

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE | JANUARY 18 2024

Optimizing travel distance for picking order problem using
symbiotic organism search algorithm combined with
mutation operators 
Tanti Octavia ; Andreas Handojo; Adelyn Thungriallu

AIP Conf. Proc. 2951, 030016 (2024)
https://doi.org/10.1063/5.0181413

 19 January 2024 00:42:32

https://pubs.aip.org/aip/acp/article/2951/1/030016/3019998/Optimizing-travel-distance-for-picking-order
https://pubs.aip.org/aip/acp/article/2951/1/030016/3019998/Optimizing-travel-distance-for-picking-order?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/acp/article/2951/1/030016/3019998/Optimizing-travel-distance-for-picking-order?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/5.0181413
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2308659&setID=592934&channelID=0&CID=848271&banID=521677623&PID=0&textadID=0&tc=1&scheduleID=2228387&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Facp%22%5D&mt=1705624952471884&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Facp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0181413%2F18563572%2F030016_1_5.0181413.pdf&hc=8613d30ade9bc58e0028eb7e3a30275d01da6455&location=

Optimizing Travel Distance for Picking Order Problem

Using Symbiotic Organism Search Algorithm Combined

with Mutation Operators

Tanti Octavia 1, a), Andreas Handojo 2, b), and Adelyn Thungriallu 2, c)

1Industrial Engineering Department, Petra Christian University,

Jl. Siwalankerto 121–131, Surabaya 60236, East Java, Indonesia
2Informatics Department, Petra Christian University ,

Siwalankerto 121–131, Surabaya 60236, East Java, Indonesia

a) Corresponding author: tanti@petra.ac.id

b) handojo@petra.ac.id, c) adelynthung@gmail.com

Abstract. This article aims to investigate the reliability of sos algorithm for solving the picking order problems considering

the real environments of warehouse. We attempt to apply SOS algorithm combined with mutation operators. There are three

mutation operators used, namely swap mutation operator, inversion mutation operator, and insertion operator. Simulation

is carried out using a case study of warehouse’s company that stores various kinds of daily products to fulfil the customer

demand. The simulation is run considering the percentage decrease in the distance between initial solution and final solution

and the computational time. Simulation is run for the number of iterations of 100, 500, and 1000 and the ecosystem size as

10,20, and 50. The results show the Symbiotic Organism Search (SOS) algorithm can provide a large percentage of distance

reduction for a small number of consumer demand in all iterations and ecosystem sizes, with a percentage decrease in

distance of more 5%. As for the large number of customer demand (500 and 1000), the percentage decrease in the total

distance is below or equal to 3.71% for all iterations.

INTRODUCTION

Warehouse management is the process, control, and optimization of warehouse operations from the entry of

inventory into a warehouse. In a company. Warehouse operations have a strong influence on direct operational costs

of warehouse. One of operations in warehouse that causes 60-70% of the total operating process is order picking [1].

Picking involves five actions: pre-action, picking, searching, transport, and others. Among these components, the

transport time is of outstanding importance, since it consumes the major proportion (at least 50%) of the total

processing time [2].

Many studies have been conducted to develop optimization methods using mathematical modelling to solve picking

order problems. Cano et al. [3] introduce mathematical programming models for the joint order batching, sequencing,

and picker routing problem. meanwhile, Scholz et al developed a mathematical programming formulation for the single

picker problem in block layout [4]. However, this mathematical approach is often not sufficient to solve large-scale

problems while the heuristic search method often has problems with low the quality of the resulting solution due to

being trapped at local optima. This encourages increased efforts to develop more accurate optimization methods and

efficient.

In recent decades, there has been a growing research interest in meta-heuristics for solving picking order problems.

This aims to lead picking orders in company toward an efficient and transportation time. Henn and Wascher proposed

two approaches based on tabu search principle to solve order batching problem in warehouse to operate more efficiently

[5]. Tsai et al. attempts to propose a batch picking model that considers not only travel cost but also an earliness and

tardiness penalty to fulfil the current complex and quick-response oriented environment [6]. Hsien Pan et al developed

Proceedings of the 2nd International Conference on Automotive, Manufacturing, and Mechanical Engineering (IC-AMME 2021)
AIP Conf. Proc. 2951, 030016-1–030016-9; https://doi.org/10.1063/5.0181413

Published by AIP Publishing. 978-0-7354-4202-3/$30.00

030016-1

 19 January 2024 00:42:32

mailto:tanti@petra.ac.id
mailto:handojo@petra.ac.id
mailto:adelynthung@gmail.com

an order batching approach based on a group genetic algorithm to balance the workload of each picking zone and

minimize the number of batches in a pick-and-pass system to improve system performance [7].

