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Abstract Web data extraction is an essential task for web data integration. Most
researches focus on data extraction from list-pages by detecting data-rich section
and record boundary segmentation. The problem of data alignment in records is
small scale since only a couple data attributes need to be aligned. However, for
detail-pages which contain all-inclusive product information in each page, the num-
ber of data attributes need to be aligned is much larger. In this paper, we formulate
the data extraction problem as alignment of leaf nodes from DOM Trees. We pro-
pose AFIS, an Annotation-Free Induction of full Schema for detail-pages. AFIS
applies Divide-and-Conquer and Longest Increasing Sequence (LIS) algorithms to
mine landmarks from input. The experiments show that AFIS outperforms Road-
Runner, FivaTech and TEX (with precision 0.994, recall 0.987, and F1 0.990) in
terms of selected (data) columns. For full schema evaluation (all data columns),
AFIS also represents the highest average performance (with precision 0.946, recall
0.930, and F1 0.937) compared with TEX and RoadRunner.

Keywords Web data extraction · Semi-structured data · Detail-pages alignment ·
Divide-conquer alignment · Landmark equivalence class

1 Introduction

Currently, a lot of web pages are generated dynamically from predefined template
upon users’ query, which we called deep web. Deep webs ware estimated 400 to 550
times larger than surface webs (Bergman 2001). Extraction of embedded data from
deep web requires substantial efforts because these web pages are not generated
for data exchange. Therefore, generating a tool for extracting data automatically
for information integration is an essential task.
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(a) list-page (b) detail-page

Fig. 1: Examples of list-page and detail-page

In general, there are two kinds of template web pages. The first type is list-pages
that contain a list of records in a web page. For instance, a list-page with book
records is shown in Fig. 1(a). Another type is detail-pages which contain various
kinds of information for a pariticular item or product in a page. For example,
a detail-page containing the information of a book is shown in Fig. 1(b). Most
researches (e.g. WebSets (Dalvi et al. 2012), CTVS (Su et al. 2012), etc.) focus on
search result record extraction, which requires data-rich section detection, record
boundary segmentation, and data attribute alignment. Since the performance is
evaluated on selected data items (usually the data-rich section), not much effort
has been put on the extraction of side information, especially for detail-pages.
While some researches (e.g. FivaTech (Kayed and Chang 2010), TEX (Sleiman and
Corchuelo 2013), etc.) induce full schema for the complete pages, the performance
on detail-pages still has room for improvement.

The difficulties of aligning detail-pages come from several aspects: First, the
number of data attributes need to be aligned is much larger than that of data
records in list-pages. Second, there are more data types and more optional data
to be processed. Third, the leaf nodes with the same content could have different
paths because of decorative tags. On the other hand, the leaf nodes with the same
content and equal path might function differently. In addition, it is more likelily
to have multiple attribute-value pairs which leads to multi-order data rendering.

In this paper, we propose an Annotation-Free Induction of full Schema (abbre-
viated as AFIS) for detail web pages. The proposed technique operates efficiently
on leaf nodes of DOM trees of input pages by recording all of the required infor-
mation to identify templates and detect data. We implement several algorithms
to achieve our goal. First, AFIS uses Divide-and-Conquer and Longest Increasing
Sequence (LIS) algorithms for our novel template mining via Landmark Equiva-
lence Class (LEC). Furthermore, AFIS uses LECTable for aligning leaf nodes into
attribute-value pairs. Finally, AFIS rearranges the leaf nodes to achieve the chal-
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lenging alignment task. Compared with TEX (Sleiman and Corchuelo 2013) which
has very high performance for the selected data items in the form of tagged-list,
the average performance of AFIS outperform the result with 0.994 F1-measure.
Moreover, we evaluate the full schema inducted by AFIS, TEX, and RoadRun-
ner with manaually annotated golden answer. AFIS outperforms other techniques
with 0.937 F1-measures.

The rest of the paper is organized as follows. In the next section, we compare
AFIS with related Web data extraction techniques. In Section 3, we provide our
information extraction model as well as the detailed solution of AFIS with example.
The performance evaluations are presented and analysed in Section 4. Finally, we
conclude our current research and mention our future work in Section 5.

2 Related work

Web information extraction has been a hot topic for a decade. A number of in-
formation extraction approaches have been proposed with diverse degree of au-
tomation, i.e. supervised, semi supervised, and unsupervised. SoftMealy (Hsu and
Chang 1999) and WIEN (Kushmerick 1997) are example of supervised learning.
Currently, most researches focus on unsupervised approaches to reduce manual
efforts for improving effectiveness of information extraction. Some representatives
of unsupervised approaches are EXALG (Arasu and Garcia 2003), Zhao et al.
(2007), FiVaTech (Kayed and Chang 2010), Hao et al. (2011), CETD (Sun et al.
2011), WebSets (Dalvi et al. 2012), CTVS (Su et al. 2012), Zheng et al. (2012),
Uzun et al. (2013), Lu et al. (2013), and TEX (Sleiman and Corchuelo 2013). This
paper also applies unsupervised approach to extract information. Although all the
researches are unsupervised, they targeted on different input and extraction out-
put. Meanwhile, they applied different granularity of processing unit for template
mining and schema induction as described below.

