

Certificate of Appreciation

Credential ID: 15d90cfc-24ae-437d-a977-2ac309278793

This certificate is proudly presented to OVILIANI YENTY YULIANA

For your generous contribution as **Presenter of the Paper** with the title Gamification of Learning Management System Improves Stude

Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance

at The 14th International Conference on Information and Communication Technology and System (ICTS) 2023, held on October 4th 2023, by the Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

Surabaya, October 5th, 2023 General Chair of ICTS 2023

Baskoro Adi Pratomo, Ph.D. NIP. 198702182014041001

Securing the future, one byte at a time

its.id/icts

2023 14th International Conference on Information & Communication Technology and System (ICTS)

2023 14th International Conference on Information & Communication Technology and System (ICTS) took place 4-5 October 2023 in Surabaya, Indonesia.

IEEE catalog number: CFP2389Y-ART

ISBN:

979-8-3503-1216-4

Committees

General Chair

General Chair

Baskoro Adi Pratomo (Institut Teknologi Sepuluh Nopember, Indonesia)

Co-Chair

Co-Chair

Ratih Nur Esti Anggraini (Institut Teknologi Sepuluh Nopember & University of Bristol, Indonesia)

Publication Chair

Hudan Studiawan (Sepuluh Nopember Institute of Technology, Indonesia)

Treasurer

Radityo Anggoro (Institut Teknologi Sepuluh Nopember, Indonesia)

Scientific Committee

Member

Rachmad Abdullah (Institut Teknologi Sepuluh Nopember & Sekolah Tinggi Ilmu Ekonomi Indonesia, Indonesia)

Adhatus Solichah Ahmadiyah (Institut Teknologi Sepuluh Nopember, Indonesia)

Muhammad Ainul Yaqin (Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia)

Bilqis Amaliah (Institut Teknologi Sepuluh Nopember, Indonesia)

Radityo Anggoro (Institut Teknologi Sepuluh Nopember, Indonesia)

Yeni Anistyasari (Universitas Negeri Surabaya, Indonesia)

Mhd Arief Hasan (Universitas Lancang Kuning & Institut Teknologi Sepuluh November, Indonesia)

Siska Arifiani (Institut Teknologi Sepuluh Nopember, Indonesia)

Amelia Devi Putri Ariyanto (Institut Teknologi Sepuluh Nopember & Universitas Widya Husada, Indonesia)

Joko Buliali (Institut Teknologi Sepuluh Nopember, Indonesia)

Taufiq Choirul Amri (Institut Teknologi Sepuluh Nopember, Indonesia)

Arda Surya Editya (Institut Teknologi Sepuluh Nopember, Indonesia)

Hadziq Fabroyir (Institut Teknologi Sepuluh Nopember, Indonesia)

Imam Wahyudi Farid (Institut Teknologi Sepuluh Nopember & Indonesia, Indonesia)

Arna Fariza (Politeknik Elektronika Negeri Surabaya, Indonesia)

Muhammad Ali Fauzi (Norwegian University of Science and Technology, Norway)

Shintami Chusnul Hidayati (Institut Teknologi Sepuluh Nopember, Indonesia)

Dandy Pramana Hostiadi (Institut Teknologi dan Bisnis STIKOM Bali, Indonesia)

Irwan Alnarus Kautsar (Universitas Muhammadiyah Sidoarjo, Indonesia)

Ibnu Febry Kurniawan (Universitas Negeri Surabaya, Indonesia)

Maryamah Maryamah (Airlangga University, Indonesia)

Prasetiyono Hari Mukti (Institut Teknologi Sepuluh Nopember, Indonesia)

Abdul Munif (Institut Teknologi Sepuluh Nopember, Indonesia)

Beryl Noë (Cardiff University, United Kingdom (Great Britain))

Bayu Adhi Nugroho (Universitas Islam Negeri (UIN) Sunan Ampel Surabaya, Indonesia)

Afina Lina Nurlaili (Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia)

Hanung Nindito Prasetyo (Telkom University, Indonesia)

Diana Purwitasari (Institut Teknologi Sepuluh Nopember, Indonesia)

Agus Budi Raharjo (Institut Teknologi Sepuluh Nopember, Indonesia)

Elsen Ronando (Universitas 17 Agustus 1945 Surabaya, Indonesia)

Ahmad Saikhu (Institut Teknologi Sepuluh Nopember, Indonesia)

Bagus Jati Santoso (Institut Teknologi Sepuluh Nopember, Indonesia)

Abdullah Faqih Septiyanto (Institut Teknologi Sepuluh Nopember, Indonesia)

Ary Mazharuddin Shiddiqi (Sepuluh Nopember Institute of Technology, Indonesia)

Sholiq Sholiq (Institut Teknologi Sepuluh Nopember, Indonesia)

Hudan Studiawan (Sepuluh Nopember Institute of Technology, Indonesia)