Metaheuristic algorithms have an inspired solution search scheme from developed nature acts as a source of

concepts, the mechanisms, and principle. Such metaheuristics include simulated annealing, genetic algorithms, ant

colony optimization and particle swarm optimization. A proposed a new routing algorithm based on Ant Colony

Optimization (ACO) for two order pickers (A-TOP) with congestion consideration is developed by Chen et al. [8].

Meanwhile, De Santis et al. introduced the combination algorithm between Ant Colony Optimization Algorithm and

Floyd Warshall Algorithm for optimizing the pickers’ routing in warehouses [9]. Cergibozan and Tasan have

developed fast and effective metaheuristic approaches to solve the order batching problem using a proposed two GA

based metaheuristic approaches [10]. Botanni et al. [11] tested on twenty-five scenarios, resulting from variable length

of the order pick lists and different manual storage configuration. The authors stated an adapted Harmony Search (HS)

gives the better solution in term of travel distance for low level picker to part systems.

In recent years, a new metaheuristic algorithm called symbiotic organisms search (SOS) attracted the attention of

because of its considerable ability good at solving some problems complex optimization, such as: time–cost–labor

utilization trade off problem [12]. SOS adopts interaction pattern common symbiosis between living things life. In

maintaining their survival, living things will interact with other living things In a symbiotic form. It is through this

interaction that living things can improve their quality of life to be able to survive. Inspired by phenomena in this

symbiosis, the SOS algorithm uses three main phases are mutualism, commensalism, and parasitism, to find the best

solution effective and efficient.

In this paper, we propose SOS Algorithm combined with mutation operators for optimizing travel distance for

picking order problem. The remainder of this paper is organized as follows. We briefly explain the research method.

Using SOS algorithm combined with mutation operators, we conduct a simulation and discuss the result of it through

computational study. Finally, we summarize the experimental results

METHODS

 Symbiotic Organism Search Algorithm

SOS Algorithm adopts the symbiotic interaction of organisms to survive and reproduce in the ecosystem, namely

Mutualism, Commensalism, and Parasitism. SOS Algorithm starts by initializing an ecosystem consisting of eco size

organisms [13]. Next is the selection of Xbest from all existing organisms. Iterations of i are carried out by referring

to the criteria for repeating the results that have been set, for example if Xbest does not change as much as n then the

repetition is complete. This loop is called the outer loop. Furthermore, eco size is repeated as an inner loop to enter the

stages of Mutualism, Commensalism, and Parasitism. The result of the inner-loop is the Xbest update, and the result

of the outer-loop is the final result or route based on the last Xbest. The flowchart of SOS Algorithm can be seen in

Fig. 1. The Mutualism phase will take 𝑋𝑖 and 𝑋𝑗 to compare with the results of the new 𝑋𝑖 and 𝑋𝑗. 𝑋𝑖 is the iteration of

organisms in the ecosystem, while 𝑋𝑗 is the random result of organisms in the ecosystem. Furthermore, 𝑋𝑖 and 𝑋𝑗 will

be updated if the results of the new 𝑋𝑖 and 𝑋𝑗 are better than the old ones. Here are the similarities in the Mutualism

phase:

𝑋𝑖𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(0,1) ∗ 𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑢𝑎𝑙_ 𝑉𝑒𝑐𝑡𝑜𝑟 ∗ BF1 (1)

𝑋𝑗𝑛𝑒𝑤 = 𝑋𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ 𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑢𝑎𝑙_ 𝑉𝑒𝑐𝑡𝑜𝑟 ∗ BF2 (2)

𝑀𝑢𝑡𝑢𝑎𝑙_ 𝑉𝑒𝑐𝑡𝑜𝑟 = (𝑋𝑖 + 𝑋𝑗)/2 (3)

The Commensalism phase is a continuation of the Mutualism phase. 𝑋𝑖 which is the output of the Mutualism phase

will be the input for this phase. 𝑋𝑗 is also taken as a random result of organisms in the ecosystem. 𝑋𝑗 will be used as a

factor affecting the survival of the organism 𝑋𝑖. 𝑋𝑖 will be updated if the results of the new 𝑋𝑖 are better than the

previous 𝑋𝑖. Here is the equation for the Commensalism phase:

𝑋𝑖𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(−1,1) ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑗) (4)

030016-2

 19 January 2024 00:42:32

The Parasitism phase is the last phase, where the Parasite vector will be given to 𝑋𝑖 to try to replace 𝑋𝑗 in the

ecosystem. If the Parasite Vector has better results, then the Parasite Vector will take position 𝑋𝑗 in the ecosystem.