First of all, depending on input pages, the extraction target may be the search
result records from list-pages or the detail data items for the product specified in
a page. Meanwhile, considering the efficiency and the number of input pages for
training, various researches also consider different processing units. For example,
CTVS (Su et al. 2012), Lu et al. (2013), FiVaTech (Kayed and Chang 2010),
and CETR (Weninger et al. 2010) operate on DOM trees. IEPAD (Chang and
Lui 2001) and RoadRunner (Crescenzi and Mecca 2004) consider only HTML
tag tokens and a special TEXT token to denote script blocks, style blocks or
#PCDATA. EXALG (Arasu and Garcia 2003) and TEX (Sleiman and Corchuelo
2013) use not only HTML tag tokens but also word tokens as their processing unit.

Furthermore, extraction rules can be induced by either top-down or bottom-
up approaches (Chang et al. 2006; Sarawagi 2008). Top-down learning algorithm
induces from general to specific concept in various ways to get set of rules with
high precision. For instance, FiVaTech (Kayed and Chang 2010) traverses from
root to leaf nodes for finding template and detecting data. On the other hand,
bottom-up learning algorithm starts inducing with the most specific instances and
then replaces them progressively with more general rules. For example EXALG
(Arasu and Garcia 2003) and TEX (Sleiman and Corchuelo 2013) induce schemas
from common word and HTML tag tokens based on bottom-up learning algorithm.
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In this paper, we are particularly interested in algorithms that are designed
for full schema induction such as RoadRunner and TEX.

– RoadRunner (Crescenzi and Mecca 2004) learns a union-free regular expres-
sion by generating a base template from the first web page then it compares
literately with another web page using a string alignment algorithm. Mean-
while, RoadRunner applies a backtracking algorithm for detecting optional
and repetitive patterns.

– EXALG (Arasu and Garcia 2003) proposed equivalence classes among a string
of tokens to find out a template from the given web pages. Afterwards the
discovered template is used by EXALG for extracting data.

– FiVaTech (Kayed and Chang 2010) identifies a tree template and detects a data
schema from DOM tree automatically. For that purpose, it applies a clustering
algorithm using tree-edit distance for aligning the sibling nodes at the same
level. FiVaTech also employs a mining technique to mine repetitive patterns
and several heuristics to detect optional information.

– TEX (Sleiman and Corchuelo 2013) finds and discards the shared longest se-
quence tokens (Texts) amongst web documents (TextSet) until finding the rel-
evant information that should be extracted from them. In other words, TEX
extracts varies information from web documents and it removes information
that belong to the template.

3 System architecture

A system architecture for our proposed approach AFIS can be seen in Fig. 2. It
consists of three modules, i.e. data preprocessing, divide-and-conquer alignment,
and wrapper generation. The first module is data preprocessing which parses all
given web pages into DOM trees and arranges all leaf nodes of DOM tree into a
table for alignment. The second module is divide-and-conquer alignment which is
the core of this paper for mining template and splitting attribute-and-value pairs.
We leave the last module in our future work.

3.1 Data preprocessing

First, the given web pages must be parsed into DOM trees. For scalability con-
sideration, we use leaf nodes of the DOM trees as our basic processing units since
the average number of leaf nodes (798) is much smaller than the average number
of tag content tokens (4,548, consist of 3,756 tag tokens and 792 content tokens)
for pages with average size 77KB. For each leaf node l, we maintain the following
properties including LeafIndex, Path, Content, IDSet, and ClassSet.

– LeafIndex is a unique number of the ordered leaf nodes in a document.
– Path is the sequence of tag names from a root node to a leaf node l, Path =
path[1]/path[2] · · · /path[|l.path|]. Note that if the last tag name is a decorative
tag, DecorativeTag ≡ {a, b, big, cite, dfn, font, em, i,mark, small, span, sub,
sup, strike, strong, u}, we will remove it from the path to the text content.

– Content refers to the text content of a leaf node.
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Fig. 2: System architecture: blue background denotes recursive call while green
background denotes iterative process for each segment

– IDSet is the union of id attributes from all tags in the Path, see Eq. (1), where
ID(tag) is an id attribute from a given tag.

IDSet =

|l.Path|⋃
i=1

ID(l.path[i]) (1)

– ClassSet is the union of class attributes from all tags in the Path, see Eq. (2),
where Class(tag) is an class attribute from a given tag.

ClassSet =

|l.Path|⋃
i=1

Class(l.path[i]) (2)

– TypeSet is the union of all encoded tokens of Content, see Eq. (3), where
type(l.content[i]) is a function to encoded a given token and i is an token
index in l.content.

TypeSet =

|l.Content|⋃
i=1

type(l.content[i]) (3)

The procedure to tokenize l.Content and obtain the TypeSet is described as
follows.
1. Split l.Content based on spaces into tokens, l.Content = 〈l.content[i]〉,

where i = 1 · · · |l.content|.
2. If a token l.content[i] has prefix or suffix of punctuation marks, remove the

marks and union type “13” to l.TypeSet.
3. Encode l.content[i] based on token type as shown in Table 1 via regular

expressions.
4. Union all encoded tokens into the TypeSet, i.e. Eq. (3).
As shown in Example 1, we obtain a set of nine token types for the given text
content with 9 tokens.
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Table 1: Token type encoding

name type

mixed characters 1
all capital letters 2
small letters 3
first capital letters 4
percentage 5
date 6
time 7
url 8
email 9
currency 10
decimal 11
integer 12
punctuation 13

Example 1 Given a l.Content = “eBay item
1330190403 (02-09-2013 17:09:30 PST) Great N275
$16.00”. The tokens and the related types are listed
as follows.