Nanik Suciati (Institut Teknologi Sepuluh Nopember, Indonesia)

Dwi Sunaryono (Institut Teknologi Sepuluh Nopember, Indonesia)

Kelly Rossa Sungkono (Institut Teknologi Sepuluh Nopember, Indonesia)

Irene Tangkawarow (Institut Teknologi Sepuluh Nopember & Universitas Negeri Manado, Indonesia)

Pratik Thantharate (SUNY Binghamton & IEEE USA, USA)

George Theodorakopoulos (Cardiff University, United Kingdom (Great Britain))

Raras Tyasnurita (Institut Teknologi Sepuluh Nopember, Indonesia)

Meida Cahyo Untoro, MCU (Institut Teknologi Sumatera, Indonesia)

Wisnu Uriawan (UIN Sunan Gunung Djati Bandung & INSA Lyon, France)

Tsuyoshi Usagawa (Kumamoto University, Japan)

Yulia Wahyuningsih (Institute Of Technology Sepuluh Nopember & Widyathama Parahita, Indonesia)

Andhik Ampuh Yunanto (Politeknik Elektronika Negeri Surabaya & Institut Teknologi Sepuluh Nopember, Indonesia)

Anny Yuniarti (Institut Teknologi Sepuluh Nopember, Indonesia)

Author index

Author	Session	Start page	Title						
A									
Abdullah, Azizol	CBSI1.5	289	DeepImputeIDS: Enhancing Intrusion Detection Systems with Deep Learning-Based Missing Data Imputation						
Abdullah, Rachmad	PTRN2.4	232	Homonym and Polysemy Approaches in Term Weighting for Indonesian- English Machine Translation						
Action, Ainurrochman	PTRN2.5	238	Anomaly Detection in Raw Audio Using Extreme Learning Machine						
Adiwijaya, Jason	CBSI1.4	283	Federated Learning and Differential Privacy in AI-Based Surveillance Systems Model						
Agatho, Theodoret	PTRN2.3	228	Solving the two-dimensional conduction Heat Transfer Problem by Using Artificial Neural Network method						
Ahdi, Moh.	IMPS.6	105	Convolutional Neural Network (CNN) EfficientNet-B0 Model Architecture for Paddy Diseases Classification						
Ahmad, Tohari	IPPR.4	141	Convolutional Neural Network with Multi-scale Pooling for the Efficient Steganalysis in Images of Arbitrary Sizes						
Ainia, Arifah	HCMA.7	67	Monocular Depth Estimation Modification Using Pix2Pix Model with SELU and Alpha Dropout						
Ainurrafiqi, Hafidz	IPPR.1	123	Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm						
Akhsani, Alifa	PTRN2.4	232	Homonym and Polysemy Approaches in Term Weighting for Indonesian- English Machine Translation						
Alfarisy, Alfan	PTRN1.4	188	Spatio-Temporal Forecasting of Air Pollution in Jakarta Using Deep Learning Methods						
Alfian, Muhammad	IMPS.1	77	Classification of Illustrated Question for Indonesian National Assessment with Deep Learning						
Ambuskar, Sumit	CBSI1.3	277	Automated Formal Verification Methodology for Digital Circuits						
Amelia, Helsani	IMPS.8	117	Anemia Detection Using Convolutional Neural Network Based on Palpebral Conjunctiva Images						
Anderies, Anderies	CBSI1.4	283	Federated Learning and Differential Privacy in AI-Based Surveillance Systems Model						
Andyartha, Putu Krisna	HCMA.1	35	KICO: Surgeon-Centered Collaborative Tool to Aid Peritoneal Carcinomatosis Assessment						
Anggoro, Radityo	CBSI2.2	302	Preemptive Hole Avoidance Technique for Wireless Sensor Network in Multiple Hole Scenario						
	CBSI2.3	307	Optimizing Next-Hop Selection in AODV-based VANETs: An Approach Based on Distance and Neighbor Node Evaluation						
Anggraini, Ratih Nur	PTRN2.5	238	Anomaly Detection in Raw Audio Using Extreme Learning Machine						
Esti	PTRN2.9	261	Non-Compliance Level of Motor Vehicle Taxpayer Classification						
Anhari, Nizar	PTRN2.7	249	Trajectory Prediction Using Kalman Filter Method As Collision Risk Assessment On Autonomous Tram						