Whereas it is worse, the Parasite Vector will not be added to the ecosystem.

𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑉𝑒𝑐𝑡𝑜𝑟 = {
𝑂𝑖,𝑘 𝑘 < 𝑟𝑎𝑛𝑑(0,1), 𝑘 = 1,2,3 … , 𝑛𝑣𝑎𝑟

𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
 (5)

FIGURE 1. The flowchart of SOS algorithm

030016-3

 19 January 2024 00:42:32

Mutation Operators

In this research, there are three stages that need to be done before entering the phase of Mutualism, Commensalism

and Parasitism. The three stages are Swap Mutation Operator, Inversion Mutation Operator, and Insertion Operator

[14]. The three stages are as follows:

1. Swap Mutation Operator: At this stage (Fig. 2), the position of 2 random data is exchanged in a solution vector.

Select i and j randomly, then the values of the positions i and j are exchanged to form the new solution vector

which is then compared with the previous solution vector. If it turns out that the new solution vector is better

than the current one, the current solution vector is replaced with a new solution vector.

FIGURE 2. Swab mutation operator

2. Inversion Mutation Operator: At this stage (Fig. 3), the solution vector data is inverted. choose i and j at

random, then a new solution vector is created by inverting from index to i to j. After that the new solution

vector is compared with the old one. If the new solution vector is better, then the current solution vector is

replaced with the new one.

FIGURE 3. Inversion mutation operator

3. exhaustion Insertion Operator: At this stage (Fig. 4), the solution vector data is inserted into the new index.

First, i and j are selected randomly. After that, a new solution vector is created by taking data from index i and

inserting it into index j.

FIGURE 4. Insertion operator

RESULTS AND DISCUSSION

This study will investigate the ability of SOS in solving order picking problems. It will be investigated using a case

study of warehouse’s company that stores various kinds of daily products to fulfil the customer. The warehouse located

in Manado, North Sulawesi-Indonesia. Some of the data needed to solve this picking order problem are product type,

demand data for each product, warehouse area, number of available shelves, location of each product on the shelf, the

distance between shelves, and the location of each shelf. Warehouse layout can be seen in Fig. 5.

Several stages are carried out in conducting the simulation, namely:

1. Create a picking order scenario with reference to the activities and problems of picking up goods in the

warehouse. In this simulation, Data for number of customer demand that will be used are 100, 500, and 1000

to evaluate the reliability of the SOS algorithm.

030016-4

 19 January 2024 00:42:32

FIGURE 5. Warehouse layout

2. Create the simulation model and verify it with manual calculations before simulation is run. In this model there

are 5 consumer orders that need to be fulfilled by the warehouse. The product item data, the number of items,

the total weight, the distance between the shelves, as well as the shelf code of the product are known.

2.1. The route sequence will initially be generated using random numbers. The random numbers are then

converted into a sequence of shelves as a route called the solution vector. The number of route sequences

is the specified eco_size. In this case, the eco_size used is 5 (Table 1). Each solution vector has a mileage

starting at the depot and ending at the depot (Table 2). In the Table 3, we get the random number of 𝑋𝑖 is

4-3-2-1-5. It means the picker will take the sequence of demand and the route will be Depot-shelf H-shelf

F-shel C-shelf B-shelf K-Depot with the total distance 90.