– l.content[1] = “eBay”→ l.typeset[1] = {1}
– l.content[2] = “item”→ l.typeset[2] = {3}
– l.content[3] = “1330190403” → l.typeset[3] =
{12}

– l.content[4] = “(02-09-2013” → l.typeset[4] =
{6, 13}

– l.content[5] = “17:09:30” → l.typeset[5] = {7}
– l.content[6] = “PST )”→ l.typeset[6] = {2, 13}
– l.content[7] = “Great”→ l.typeset[7] = {4}
– l.content[8] = “N275”→ l.typeset[8] = {1}
– l.content[9] = “$16.00” → l.typeset[9] = {10}

∴ l.TypeSet = {1, 2, 3, 4, 6, 7, 10, 12, 13}

Definition 1 (TableL) LetD be the set of all DOM trees,D = d[1], d[2], · · · , d[m].
For each DOM tree d[j], we number the leaf nodes from 1 to |d[j]| and refer to each
leaf node by d[j][i] where i is the leaf node index (LeafIndex ) in d[j], 1 ≤ i ≤ |d[j]|.
Therefore, the goal of the preprocessing module is to generate a table of all leaf

nodes for the next step. We denote the table by TableL =
⋃|D|

j=1

⋃|d[j]|
i=1 d[j][i],

where j is a document index in D.

In summary, the preprocessing module generate TableL for a given set of web
pages by the following five steps.

1. Parse an input page using CyberNeko (Clark and Guillemot 2013) into DOM
Tree d[j].

2. Characterize each leaf node by LeafIndex, Path, Content, IDSet (see Eq. (1)),
and ClassSet (see Eq. (2)) features.

3. Encode a given l.Content into a l.TypeSet as described above.
4. Encode a given l.Path if there exist DecorativeTag or 〈br〉 as follows.

– Remove 〈span〉 and 〈font〉 tags from l.Path.
– Remove 〈br〉 and DecorativeTag tags from l.Path into l.Content.

5. Arrange all leaf nodes in DOM trees into TableL.

Fig. 3: Data preprocessing framework: j: document index, i: leafnode index.
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3.2 Divide-and-conquer alignment

Divide-and-conquer alignment is the core of our work in this paper. The major
steps include landmark detection, mine template recurrently, generate extractor,
and rearrange leaf nodes in TableL.

3.2.1 Landmark equivalence class

Similar to EXALG (Arasu and Garcia 2003) and TEX, we define equivalence class
to discover landmarks for the division procedure. In this paper, we use Path and
Content of leaf nodes for generating Landmark Equivalence Class (LEC). We then
use an LECTable to mine base template for web page division. An illustration of
generating LEC from TableL can be shown in Fig. 4(a)(b) and Example 2.

Definition 2 (Equivalence Leaf Nodes) Two leaf nodes u and v are considered
as equivalence if u.Path ∼= v.Path, i.e. Similarity(u.Path, v.Path) by Eq. (4) is
greater than θpath, and u.Content = v.Content. Note that if a content contains
decorative tags, we consider <b>u<strong> and <i>u<em> and

StrSimilarity(s1, s2) =
LCS(s1, s2)

max(|s1|, |s2|)
(4)

where LCS is the longest common subsequence and θpath is a given Path thresh-
old.

Definition 3 (Landmark Equivalence Class) A set of equivalence leaf nodes
form an equivalence class. For each LEC, we assign an LECId and keep the Path,
Content. In addition, we also calculate the Occurrence Vector (see Definition 4)
and First Position (see Definition 5) for each LEC. As a note, Index is a sequence
number and LECId is a sequence number of uniqueness compound of a Path and
a Content.

LECe(Pathe, TCe) = { d[j][i] | d[j][i].Path ∼= Pathe, d[j][i].Content = TCe }
(5)

where j = 1 · · · |D|, i = 1 · · · |d[j]|.

Definition 4 (Occurrence Vector) An Occurrence Vector (OV ) for an LECe

is a vector of occurrence count Oj of LECe in each d[j], i.e. OVe = [o1, o2, · · · , om].

Definition 5 (First Position) A First Position (FP ) of a Landmark Equiva-
lence Class(LECe) is a vector of the first occurrence position Pj (or -1 if missing in
d[j]) of the LECe in each d[j], i.e. FPe = [p1, p2, · · · , pm], where pj is the smallest
i for all d[j][i] in LECe.

Example 2 For the given TableL in Fig. 4(a), the first leaf nodes in all five
DOM trees are quivalent to each other. Thus, they form an equivalence class
with LECId=1. Similarly, leaf nodes with Content= “〈b〉Job ID:〈/b〉” and Path=
“html/body/table/tr/td/table/tr/td/text” form equivalence class with LECId=2.
Both LEC1 and LEC2 has the same occurrence vector OV1 = OV2 = [1, 1, 1, 1, 1]
and FP1 = [1, 1, 1, 1, 1], FP2 = [2, 2, 2, 2, 2]. Also note LECId=14 which are com-
prised of leaf nodes with Content “〈b〉Location(s):〈/b〉” and Path “html/body/
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table/tr/td/table/tr/td/text”, and has occurrence vector OV = [1, 1, 0, 1, 1] even
if they occur in different positions in four documents FP = [6, 12,−1, 6, 12].