Ansori, Nachnul	PTRN1.5	193	The Road to Acceptance: A Theory of Planned Behavior Analysis of Indonesian Public Intentions Towards Autonomous Vehicles			
Ansyah, Adi Surya Suwardi	SWEN.2	7	Usability Testing of User Experience and User Interface Design on Mobile Map Applications: A Comparative Study of User Perception and Interaction			
Apriono, Catur	CBSI1.2	271	Design and Analysis of Fiber to the Building for Smart Building in Student Center Universitas Indonesia			
Aryawan, Gusti Ngurah Satria	CBSI2.6	325	Vulnerability Data Assessment and Management Based on Passive Scanning Method and CVSS			
Asmara, Akmal Zaki	HCMA.2	40	Marker vs. Markerless: Usability Insights for Indoor Navigation with Handheld Augmented Reality Systems			
Awangditama, Bangun	SWEN.5	24	Quality Conformity Analysis Functional and Usability in Academic Information Systems Using ISO/IEC 25010			
Azhar, Daffa	IPPR.2	129	Analysis of Effect of Image Augmentation with Image Enhancement on Fish Image Classification Using Convolutional Neural Network			
			В			
Balamurugan, N. M. Balamurugan	PTRN2.2	222	Detecting GastroIntestinal Cancer from Wireless Capsule Endoscopy Images using Efficient Net Model			
Balamurugan, S. Appavu alias Balamurugan	PTRN2.2	222	Detecting GastroIntestinal Cancer from Wireless Capsule Endoscopy Images using Efficient Net Model			
Bayhaqi, Muhammad	CBSI2.1	296	Evaluating Cryptoanalysis on Low-Exponent Implementation of Rivest- Shamir-Adleman			
Bimantara, I Made	SWEN.1	1	Usability Characteristics Evaluation on Food Delivery Service Applications using ISO/IEC 25010 Quality Model			
Buana, Gandhi	PTRN1.1	170	Comparative Analysis of Research Article Matching using SIF, RNN, Attention, and Hybrid Methods			
Bustomi, Muhammad	IMPS.8	117	Anemia Detection Using Convolutional Neural Network Based on Palpebral Conjunctiva Images			
			C			
Chakraborty, Subhradip	CBSI1.3	277	Automated Formal Verification Methodology for Digital Circuits			
Cholissodin, Imam	IPPR.6	153	Optimization of Feature Weighting for Epitope Classification in B-Cell and SARS Using TVIWACRI-PSO-ELM			
Chowanda, Andry	CBSI1.4	283	Federated Learning and Differential Privacy in AI-Based Surveillance Systems Model			
Chug, Anuradha	IMPS.2	83	The effect of activation functions and the number of layers on the identification of citrus leaf diseases using CNN			
Ciptaningtyas, Henning	CBSI2.5	319	A Systematic Literature Review of Genetic Algorithm-Based Approaches for Cloud Task Scheduling			
			D			
Darmanto, Tony	PTRN1.3	182	Electric Power Consumption Prediction from Scarce Dataset with Entropy- Based Subset Selection Regression Tree (e-ss RT)			
Desyawulansari, Nabella	IPPR.8	164	What influences Intention to Buy Cosmetic Products through Online Commerce: a Bibliometric Analysis			

Dharma, Fransiskus	IPPR.1	123	Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm				
Djunaidy, Arif	PTRN2.1	217	Semi-Automatic Ontology Generation for Infectious Disease Domain from Text Data				
Dumas, Cédric	HCMA.1	35	KICO: Surgeon-Centered Collaborative Tool to Aid Peritoneal Carcinomatosis Assessment				
Dumont, Frédéric	HCMA.1	35	KICO: Surgeon-Centered Collaborative Tool to Aid Peritoneal Carcinomatosis Assessment				
Durida, Yona	IPPR.1	123	Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm				
			E				
Emanuel, Andi Wahju Rahardjo	PTRN2.3	228	Solving the two-dimensional conduction Heat Transfer Problem by Using Artificial Neural Network method				
			F				
Fabroyir, Hadziq	HCMA.2	40	Marker vs. Markerless: Usability Insights for Indoor Navigation with Handheld Augmented Reality Systems				
	HCMA.3	46	Auth at Battery Swapping Stations for Electric Scooters: QR Code vs. RFID Interaction Designs				
Fadilah, Muhammad	HCMA.7	67	Monocular Depth Estimation Modification Using Pix2Pix Model with SELU and Alpha Dropout				
Faqih, Moh.	HCMA.3	46	Auth at Battery Swapping Stations for Electric Scooters: QR Code vs. RFID Interaction Designs				
Fatichah, Chastine	IMPS.7	111	Classification of very high-resolution remote sensing image ground objects using deep learning				
	IPPR.2	129	Analysis of Effect of Image Augmentation with Image Enhancement on Fish Image Classification Using Convolutional Neural Network				
	IPPR.5	147	Multilabel Classification of Student Feedback Data Using BERT and Machine Learning Methods				
Fatimah, Rini	PTRN2.7	249	Trajectory Prediction Using Kalman Filter Method As Collision Risk Assessment On Autonomous Tram				
Fauzi, Muhammad Zulfikar	PTRN1.4	188	Spatio-Temporal Forecasting of Air Pollution in Jakarta Using Deep Learning Methods				
Firdaus, Mochammad Ilham	HCMA.3	46	Auth at Battery Swapping Stations for Electric Scooters: QR Code vs. RFID Interaction Designs				
Firmansyah, Dhiza Wahyu	HCMA.3	46	Auth at Battery Swapping Stations for Electric Scooters: QR Code vs. RFID Interaction Designs				
Franczyk, Bogdan	SWEN.6	29	Data Trust in Logistics: Price Prediction for Collaboration				
Fransiska, Muhammad	PTRN2.6	243	An Advanced Graph Embedding Framework with Node Embedding to Design Water Pipeline Networks				
			G				
Gaunitz, Benjamin	SWEN.6	29	Data Trust in Logistics: Price Prediction for Collaboration				
Ghozi, Mohammad Refi	PTRN2.1	217	Semi-Automatic Ontology Generation for Infectious Disease Domain from Text Data				
Ginardi, R. V. Hari	PTRN1.2	176	Electricity Power Consumption Prediction With The Monte Carlo Simulation:				