TABLE 1. Demand information

Item Qty (In pieces) Weighted (Grams) Shelf

1 36 4320 B

2 36 4320 C

3 36 2736 F

4 36 1980 H

5 6 5400 K

TABLE 2. The distance among Shelves and Depot

Shelf Depot B C F H K

Depot 0 7 10 10 26 26

B 7 0 3 3 19 19

C 10 3 0 0 16 16

F 10 3 0 0 16 16

H 26 19 16 16 0 0

K 26 19 16 16 0 0

TABLE 3. The distance among Shelves and Depot

Vector Solution Dist

x1 0.5962 0.3353 0.1590 0.0551 0.9074 90

4 3 2 1 5

x2 0.7937 0.4876 0.5961 0.3280 0.8835 90

4 2 3 1 5

x3 0.1752 0.9231 0.4538 0.4785 0.9103 84

1 5 2 3 4

x4 0.1545 0.6392 0.5259 0.7792 0.3591 84

1 4 3 5 2

x5 0.568 0.4341 0.3767 0.1856 0.2628 58
5 4 3 1 2

030016-5

 19 January 2024 00:42:32

2.2. Find the Xbest that gives the smallest distance from solution vector and run the number of iterations and

performs the Swap Mutation Operator, Inversion Mutation Operator, and Insertion Operator stages on the

Xbest solution vector.

• In the Swap Mutation Operator stage, select i and j randomly. Then, the values of index i and j are swapped

to form a new solution vector. If the new solution vector is better, the old solution vector will be replaced

with the new one. In the calculation, i and j obtained are 2 and 3. Xbest and the new solution vector can

be seen in Table 4. Since the new solution vector is the same as the current one, the Xbest solution vector

is not replaced.

• In the Inversion Mutation Operator stage, choose i and j at random. Then, the values from index i to j are

inverted to form a new solution vector. If the new solution vector is better, the current solution vector will

be replaced with the new one. In the calculation, i and j obtained are 0 and 2. Xbest and the new solution

vector can be seen in Table 5. Since the new solution vector turned out to be better, the Xbest solution

vector was replaced with a new one.

TABLE 4. The swap mutation operator result of vector solution

Vector Solution Dist

x5 0.5688 0.4341 0.1856 0.3767 0.2628 58

5 4 1 3 2

x5
new

0.5688 0.4341 0.3767 0.1856 0.2628 58

5 4 3 1 2

TABLE 5. The inversion mutation operator result of vector solution

Vector Solution Dist

x5 0.1856 0.4341 0.5688 0.1856 0.2628 58

1 4 5 3 2

x5 new 0.5688 0.4341 0.1856 0.3767 0.2628 52

5 4 1 3 2

• In the Insertion Operator stage, choose i and j randomly. Then, the value of index i is taken and inserted

into index j to form a new solution vector. If the new solution vector is better, the current solution vector

will be replaced with the new one. In the calculation, i and j obtained are 0 and 4. Xbest and the new

solution vector can be seen in Table 6. Since the new solution vector is found to be equal to Xbest, the

Xbest solution vector is not replaced.

TABLE 6. The inversion mutation operator result of vector solution

Vector Solution Dist

x5 0.1856 0.4341 0.5688 0.1856 0.2628 52

1 4 5 3 2

x5 new 0.4341 0.5688 0.1856 0.2628 0.1856 52
4 5 3 2 1

2.3. In a number of iterations, the iteration operation is repeated for the number of vectors or eco_size specified

through the stages of Mutualism, Commensalism, and Parasitism.

• In the Mutualism stage (Table 7), there is a vector xi according to the iteration and one random solution

vector is chosen as 𝑋𝑗 to be operated. In this calculation, 𝑋𝑖 is 𝑋1 and the selected 𝑋𝑗 is 𝑋4.

TABLE 7. The result of mutualism stage

Vector Solution Dist

x1 0.5962 0.3353 0.1590 0.0551 0.9074 90

4 3 2 1 5

x4 0.0551 0.5962 0.3353 0.9074 0.1590 84

1 4 3 5 2

x1 new 0.1590 0.9074 0.3353 0.5962 0.0551 71

2 5 3 4 1

x4 new 0.0551 0.3353 0.5962 0.9074 0.1590 52
1 3 4 5 2

• In commensalism stage, komensalisme stage, which is expressed as the following equation:

030016-6

 19 January 2024 00:42:32

𝑋1𝑛𝑒𝑤 = 𝑋1 + 𝑟𝑎𝑛𝑑(−1,1) ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑋3)

In this calculation, 𝑋𝑖 is 𝑋1 and 𝑋𝑗 is 𝑋3. From the above equation, the calculation results are obtained as

in Table 8. If the new 𝑋𝑖 is better than 𝑋𝑖, then 𝑋𝑖 is replaced with the new 𝑋𝑖. Since the calculation above

is not better than 𝑋𝑖, the solution vector 𝑋𝑖 is not replaced.