Consider the third leaf nodes in each document, which have different text con-
tent, i.e 8490290, 8497839, .... They will become singular equivalence classes LEC3

to LEC7 with similar occurrence count OV = [1, 0, 0, 0, 0] to OV = [0, 0, 0, 0, 1]
and FP = [3,−1,−1,−1,−1] to FP = [−1,−1,−1,−1, 3].

A special case is for leaf nodes without text content like 〈br/〉 tags, since we
have moved these tags into Content, we can define equivalence class in a similar
way. For instance, there are two leaf nodes with Content 〈br/〉 in d[3], d[4], d[5],
therefore, the system assign LECId=31 with OV31 = [1, 1, 2, 2, 2] and FP31 =
[14, 14, 12, 14, 14].

Let maxcol be the maximum number of leaf nodes from D, i.e. maxj |d[j]|.
To construct LEC table from TableL, the system applies a single link cluster-
ing to leaf nodes in TableL column-wise. Initially, d[1][1] forms an LEC with
LECId = 1, OV = [1, 0, · · · , 0], FP = [1,−1, · · · ,−1]. For each following d[j][i]
in TableL, where i = 1 · · ·maxcol, maxcol = max(d[j]), and j = 1 · · · |D|, the
system compares it with existing LECs.

1. If there exists an LECf = (Pathf , TCf ) such that d[j][i] is equivalence to
LECf , i.e. d[j][i].Content = TCf and d[j][i].Path ∼= Pathf , we increment
OVf [j] and update FPf [j] if d[j][i] is the first leaf node in d[j] equivalence to
LECf , i.e. OVf = [o1, · · · , oj++, · · · , om] and assign FPf [j] with i if FPf [j] =
−1.

2. If d[j][i] is not equivalence to any existing LEC, the system adds a new LECe

with LECId = e, FPe[j] = i, OVe[j] = 1, and FPe[k] = −1, OVe[k] = 0 for
k 6= j.

Finally, the system orders the generated LECs by the minimum of nonnega-
tive first positions, i.e. mini{FP [i]|FP [i] ≥ 0, 1 ≤ i ≤ |D|}. If the minimum
of nongegative first positions is the same, we then sort LEC by LECId. After
reordering, each LEC also has an index in the LECTable in addition to LECId.
In the following, we use LEC[i] to refer the i-th LEC in the LECTable and LECe

to refer an LEC with LECId = e.

3.2.2 Mandatory template detection

The purpose of mandatory template detection (MTD) is to identify landmarks
for web page segmentation and divide-and-conquer. A mandatory template MT is
defined as follows:

Definition 6 (Mandatory Template) A Mandatory Template (MT ) is an
LEC with the same occurrence count K in each d[j], i.e. LECe.OV [j] = K where
K ∈ N, j = 1 · · · |D|.

After the sorting of LECs during LECTable construction, it is possible that
the first positions of LECs in d[j] are not in order. Thus, we apply LIS (Longest
Increasing Subsequence Fredman (1975)) to select as more MT s by maintaining an
increasing sequence of first positions for the selected MT s. For each d[j], find the
longest increasing subsequence from the sequence of first positions LEC[k].FP [j]
for each LEC[k] (k = 1, · · · |LECTable|), i.e. S = {LEC[1].FP [j], LEC[2].FP [j],
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Fig. 4: An example of LEC generation, MT selection, and TableL segmentation

· · · , LEC[k].FP [j]}, such that for every k < k
′
, LEC[k].FP [j] < LEC[k′].FP [j].

By applying the LIS algorithm shown below, the system selects important MT s
for further analysis.

1. Clone the sequence S into S
′
.

2. Sort S
′

in ascending order.
3. Find the Longest Increasing Subsequence by LCS(S, S

′
).

An illustration of LEC selection for constructingMT and TableL segmentation
can be seen in Fig. 4(b)(c) and Example 3. A MT mining is done as follows.

1. Prune LEC[k] if LEC[k] is not an MT.
2. Apply LIS on the first positions of MT s for each d[j] (j = 1 · · · |D|) to select

as many MT s as possible.
3. Use the selected MT s for segmenting TableL into new TableLs.
4. Recursively call MT Detection for each new TableL.

Example 3 As shown in Fig. 4(b)(c), the system first selectsMT from LECTable
and reduces the number of LECs from 45 into 7. Next, the system applies LIS
on the first positions of MT in each document. Since the first positions of these
selected MT in d[1], i.e. {1,2,4,10,8,12,15}, are not order, LEC15 (with FP[1]=10)
is removed from selected MT s as shown in Fig. 4(d). These selected MT are then
used for segmenting TableL for following optional template detection.

For each segment, we re-evaluate the FP and OV for each LEC since an LEC can
occur in multiple segments on a web page. For example, leaf nodes corresponding
to LEC14 (i.e. <b>Location(s): </b>) occur both at Seg[2] and Seg[4] in Fig.
4(e) because of the MT LEC21 and LEC26. The new FP for LEC14 in seg[2] and
seg[4] will be [6, -1, -1, 6, -1] and [-1, 12, -1, -1, 12] respectively as shown in Fig.
6(a).
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Fig. 5: An illustration of selecting and adding OT s

3.2.3 Optional template detection

Once the FP and OV are re-evaluated, the system then selects for each segment
as many OT s as possible while keeping FP [j] of the OT s consistent in each d[j].