Case Study Universitas Widya Dharma Pontianak							
			н				
Hariadi, Ridho Rahman	HCMA.3	46	Auth at Battery Swapping Stations for Electric Scooters: QR Code vs. RFID				
Rahman		ED	Interaction Designs				
Haryanto, Hanny	HCMA.4	52	Activity Design based on Appreciative Learning in Disaster Mitigation Serious Game				
Hermawati, Fajar	PTRN2.7	249	Trajectory Prediction Using Kalman Filter Method As Collision Risk Assessment On Autonomous Tram				
Herumurti, Darlis	HCMA.3	46	Auth at Battery Swapping Stations for Electric Scooters: QR Code vs. RFID Interaction Designs				
	HCMA.7	67	Monocular Depth Estimation Modification Using Pix2Pix Model with SELU and Alpha Dropout				
	IMPS.4	94	Batik Style Transfer into Fractal Shape				
	IPPR.6	153	Optimization of Feature Weighting for Epitope Classification in B-Cell and SARS Using TVIWACRI-PSO-ELM				
Hidayat, Zulkifli	PTRN1.6	199	Obstacle Avoidance System on Autonomous Car Using D3QN				
	PTRN1.7	205	Lane Keeping System Using Convolutional Neural Network for Autonomous Car				
Hoendarto,	PTRN1.2	176	Electricity Power Consumption Prediction With The Monte Carlo Simulation:				
Genrawan			Case Study Universitas Widya Dharma Pontianak				
I							
Igarashi, Yuta	PTRN2.8	255	Blood Alcohol Concentration Screening at Emergency Room: Designing a Classification Model Using Machine Learning				
Ijtihadie, Royyana	IPPR.4	141	Convolutional Neural Network with Multi-scale Pooling for the Efficient Steganalysis in Images of Arbitrary Sizes				
	CBSI2.6	325	Vulnerability Data Assessment and Management Based on Passive Scanning Method and CVSS				
	CBSI2.7	331	Answering Durable Skyline Queries on Multidimensional Time Series Data Using Grid-Based Approach				
Iqbal, Mohammad	IMPS.5	100	Mobile Vision Transformer for Surface Defect Classification from A Tiny Dataset				
Iskandar, Riyadi	PTRN1.3	182	Electric Power Consumption Prediction from Scarce Dataset with Entropy- Based Subset Selection Regression Tree (e-ss RT)				
			L				
Jean De La Croix, Ntivuguruzwa	IPPR.4	141	Convolutional Neural Network with Multi-scale Pooling for the Efficient Steganalysis in Images of Arbitrary Sizes				
Joshi, Tanmay	CBSI1.3	277	Automated Formal Verification Methodology for Digital Circuits				
			K				
Kalim, Heena	IMPS.2	83	The effect of activation functions and the number of layers on the identification of citrus leaf diseases using CNN				
Kardianawati, Acun	HCMA.4	52	Activity Design based on Appreciative Learning in Disaster Mitigation Serious Game				
Kartini, Paskalia	PTRN1.8	211	Understanding Human Daily Activity Pattern Inside a Structure Via Power Consumption Modeling				

