 120 0.00765 0.00232
EFG 127 0.01377 0.00225
Error Linear (2 Lavers)
Indicator Elements RSER RSED
SER 119 0.00207 0.00260
GES 129 0.00019 0.00287
EFG 231 0.00002 0.00124
Error Quadratic (2 Layers)
Indicator Elements RSER RSED
SER 89 0.00216 0.00189
GES 121 0.00033 0.00278
EFG 286 0.00269 0.00271
Error Quadratic (3 Layers)
Indicator Elements RSER RSED
SER 164 0.00169 0.00267
GES 128 0.00161 0.00177
EFG 174 0.00221 0.00217
Error Cubic (3 Layers)
Indicator Elements RSER RSED
SER 129 0.00450 0.00278
GES 127 0.00032 0.00296
EFG 205 0.00207 0.00195

In this problem, the behavior of each cngndicatm‘
could be observed more clearly. The higher the order of
the polynomial basis, the lower the effectiveness of the
SER error indicator. This behavior could be seen
particularly in the final mesh configurations for the
quadratic and cubic polynomial basis functions with
three layers of elements. The AMR was not only
concentrated around the hole but also distributed
throughout the whole domain. This behavior was
observed because the SER error indicator is based on the
averaged (smoothed) stress. Theoretically, the SER
error indicator will work more effectively for the linear
polynomial basis function with one layer of elements
(conventional FEM). The stress fiel@bccurring in the
conventional FEM is not continuous along the element
edges between two neighboring elements. As a result,
the difference between the averaged and unaveraged
stresses is large. Hence, the SER tends to work more
effectively for the conventional FEM.

On the other hand, similar to the previous problem,
the GES error indicator worked effectively for all
polynomial basis functions. It could also be observed
that the value of RSER and the total number of elements
for the GES error indicator were mostly the lowest
compared to the other error indicators. The authors also
tried to plot the stress around the comer of the hole.
Based on the stress plot, the stress concentration at the
comner of the hole could be captured quite well.

Moreover, the EFG error indicator worked
ineffectively based on the final mesh configurations,
especially for the linear and quadratic polynomial basis
functions. The area around the hole shown in the final
mesh configuration of the conventional FEM was not
even accurately refined. However, as the order of the
polynomial basis increased, this error indicator could
perform better. This could be observed from the value
of RSER which tended to get lower.

5 Conclusions

The effectiveness of each error indicator in the AMR can
be observed through several criteria. Several criteria
considered are the total number of elements, the values
of RSER and RSED, the final mesh configurations, and
the independence from the type of problems .
analyzed. Nevertheless, in some cases, a large total
number of elements and a high value of RSER are not
always an indication that the error indicator used is less
effective than the others. The reason for this is that even
though there may be a large number of elements and a
high value of RSER, the AMR procedure may instead
be more concentrated in the area with stress
concentration. Based on this observation, it can be
concluded thatfe GES indicator is the most effective
error indicator as it can accurately estimate the element
errors and work effectively for the K-FEM with all
polynomial basis functions for each problem presented.

Moreover, the effectiveness of thdfK-FEM can be
affected by several factors, such as the initial mesh
configurations, the refinement criteria, and the
termination criteria. Therefore, these factors must
always be considered in the AMR procedure for the K-
FEM analyses.
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