Definition 7 (Optional Template) An Optional Template (OT ) is an LEC
with the same occurrence count K in each d[j] or null (0) otherwise, and the ratio
of non-null documents is greater than a threshold θOT .

Support(LECe) =
∑|D|

j=1 I(LECe.OV [j])

|D| , and I(x) =

{
1 , x > 0
0 , otherwise

The detail steps of optional template detection are similar to that of mandatory
template detection. However, since there are null occurrence (i.e. with first position
equals to -1 ) for some OT s, we ignore documents with null occurrence and focused
on comparable pages. In addition, the OT s that are not selected by LIS will be
added back to the OTTable as shown below.

1. Prune LECe if Support(LECe) < θOT

2. Apply LIS for selecting OT s in each segment as defined in MT detection.
3. For each OTr that is not selected by LIS, find a position p to add back the

removed OTr. In other words, find an LEC[p] such that LEC[p].FP [j] <
LECr.FP [j] and LEC[p+ 1].FP [j] > LECr.FP [j] for each comparable page
d[j].
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Example 4 For the optional templates in Fig. 5(a)1, LIS selects three OTs with
LECId = 14, 20, 30 and removes OT s with LECId = 15, 23, 25 as shown in Fig.
5(b). The removed OT15 is inserted after OT30 since OT30.FP [3] < OT15.FP [3],
while OT23 is inserted between OT30 and OT15 since OT30.FP [3] < OT23.FP [3] <
OT15.FP [3]. Finally, OT25 is inserted after OT15 since OT15.FP [3] < OT25.FP [3]
are shown in Fig. 5(c).

In summary, optional template detection first selects OT s via LIS and then
reorders the remaining OT s based on the information from comparable pages.

3.2.4 Merging OT s across segments

After optional template detection in each segment, the system concatenates the
final OTs generated from each segment with the separating MT s for schema in-
duction. As an LEC can occur in multiple segments, it may be detected as an OT
in multiple segments as well. Some of such OTs that are generated from the pruned
MT s. Therefore, the system tries to merge such recurring OT s by removing MT s
that seperates the recurring OT s in order to generate a common schema.

Definition 8 (Recurring OT) A recurring OT is an LEC which occurs in
two segments separated by some MT and has complement occurrence vector,
i.e. there exists i and i′ (i < i′) such that LEC[i].LECId = LEC[i′].LECId and
LEC[i].OV Z LEC[i′].OV = true, where Z denotes NOT AND operator2.

If a recurring OT is detected, the system will merge LEC[i] and LEC[i′] and
remove the MT s between them by changing the type into OT .

1. Change LEC[c].T ype to OT for i < c < i
′

2. Change LEC[i].T ype to MP
3. Update the first position of LEC[i] by max{LEC[i].FP, LEC[i′].FP} and the

occurrence vector of LEC[i] by LEC[i].OV + LEC[i′].OV

4. Remove LEC[i
′
]

5. Apply LIS to ensure LEC[i].FP in order for LEC[i].T ype = MP and
support(LEC[i] < 1), otherwise remove the LEC[i].T ype = MP .

Example 5 Consider LEC15 in Fig. 6(a), which is a recurring OT since it occurs
in LEC[5] and LEC[8] and LEC[5].OV Z LEC[8].OV = true. Thus, the system
merges LEC[5] with LEC[8] and changes the type of LEC[6].T ype from MT to
OT . The first positions and occurrence counts of LEC[5] are then updated ac-
cordingly, i.e. LEC[5].FP = [10, 6, 6, 10, 6], LEC[5].OV = [1, 1, 1, 1, 1]. Similarly,
LEC14 in Fig. 6(a) is also a recurring OT since it occurs in LEC[4] and LEC[12]
and LEC[4].OV Z LEC[12].OV = true. Therefore, the system merges LEC[4]
with LEC[12] and changes the type of LEC[6].T ype and LEC[9].T ype from MT
to OT . The first positions and occurrence counts of LEC[4] are then updated ac-
cordingly, i.e. LEC[4].FP = [6, 12,−1, 6, 12], LEC[4].OV = [1, 1, 0, 1, 1]. Finally,
LEC[5] and LEC[4] are assigned with type MP as shown in Fig. 6(b).

After merging every recurring OT s, the system adds two sentinel LECs at the
start and the end of the template LEC Table as shown in Fig. 7(b).

1 Note that this example is independent of Fig. 4.
2 Or equivalently LEC[i].OV + LEC[i′].OV =1.
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Fig. 6: Merging recurring OT s to obtain template LECs

In the above example, LEC15, which is a pruned MT in Fig. 4(c), and LEC14

present two recurring OT s which could not be aligned well. This is a scenario
caused by multi-order attribute-value pairs, which will be addressed by random
procedure described below.

3.2.5 Dealing with multi-order attribute-value sets

As mentioned above, while most template and data are arranged in a particular
order for all pages, attribute-value pairs can sometimes break the rule and could be
rendered arbitrarily in different pages. For such multi-order attribute-value pairs,
we need a random procedure for data extraction. Therefore, we propose sequential
and random aligning procedure based on the final template LECs.