Kasmiran, Khairul Azhar	CBSI1.5	289	DeepImputeIDS: Enhancing Intrusion Detection Systems with Deep Learning-Based Missing Data Imputation				
Khairy, Muhammad	HCMA.8	72	Indoor Building Room Navigation Using Augmented Reality and SLAM				
Shulhan		, -	Method (Case Study: Politeknik Negeri Malang)				
Khalid, Khalid	IMPS.6	105	Convolutional Neural Network (CNN) EfficientNet-B0 Model Architecture				
			for Paddy Diseases Classification				
Khoirurrizqi, Yusri	IPPR.1	123	Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic				
			Regression and Decision Tree Algorithm				
King, Michael	CBSI2.4	313	Unmasking the Threat: Detecting Cloaking Attacks in Facial Recognition				
Kober, Sascha	SWEN.6	29	Data Trust in Logistics: Price Prediction for Collaboration				
Koch, Michael	SWEN.6	29	Data Trust in Logistics: Price Prediction for Collaboration				
Krishna Yudistira,	CBSI2.2	302	Preemptive Hole Avoidance Technique for Wireless Sensor Network in				
Bagus Gede			Multiple Hole Scenario				
	CBSI2.3	307	Optimizing Next-Hop Selection in AODV-based VANETs: An Approach				
			Based on Distance and Neighbor Node Evaluation				
Kunaefi, Anang	IMPS.6	105	Convolutional Neural Network (CNN) EfficientNet-B0 Model Architecture				
			for Paddy Diseases Classification				
-			Blood Alcohol Concentration Screening at Emergency Room: Designing a				
		10	Classification Model Using Machine Learning				
Kurniawan, Arya	SWEN.3	13	C K Metric and Architecture Smells Relations: Towards Software Quality				
Kuguardayan Imam		16	Assurance Auth at Pattery Swapping Stations for Electric Scooters: OR Code vs. I				
Kuswardayan, Imam	HCMA.3	46	Auth at Battery Swapping Stations for Electric Scooters: QR Code vs. RFID Interaction Designs				
	HCMA.7	67	Monocular Depth Estimation Modification Using Pix2Pix Model with SELU				
			and Alpha Dropout				
	IMPS.4	94	Batik Style Transfer into Fractal Shape				
			L				
Lakoro, Rahmatsyam	HCMA.4	52	Activity Design based on Appreciative Learning in Disaster Mitigation Serious Game				
Lifindra, Benny	IMPS.4	94	Batik Style Transfer into Fractal Shape				
Hansen							
			Μ				
Mahottama, I	CBSI2.7	331	Answering Durable Skyline Queries on Multidimensional Time Series Data				
Nyoman Yoga			Using Grid-Based Approach				
Manik, Lindung	SWEN.4	18	Feature Selection in Machine Learning for Cross-Project Software Defect				
			Number Prediction				
Marbun, Unero	HCMA.8	72	Indoor Building Room Navigation Using Augmented Reality and SLAM				
			Method (Case Study: Politeknik Negeri Malang)				
Mardhatillah, Laeila	SWEN.5	24	Quality Conformity Analysis Functional and Usability in Academic				
			Information Systems Using ISO/IEC 25010				
Martono, Niken	PTRN2.8	255	Blood Alcohol Concentration Screening at Emergency Room: Designing a				
			Classification Model Using Machine Learning				
Masruri, Muhammad	SWEN.2	7	Usability Testing of User Experience and User Interface Design on Mobile				
Zahid			Map Applications: A Comparative Study of User Perception and Interaction				