• In Parasitism stage, firstly choose 𝑋𝑗from the solution vector. After that, a Parasite Vector was created

based on the solution vector 𝑋𝑖 and compared with 𝑋𝑗. If Parasite Vector is better, then 𝑋𝑗 will be replaced

by Parasite Vector. In this calculation, 𝑋𝑖 is 𝑋1 and 𝑋𝑗 is 𝑋2, and the results can be seen in Table 9.

TABLE 8. The result of commensalism stage

Vector Solution Dist

x1 0.1590 0.9074 0.3353 0.5962 0.0551 71

2 5 3 4 1

x3 0.1752 0.9231 0.4538 0.4785 0.9103 84

1 5 2 3 4

x1 new 0.5962 0.0551 0.1590 0.5962 0.9074 98

4 1 2 3 5

TABLE 9. The result of parasitism stage

Vector Solution Dist

Parasite
Vector

0.0311 0.3353 0.0429 0.0551 -0.096 71

2 5 3 4 1

x2 0.7937 0.4876 0.5961 0.3280 0.8835 90
4 2 3 1 5

2.4. After doing all the steps, update Xbest according to the best Solution Vector which has the shortest

distance. Repeat until iterations are reached. The final results obtained can be seen in Table 10.

TABLE 10. The final result
Vector Solution Dist

x1 0.1590 0.9074 0.3353 0.5962 0.0551 71

2 5 3 4 1

x2 0.1590 0.9074 0.3353 0.5962 0.0551 71

2 5 3 4 1

x3 0.1752 0.9231 0.4538 0.4785 0.9103 84

1 5 2 3 4

x4 -0.0351 0.6392 0.7523 0.7792 -0.0113 52

1 3 4 5 2

x5 0.1856 0.4341 0.5688 0.3767 0.2628 58
1 4 5 3 2

3. Run a simulation considering the number of iterations and the ecosystem size. The iterations used are 100, 500,

and 1000 iterations, while the ecosystem sizes used are 10, 20, and 50. The distance decreasing based on

iterations 100, 500 and 1000 SOS algorithm for each number of customer demand (100, 500, 1000) with

eco_size= 50 can be seen in Table 11.

TABLE 11. The distance reduction based on iterations

Number of

Iterations

Number of

Customer Demand

Distance

(First Iteration)

The lowest Distance

(Final Iteration)
Reduction (%)

Average Reduction

(%)

100

100 1688 1596 5.45

2.16 500 9154 9132 0.24

1000 18742 18594 0.79

500

100 1718 1612 6.17

3.77 500 9338 8992 3.71

1000 18692 18424 1.43

1000

100 1694 1588 6.26

3.01 500 9232 9058 1.99

1000 18622 18454 0.92

The result (Table 12) shows the largest percentage of distance reduction is in 100 iterations. This means that for

small number of customer demand, the SOS algorithm can provide a good solution. The percentage reduction in

030016-7

 19 January 2024 00:42:32

distance for a small number of customer demand (100) by more than 5%. As for the large number of customer demand

(500 and 1000), the percentage decrease in the total distance is below or equal to 3.71% for all iterations. It also shows

that the more iterations performed for the same amount of data demand, the greater the percentage decrease in distance.

TABLE 12. The distance reduction based on ecosystem size

Eco-Size
Number of Customer

Demand

Distance

(First Iteration)

The Lowest Distance

(Final Iteration)

Reduction

(%)

Average

Reduction (%)

10

100 1744 1634 6.31

3.97 500 9376 9042 3.56

1000 18810 18428 2.03

20

100 1730 1592 7.98

4.18 500 9332 8930 4.31

1000 18562 18510 0.28

50

100 1694 1588 6.26

3.01 500 9232 9058 1.89

1000 18622 18454 0.90

From the Table 13, the largest percentage of decline in distance is in the small number of customer demand.

Meanwhile, for the large number of customer demands (500 and 1000), the percentage decrease in distance is below

or equal to 4.31%. SOS algorithm computation time will increase along with the increase in the amount of data,

eco_size, and iterations. In addition, it can be seen that with a large number of iterations and eco_size, it does not

guarantee that the results obtained by SOS will be better. It is interesting to note that for a large number of customer

demands, it would be better to use eco-size 50 with 500 iterations because it gives a high percentage of distance

reduction with a computational time as 1158 seconds (19.3 minutes).