In this paper, we consider all the final LECs after merging recurring OT as
templates, while others are data values. The system then aligns the corresponding
leaf nodes in TableL into an aligned TableA based on the first position vectors of
these LECs. In other words, each column of TableA represents either a template
attribute or a data value.

For two adjacent MT s: LEC[b] and LEC[b′] (where b < b′), in the final tem-
plate LECs, if there is no LEC of Type MP and OT between LEC[b] and LEC[b′],

Oviliani
Highlight
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the leaf nodes with index between LEC[b].FP [j] and LEC[b′].FP [j] in each d[j]
are clustered based on their similarity defined by Eq. (6). For leaf node f1 and f2:

(6)

LeafSimilarity(f1, f2) = StrSimilarity(f1.Path, f2.Path)× ωP

+ Similarity(f1.IDSet, f2.IDSet)× ωI

+ Similarity(f1.ClassSet, f2.ClassSet)× ωC

+ Similarity(f1.T ypeSet, f2.T ypeSet)× ωT

where each similarity is calculate by Eq. (4) and ωP , ωI , ωC , and ωT are weights
of Path, IDSet, ClassSet, and TypeSet respectively. In our experiment we define
ωP = 0.3, ωI = 0.2, ωC = 0.2, ωT = 0.3 and LeafSimilarity(f1, f2) is greater
than θCol.

If, however, there exists LEC[f ] of Type MP or OT between LEC[b] and
LEC[b′], i.e. b < f < b′, we align leaf nodes based on LEC[f ] as follows.

– Pass 1: For each LEC[f ], assign the corresponding leaf nodes, the LEC[f ].FP [j]-
th leaf node in d[j], to the same attribute column.

– Pass 2: For each LEC[f ], let startIndex[j] be the index after the first position,
i.e. LEC[f ].FP [j] + 1, and endIndex[j] be the smallest first posistion larger
than LEC[f ].FP [j], i.e.

endIndex[j] = min{LEC[c].FP [j]|b ≤ c < b′, LEC[c].FP [j] > LEC[f ].FP [j]}
(7)

We cluster leaf nodes with index between startIndex and endIndex in each
d[j] based on their similarity defined by Eq. (6) and insert each cluster to a
data column after the attribute column corresponding to LEC[f ].

In summary, the system alternates between two procedures to deal with unordered
FP vectors of the template LECs as follows:

1. Single-pass alignment: if there is no LEC of Type MP and OT between
LEC[b] and LEC[b′]
(a) For LEC[b], align the LEC[b].FP [j]-th leaf node in each d[j] to the same

column in TableA.
(b) For leaf nodes with index greater than LEC[b].FP [j] and smaller than

LEC[b′].FP [j] in d[j], if LEC[b′].FP [j] − LEC[b].FP [j] > 2, the system
clusters leaf nodes based on their similarities, otherwise all leaf nodes are
considered to be in one cluster. Finally, append a new data column after
LEC[b] for each cluster.

2. Multi-pass alignment: if there exists LEC[f ] of Type MP or OT between
LEC[b] and LEC[b′], i.e. b < f < b′

(a) For each LEC[f ], where b ≤ f < b′, align the corresponding leaf nodes,
LEC[f ].FP [j]-th leaf node in each d[j] to the same column in TableA.

(b) For each LEC[f ], if endIndex[j]−startIndex[j] > 2 for some j, the system
clusters leaf nodes between startIndex[j] and endIndex[j] for all d[j] based
on their similarities, otherwise all leaf nodes are considered to be in one
cluster. Finally, append the new data column after LEC[f ] for each cluster.

Example 6 For LEC[3] and LEC[4] in Fig. 7(b), there is no LEC of Type MP
and OT, thus TableL will be processed by sequential extraction. All leaf nodes
specified by LEC[3].FP = [2, 2, 2, 2, 2], i.e. all second leaf nodes in each d[j] (see
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column 2 for each document in Fig. 7(a)) will be aligned in an attribute column
(see column LEC2 in Fig. 7(c)). Other leaf nodes whose LeafIndex < 4, i.e.
d[j][3], become a data column and are aligned in column 3, i.e. Seg[1], in Fig. 7(c)
because similarities of their Path, IDSet, ClassSet, and TypeSet are less or equal
to θcol.

Another example, consider two adjacent MT LEC[4] and LEC[12] in Fig.
7(b). There are two MP, i.e. LEC[5] and LEC[6], and several OT s, i.e. LEC[7] ∼
LEC[11]. Therefore, the system adopts multipass alignment for alignment. First,
leaf nodes corresponding to the same template LEC are aligned in the same at-
tribute column. For instance, the leaf nodes specified by LEC14.FP = [6, 12,−1, 6, 12],
i.e. d[1][6], d[2][12], d[4][6], and d[5][12] in Fig. 7(a), are aligned in LEC14, i.e.
Column 6 in Fig. 7(c). To find the correponding values in the second pass, the
following leaf nodes, i.e. d[1][7], d[2][13], d[4][7], and d[5][13] are considered as
its value node and are aligned together in column 7 as shown in Fig. 7(c). Note
that d[1][8] and d[2][14] are not futher considered because endIndex[1] = 8 and
endIndex[2] = null.