Mazeau, Leo	PTRN2.6	243	An Advanced Graph Embedding Framework with Node Embedding to Design Water Pipeline Networks				
Merino, Xavier	CBSI2.4	313	Unmasking the Threat: Detecting Cloaking Attacks in Facial Recognition				
Mulyanto, Edy	HCMA.4	52	Activity Design based on Appreciative Learning in Disaster Mitigation Serious Game				
Munif, Abdul	IPPR.7	159	Deep Learning Deployment on Big Data Infrastructure Using Apache Spark (Case Study COVID-19 Detection Using X-Ray Images)				
			Ν				
Nadlifatin, Reny	IPPR.8	164	What influences Intention to Buy Cosmetic Products through Online Commerce: a Bibliometric Analysis				
Nugroho, Arianto	PTRN2.9	261	Non-Compliance Level of Motor Vehicle Taxpayer Classification				
Nugroho, Bayu	IMPS.6	105	Convolutional Neural Network (CNN) EfficientNet-B0 Model Architecture for Paddy Diseases Classification				
Nur, Muhammad	PTRN1.1	170	Comparative Analysis of Research Article Matching using SIF, RNN, Attention, and Hybrid Methods				
Nuraini Sasongko, Natasya	CBSI1.2	271	Design and Analysis of Fiber to the Building for Smart Building in Student Center Universitas Indonesia				
Nurhasan, Usman	HCMA.8	72	Indoor Building Room Navigation Using Augmented Reality and SLAM Method (Case Study: Politeknik Negeri Malang)				
0							
Ohwada, Hayato	PTRN2.8	255	Blood Alcohol Concentration Screening at Emergency Room: Designing a Classification Model Using Machine Learning				
Р							
			Р				
Palumian, Yonathan	HCMA.6	62	P Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance				
Palumian, Yonathan Pandita, Deepika	HCMA.6 HCMA.5	62 57	Gamification of Learning Management System Improves Students'				
			Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance				
Pandita, Deepika	HCMA.5	57	Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance Assessing Digitized Self-Regulation Strategies In Workplace E-Learning Mobile Vision Transformer for Surface Defect Classification from A Tiny				
Pandita, Deepika Pao, Hsing-Kuo	HCMA.5 IMPS.5	57 100	Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance Assessing Digitized Self-Regulation Strategies In Workplace E-Learning Mobile Vision Transformer for Surface Defect Classification from A Tiny Dataset Homonym and Polysemy Approaches in Term Weighting for Indonesian-				
Pandita, Deepika Pao, Hsing-Kuo Ph, Suhariyanto Pramudya,	HCMA.5 IMPS.5 PTRN2.4	57 100 232	Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance Assessing Digitized Self-Regulation Strategies In Workplace E-Learning Mobile Vision Transformer for Surface Defect Classification from A Tiny Dataset Homonym and Polysemy Approaches in Term Weighting for Indonesian- English Machine Translation Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic				
Pandita, Deepika Pao, Hsing-Kuo Ph, Suhariyanto Pramudya, Widyaswara	HCMA.5 IMPS.5 PTRN2.4 IPPR.1	57 100 232 123	Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance Assessing Digitized Self-Regulation Strategies In Workplace E-Learning Mobile Vision Transformer for Surface Defect Classification from A Tiny Dataset Homonym and Polysemy Approaches in Term Weighting for Indonesian- English Machine Translation Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm Solving the two-dimensional conduction Heat Transfer Problem by Using				
Pandita, Deepika Pao, Hsing-Kuo Ph, Suhariyanto Pramudya, Widyaswara Pranowo, Pranowo	HCMA.5 IMPS.5 PTRN2.4 IPPR.1 PTRN2.3	57 100 232 123 228	Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance Assessing Digitized Self-Regulation Strategies In Workplace E-Learning Mobile Vision Transformer for Surface Defect Classification from A Tiny Dataset Homonym and Polysemy Approaches in Term Weighting for Indonesian- English Machine Translation Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm Solving the two-dimensional conduction Heat Transfer Problem by Using Artificial Neural Network method Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic				
Pandita, Deepika Pao, Hsing-Kuo Ph, Suhariyanto Pramudya, Widyaswara Pranowo, Pranowo Pratama, Andhika	HCMA.5 IMPS.5 PTRN2.4 IPPR.1 PTRN2.3 IPPR.1	57 100 232 123 228 123	Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance Assessing Digitized Self-Regulation Strategies In Workplace E-Learning Mobile Vision Transformer for Surface Defect Classification from A Tiny Dataset Homonym and Polysemy Approaches in Term Weighting for Indonesian- English Machine Translation Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm Solving the two-dimensional conduction Heat Transfer Problem by Using Artificial Neural Network method Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm				
Pandita, Deepika Pao, Hsing-Kuo Ph, Suhariyanto Pramudya, Widyaswara Pranowo, Pranowo Pratama, Andhika Pratomo, Baskoro Pribadi, Rudy	HCMA.5 IMPS.5 PTRN2.4 IPPR.1 PTRN2.3 IPPR.1 CBSI2.1	57 100 232 123 228 123 296	Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance Assessing Digitized Self-Regulation Strategies In Workplace E-Learning Mobile Vision Transformer for Surface Defect Classification from A Tiny Dataset Homonym and Polysemy Approaches in Term Weighting for Indonesian- English Machine Translation Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm Solving the two-dimensional conduction Heat Transfer Problem by Using Artificial Neural Network method Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm Evaluating Cryptoanalysis on Low-Exponent Implementation of Rivest- Shamir-Adleman Mobile Vision Transformer for Surface Defect Classification from A Tiny				
Pandita, Deepika Pao, Hsing-Kuo Ph, Suhariyanto Pramudya, Widyaswara Pranowo, Pranowo Pratama, Andhika Pratomo, Baskoro Pribadi, Rudy Cahyadi Hario	HCMA.5 IMPS.5 PTRN2.4 IPPR.1 PTRN2.3 IPPR.1 CBSI2.1 IMPS.5	57 100 232 123 228 123 296 100	Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance Assessing Digitized Self-Regulation Strategies In Workplace E-Learning Mobile Vision Transformer for Surface Defect Classification from A Tiny Dataset Homonym and Polysemy Approaches in Term Weighting for Indonesian- English Machine Translation Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm Solving the two-dimensional conduction Heat Transfer Problem by Using Artificial Neural Network method Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm Evaluating Cryptoanalysis on Low-Exponent Implementation of Rivest- Shamir-Adleman Mobile Vision Transformer for Surface Defect Classification from A Tiny Dataset				