 Table 13. Computational time of SOS algorithm’s simulation

n-data

Iteration

100 500 10000

Eco Size Best Distance CT (sec) Eco Size Best Distance CT (sec) Eco Size Best Distance CT (sec)

100 10 1666 3.58161 10 9110 22.9202 10 18680 51.9361

20 1654 7.69532 20 9126 43.0239 20 18524 97.2948

50 1596 17.8083 50 9132 108.86 50 18594 238.374

500 10 1644 16.853 10 9128 104.42 10 18486 239.101

20 1594 34.0005 20 9046 203.152 20 18366 467.705

50 1612 87.9 50 8992 492.564 50 18424 1158.89

1000 10 1634 33.5705 10 9042 198.784 10 18428 497.439

20 1592 68.2468 20 8930 409.154 20 18510 928.561

50 1588 167.591 50 9058 979.436 50 18454 2298.59

CONCLUSION

This article aims to investigate the reliability of sos algorithm for solving the picking order problems considering

the real environments of warehouse. We attempt to apply SOS algorithm combined with mutation operator. From the

results, it can be concluded that the SOS algorithm can provide a large percentage of decline for a small number of

consumer demand in all iterations and ecosystem sizes, with a percentage decrease in distance of more 5%. As for the

large number of customer demand (500 and 1000), the percentage decrease in the total distance is below or equal to

3.71% for all iterations. Moreover, the result shows number of iterations and ecosystem size affect computational

time(CT) significantly, the higher the amount of data, ecosystem size and iteration, the higher the computation time

required.

REFERENCES

1. T. L. Chen, C. Y. Cheng, Y. Y. Chen, and L. K. Chan, International Journal Production Economics 159, 158-167

(2015).

2. J. A. Tompkins, J. A. White, Y. A. Bozer, and J. M. A. Tanchoco, Facilities Planning, 4th Ed. (Wiley, Chichester,

2010).

3. J. A. Cano, A. A. C. Espinal, and R. A. G. Montoya, Journal of King Saud University- Engineering Science 32(3),

219-228 (2020).

030016-8

 19 January 2024 00:42:32

https://doi.org/10.1016/j.ijpe.2014.09.029
https://doi.org/10.1016/j.jksues.2019.02.004

4. A. Scholz, S. Henn, M. Stuhlmann, and G. Wäscher, European Journal of Operation Research 253(1), 68-84

(2016).

5. S. Henn and G. Wäscher, European Journal of Operational Research 222(3), 484–494 (2012).

6. C. Y. Tsai, J. J. H. Liou, and T. M. Huang, International Journal of Production Research 46(22), 6533–6555

(2008).

7. J. C. H. Pan, P. H. Shih, H. Po, and M. H. Wu, Omega, 57 (Part B), 238-248 (2015).

8. F. Chen, H. Wang, C. Qi, and Y. Xie, Computer and Industrial Engineering 66(1), 77-85 (2013).

9. R. De Santis, R. G Montanari, G. Vignali, and E. Bottani, European Journal of Operational Research 267(1),

120–137 (2018).

10. Ç. Cergibozan and A. S. Tasan, Journal of Intelligent Manufacturing 30(1), 335-349 (2019).

11. E. Bottani, G. Casella, and T. Murino, Computers & Industrial Engineering 160 107540, 1-11 (2021).

12. D. H. Tran, M. Y. Cheng, and D. Prayogo, Knowledge-Based Systems 94, 132-145 (2021).

13. M. Y. Cheng and D. Prayogo, Computers and Structures 139, 98–112 (2014).

14. E. S Ezugwu, A. O. Adewumi, and M. E. Frîncu, Expert Systems with Applications 77, 189-210 (2017).

030016-9

 19 January 2024 00:42:32

https://doi.org/10.1016/j.ejor.2016.02.018
https://doi.org/10.1016/j.ejor.2012.05.049
https://doi.org/10.1080/00207540701441947
https://doi.org/10.1016/j.omega.2015.05.004
https://doi.org/10.1016/j.cie.2013.06.013
https://doi.org/10.1016/j.ejor.2017.11.017
https://doi.org/10.1007/s10845-016-1248-4
https://doi.org/10.1016/j.knosys.2015.11.016
https://doi.org/10.1016/j.compstruc.2014.03.007
https://doi.org/10.1016/j.eswa.2017.01.053
https://doi.org/10.1016/j.cie.2021.107540