Fig. 7: Alignment of leaf nodes in TableL into TableA

3.2.6 Leaf nodes rearrangement

In reality, the system may misclassified data columns as false negative attribute
during OT detection. On the contrary, there are also false positive attributes
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because of different occurrence count in documents or the support is lower then a
given threshold. Therefore we rearrangement leaf nodes in TableA[f ] between two
adjacent MT s in TableA[b] and TableA[b′] (b < f < b′), by merging: disjunctive
columns, similar columns, and low density columns as follows.

Before we start, we define the density of a column (Eq. 8), the density for a
section of contiguous columns (Eq. 9), and the similarity between two columns
(Eq. 10) as follows:

colDensity[f ] =
#Nonnull Contents in f

|D| (8)

secDensity[f1 ∼ f2] =
#Nonnull Contents in (f1 ∼ f2)

(f2− f1 + 1)× |D| (9)

(10)
ColSimilarity(f1, f2) = (StrSimilarity(f1.Path, f2.Path)

+ Similarity(f1.IDSet, f2.IDSet)

+ Similarity(f1.ClassSet, f2.ClassSet))/3

For each segment, i.e. the columns between two adjacent MT s in TableA[b]
and TableA[b′], we apply the following procedure to merge disjunctive columns,
similar columns, and low density columns:

1. Merge disjunctive columns
– For each column f (b < f < b′), if TableA[f ].OV Z TableA[f + 1].OV =
true, merge TableA[f + 1].Content into TableA[f ].Content and delete
TableA[f + 1].

2. Merge similar columns
– For two adjacent column f and f +1, if both have colDensity smaller than
θDen = 0.7, and the column similarity between TableA[f ] and TableA[f +
1] is greater than θCol, we merge TableA[f ].Content with TableA[f +
1].Content and delete TableA[f + 1].

3. Merge low density columns
– For optional column TableA[f ] ∼ TableA[f ′] (f < f ′) with density less

than θDen (both colDensity or secDensity), we update TableA[f ].Content
with ∪f≤b≤f ′TableA[b].Content and delete TableA[b] for f < b ≤ f ′.

Example 7 Consider TableA[5 ∼ 7] between two mandatory tempalte LEC8 and
LEC15 in Fig. 7(c), since they are not disjunctive and all colDensity > θDens,
there is no need to rearrange the leaf nodes.

As shown in Fig. 8(a), there are three segments that should be processed.
First, since TableA[11].OV Z TableA[12].OV = true, they are merged into col-
umn 11 in 8(b) and column 12 is then removed. Similarly, since TableA[14].OV Z
TableA[15].OV = true, they are merged into column 13 in Fig. 8(b) and 15
is removed. Finally, consider TableA[18 ∼ 24] in Fig. 8(a), since colDensity of
TableA[18] > 0.7, it will not be processed. However, secDensity of TableA[19 ∼
24] is 0.33 < θDens, therefore TableA[19 ∼ 24] are merged into column 16 in Fig.
8(b).



16 Oviliani Yenty Yuliana, Chia-Hui Chang

Fig. 8: Merging disjunctive columns

4 Performance evaluation

In this paper, we focus on detail-pages and do not take set and repetitive data,
such as a table, into account. Therefore, we select datasets from two resources.
The first resource is TEX (Sleiman and Corchuelo 2013)3 dataset (T). We exclude
websites containing tables and select only 22 from 41 websites. A total of 660 pages
are used in the following experiments. The other resource is EXALG (Arasu and
Garcia 2003)4 dataset (E), where we select 4 websites (out of 9) which consist of
152 pages without tables. Overall, we have 26 websites which consist of 812 pages
as shown in Table 2.

Since TEX does not output template and only provides golden answer of se-
lected data columns (an average of 5 columns), we first consider the evaluation in
terms of data columns. We define a column to be correctly extracted if

#correct nonnull cells in extracted column

#nonnull cells in golden answer column
≥ 0.85 (11)

Let cc be the number of correctly extracted columns, gc be the number of
golden answer columns, and ec be the number of data columns extracted, we
compute precision, recall and F1-measure, accordingly.

P =
cc

ec
,R =

cc

gc
, F =

2PR

P +R

In addition to the evaluation on selected items, we also extend the golden
answer to more data columns for more comprehensive performance evaluation.
We label an average of 250 columns for each website based on the output of AFIX
with further manually effort. Since TEX does not output template columns, we
will follow the custom to focus on 47 data columns as shown in Table 2. The
average column density for the data columns is 0.89.

3 http://www.tdg-seville.info/Hassan/TEX
4 http://infolab.stanford.edu/ arvind/extract/
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We compare the proposed technique AFIS with the state-of-the-art annotation-
free full page schema induction, such as TEX, FiVaTech, and RoadRunner. Table
3 gives the average performance of 26 websites on average 5 selected data columns
provided by TEX. AFIS presents the best performance with 0.994 precision, 0.987
recall and 0.990 F1-measure. Note that the numbers are averaged from Sleiman and
Corchuelo (2013), where FiVaTech deals with only 22 datasets and RoadRunner
can process only 11 datasets.
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If all data columns are considered, the performance drops for all algorithms as
shown in Table 4 where detail statistics of AFIS, TEX, and RoadRunner are listed
for reference. AFIS still outperforms others with 0.95 precision, 0.93 recall and 0.94
F1-measure. The ec columns shows the number of data columns output by each
algorithm where AFIS outputs an average 46 data columns, TEX outputs 59 files
(each corresponds to one column), and RoadRunner generates 8 data columns.
Note that the golden answer for dataset E01 includes 14 data columns, where
TEX outputs 18 columns. Technically, we can merge the data columns splitted by
TEX, therefore, we still give a precision and recall of 1 for TEX on E01.