			Carcinomatosis Assessment
	PTRN2.4	232	Homonym and Polysemy Approaches in Term Weighting for Indonesian-
			English Machine Translation
	CBSI2.5	319	A Systematic Literature Review of Genetic Algorithm-Based Approaches for
			Cloud Task Scheduling
Putri, Revita	IMPS.8	117	Anemia Detection Using Convolutional Neural Network Based on Palpebral
			Conjunctiva Images
			R
Rachmadi, Reza Fuad	IMPS.3	88	Modified 3D U-Net For Brain Tumor Segmentation
Rachman, Rudy	IMPS.1	77	Classification of Illustrated Question for Indonesian National Assessment with Deep Learning
Raharjo, Agus Budi	HCMA.1	35	KICO: Surgeon-Centered Collaborative Tool to Aid Peritoneal Carcinomatosis Assessment
Rahendra Ramadhan, Luthfi	IPPR.1	123	Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm
Rahman, Muhammad	CBSI1.2	271	Design and Analysis of Fiber to the Building for Smart Building in Student Center Universitas Indonesia
Rakhmawati, Nur	PTRN1.1	170	Comparative Analysis of Research Article Matching using SIF, RNN, Attention, and Hybrid Methods
	PTRN2.1	217	Semi-Automatic Ontology Generation for Infectious Disease Domain from Text Data
	CBSI1.1	265	The Robustness of Machine Learning Models Using MLSecOps: A Case Study On Delivery Service Forecasting
Ramadhani, Hendra	IPPR.7	159	Deep Learning Deployment on Big Data Infrastructure Using Apache Spark (Case Study COVID-19 Detection Using X-Ray Images)
Rendusara, Resqi	PTRN1.6	199	Obstacle Avoidance System on Autonomous Car Using D3QN
Abdurrazzaaq Putra	PTRN1.7	205	Lane Keeping System Using Convolutional Neural Network for Autonomous Car
Rifai, Achmad	PTRN1.5	193	The Road to Acceptance: A Theory of Planned Behavior Analysis of Indonesian Public Intentions Towards Autonomous Vehicles
Riyanto T, Bambang	PTRN2.7	249	Trajectory Prediction Using Kalman Filter Method As Collision Risk Assessment On Autonomous Tram
Rizqifadiilah,	PTRN1.6	199	Obstacle Avoidance System on Autonomous Car Using D3QN
Muhammad	PTRN1.7	205	Lane Keeping System Using Convolutional Neural Network for Autonomous Car
Rochimah, Siti	SWEN.1	1	Usability Characteristics Evaluation on Food Delivery Service Applications using ISO/IEC 25010 Quality Model
	SWEN.2	7	Usability Testing of User Experience and User Interface Design on Mobile Map Applications: A Comparative Study of User Perception and Interaction
	SWEN.3	13	C K Metric and Architecture Smells Relations: Towards Software Quality Assurance
	SWEN.5	24	Quality Conformity Analysis Functional and Usability in Academic Information Systems Using ISO/IEC 25010
Rofifah, Fairuz	HCMA.3	46	Auth at Battery Swapping Stations for Electric Scooters: QR Code vs. RFID Interaction Designs

Rosyidah, Umi	HCMA.4	52	Activity Design based on Appreciative Learning in Disaster Mitigation							
Rukmi, Alvida	PTRN2.6	243	Serious Game An Advanced Graph Embedding Framework with Node Embedding to							
			Design Water Pipeline Networks							
	S									
S, Geetha	PTRN2.2	222	Detecting GastroIntestinal Cancer from Wireless Capsule Endoscopy Images using Efficient Net Model							
S, Sasikala	PTRN2.2	222	Detecting GastroIntestinal Cancer from Wireless Capsule Endoscopy Images using Efficient Net Model							
Sahal, Mochammad	PTRN1.6	199	Obstacle Avoidance System on Autonomous Car Using D3QN							
	PTRN1.7	205	Lane Keeping System Using Convolutional Neural Network for Autonomous Car							
Saikhu, Ahmad	IMPS.7	111	Classification of very high-resolution remote sensing image ground objects using deep learning							
	IPPR.5	147	Multilabel Classification of Student Feedback Data Using BERT and Machine Learning Methods							
	PTRN1.2	176	Electricity Power Consumption Prediction With The Monte Carlo Simulation: Case Study Universitas Widya Dharma Pontianak							
	PTRN1.4	188	Spatio-Temporal Forecasting of Air Pollution in Jakarta Using Deep Learning Methods							
	PTRN2.6	243	An Advanced Graph Embedding Framework with Node Embedding to Design Water Pipeline Networks							
Salsabila, Nadya	CBSI1.2	271	Design and Analysis of Fiber to the Building for Smart Building in Student Center Universitas Indonesia							
Santoso, Bagus Jati	-		Vulnerability Data Assessment and Management Based on Passive Scanning Method and CVSS							
	CBSI2.7	331	Answering Durable Skyline Queries on Multidimensional Time Series Data Using Grid-Based Approach							
Saputra, Adi	CBSI1.1	265	The Robustness of Machine Learning Models Using MLSecOps: A Case Study On Delivery Service Forecasting							
Saputra, Firdaus	PTRN1.6	199	Obstacle Avoidance System on Autonomous Car Using D3QN							
Dheo	PTRN1.7	205	Lane Keeping System Using Convolutional Neural Network for Autonomous Car							
Sari, Ghaluh Indah Permata	IMPS.5	100	Mobile Vision Transformer for Surface Defect Classification from A Tiny Dataset							
Sarno, Riyanarto	IPPR.6	153	Optimization of Feature Weighting for Epitope Classification in B-Cell and SARS Using TVIWACRI-PSO-ELM							
	PTRN2.4	232	Homonym and Polysemy Approaches in Term Weighting for Indonesian- English Machine Translation							
	PTRN2.5	238	Anomaly Detection in Raw Audio Using Extreme Learning Machine							
	PTRN2.9	261	Non-Compliance Level of Motor Vehicle Taxpayer Classification							
Setiawan, Alhaura	CBSI1.2	271	Design and Analysis of Fiber to the Building for Smart Building in Student Center Universitas Indonesia							
Setiawan, Hamzah	IPPR.5	147	Multilabel Classification of Student Feedback Data Using BERT and Machine Learning Methods							