Table 3: Performance evaluation on selected data provided by TEX

performance standard error
technique P R F1 P R F1

AFIS 0.994 0.987 0.990 0.003 0.005 0.003
TEX 0.963 0.980 0.970 0.014 0.009 0.010
FivaTech 0.700 0.756 0.716 0.068 0.067 0.066
RoadRunner 0.339 0.358 0.348 0.085 0.090 0.087

5 Conclusions and future work

Annotation-Free training for web data extraction has been an important task for
web data mining. Mining landmarks for aligning data is often hindered by false
positive landmarks since the way to judge whether two processing units has the
same function is often heuristic. Therefore, a more flexible design is necessry to
solve the difficult alignment problem for detail-pages.

In this paper, we present an unsupervised design for annotation-free web data
extraction on detail-pages. To discover landmarks for template mining, we adopt
LIS (Longest Increasing Sequence) algorithm for mandatory template and optional
template mining. Since there might be false positive LEC (Landmark Equivalence
Class) detected in the template mining phase, we also allow the merging of recur-
ring LEC to remove such false positive template. One more trick is the alignment
of multi-order attribute-value pairs, where AFIS alternates between single-pass
and multi-pass alignment to generate a consistent output. Finally, AFIS adopts
various similarity measure for LEC detection, leaf node clustering and column
clustering based on Path, IDSet, ClassSet, and TypeSet. Therefore, the system can
decide when to merge leaf nodes to get final result.

We conducted experiments on real-world dataset from EXALG and TEX mod-
ified real-world datasets. Overall, AFIS outperforms TEX and RoadRunner not
only on the small selected data (with 0.99 F1 measure) but also on all data columns
from full schema (with 0.94 F1 measure), compared to 0.63 F1 measure for TEX
and 0.29 F1-measure for RoadRunner.

For future study, since there are still lists and tables in detail-pages, we will
include sequential and repetitive patterns for extracting list and table in detail-
pages. Furthermore, we will generate leaf node abstraction via dynamic encoding
for wrapper generation to reduce the extraction.



AFIS: Annotation-Free Induction of Full Schema for Detail-Pages 19

Table 4: Performance evaluation on 47 selected data columns from full schema

dataset AFIS TEX RoadRunner
id ec P R F1 ec P R F1 ec P R F1

T01 43 0.95 0.93 0.94 52 0.63 0.59 0.61 - - - -
T02 21 1.00 1.00 1.00 37 0.64 0.76 0.70 20 1.00 0.95 0.98
T03 37 0.95 0.90 0.92 44 0.34 0.33 0.34 - - - -
T04 113 0.94 0.91 0.92 156 0.55 0.54 0.54 - - - -
T05 100 0.87 0.86 0.87 119 0.35 0.36 0.35 8 0.50 0.04 0.07
T06 43 0.98 0.82 0.89 93 0.52 0.84 0.65 - - - -
T07 90 0.90 0.88 0.89 101 0.67 0.65 0.66 - - - -
T08 13 1.00 1.00 1.00 13 0.61 0.85 0.71 13 1.00 1.00 1.00
T09 16 0.88 0.93 0.90 11 0.77 0.87 0.81 1 1.00 0.07 0.13
T10 19 0.95 0.86 0.90 24 0.70 0.67 0.68 6 0.67 0.19 0.30
T11 30 0.90 0.87 0.89 64 0.49 0.58 0.53 - - - -
T12 106 1.00 1.00 1.00 54 0.65 0.52 0.58 3 1.00 0.03 0.05
T13 14 0.93 0.93 0.93 52 0.12 0.43 0.19 1 1.00 0.07 0.13
T14 48 0.92 0.92 0.92 55 0.70 0.83 0.76 - - - -
T15 37 0.95 0.92 0.93 35 0.78 0.74 0.76 - - - -
T16 13 1.00 1.00 1.00 22 0.60 0.92 0.73 12 1.00 0.92 0.96
T17 17 1.00 1.00 1.00 17 1.00 0.94 0.97 17 1.00 1.00 1.00
T18 67 0.96 0.91 0.93 66 0.70 0.73 0.71 - - - -
T19 35 0.97 0.94 0.96 21 0.89 0.92 0.90 35 1.00 0.97 0.99
T20 30 0.90 0.90 0.90 53 0.44 0.71 0.54 - - - -
T21 60 0.90 0.90 0.90 83 0.54 0.70 0.61 - - - -
T22 78 0.95 0.95 0.95 104 0.50 0.64 0.56 - - - -
E01 14 1.00 1.00 1.00 18 1.00 1.00 1.00 14 1.00 1.00 1.00
E02 35 1.00 1.00 1.00 54 0.55 0.63 0.59 35 1.00 1.00 1.00
E03 47 0.83 0.85 0.84 81 0.38 0.54 0.45 - - - -
E04 70 0.99 0.99 0.99 95 0.42 0.60 0.49 - - - -

Avg 46 0.95 0.93 0.94 59 0.60 0.69 0.63 8 0.43 0.28 0.29
std err 0.01 0.01 0.01 0.04 0.03 0.04 0.10 0.09 0.09
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