Setyaningsih, Dwiana	IPPR.1	123	Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm			
Setyo Astuti, Ely	HCMA.8	72	Indoor Building Room Navigation Using Augmented Reality and SLAM Method (Case Study: Politeknik Negeri Malang)			
Shiddiqi, Ary Mazharuddin	PTRN2.6	243	An Advanced Graph Embedding Framework with Node Embedding to Design Water Pipeline Networks			
	CBSI2.2	302	Preemptive Hole Avoidance Technique for Wireless Sensor Network in Multiple Hole Scenario			
	CBSI2.3	307	Optimizing Next-Hop Selection in AODV-based VANETs: An Approach Based on Distance and Neighbor Node Evaluation			
	CBSI2.5	319	A Systematic Literature Review of Genetic Algorithm-Based Approaches for Cloud Task Scheduling			
Singh, Abhishek	CBSI1.3	277	Automated Formal Verification Methodology for Digital Circuits			
Singh, Amit	IMPS.2	83	The effect of activation functions and the number of layers on the identification of citrus leaf diseases using CNN			
Subriadi, Apol Pribadi	IPPR.8	164	What influences Intention to Buy Cosmetic Products through Online Commerce: a Bibliometric Analysis			
Suciati, Nanik	IPPR.2	129	Analysis of Effect of Image Augmentation with Image Enhancement on Fish Image Classification Using Convolutional Neural Network			
	IPPR.6	153	Optimization of Feature Weighting for Epitope Classification in B-Cell and SARS Using TVIWACRI-PSO-ELM			
Suhaimi, Khansa	PTRN2.7	249	Trajectory Prediction Using Kalman Filter Method As Collision Risk Assessment On Autonomous Tram			
Sukmana, Septian Enggar	HCMA.8	72	Indoor Building Room Navigation Using Augmented Reality and SLAM Method (Case Study: Politeknik Negeri Malang)			
Suryani, Erma	CBSI1.1	265	The Robustness of Machine Learning Models Using MLSecOps: A Case Study On Delivery Service Forecasting			
Suryono, Valerie	CBSI1.2	271	Design and Analysis of Fiber to the Building for Smart Building in Student Center Universitas Indonesia			
Susana, Susana	IMPS.7	111	Classification of very high-resolution remote sensing image ground objects using deep learning			
Sutarto, Auditya Purwandini	PTRN1.5	193	The Road to Acceptance: A Theory of Planned Behavior Analysis of Indonesian Public Intentions Towards Autonomous Vehicles			
Sutojo, Totok	HCMA.4	52	Activity Design based on Appreciative Learning in Disaster Mitigation Serious Game			
Suwida, Katon	IPPR.3	135	Enhancement Techniques on Deep Learning-based Mammography Classification for Breast Cancer Detection			
			Т			
Tahir, Mahjabeen	CBSI1.5	289	DeepImputeIDS: Enhancing Intrusion Detection Systems with Deep Learning-Based Missing Data Imputation			
Tama, Arsy Bilahil	PTRN1.4	188	Spatio-Temporal Forecasting of Air Pollution in Jakarta Using Deep Learning Methods			
Tanaya, Venansius	CBSI1.4	283	Federated Learning and Differential Privacy in AI-Based Surveillance Systems Model			
Thibaudeau, Emilie	HCMA.1	35	KICO: Surgeon-Centered Collaborative Tool to Aid Peritoneal			

			Carcinomatosis Assessment					
Tjen, Jimmy	PTRN1.3	182	Electric Power Consumption Prediction from Scarce Dataset with Entropy-					
			Based Subset Selection Regression Tree (e-ss RT)					
	PTRN1.8	211	Understanding Human Daily Activity Pattern Inside a Structure Via Power					
			Consumption Modeling					
Trapsilawati, Fitri	PTRN1.5	193	The Road to Acceptance: A Theory of Planned Behavior Analysis of					
			Indonesian Public Intentions Towards Autonomous Vehicles					
			U					
Udzir, Nur Izura	CBSI1.5	289	DeepImputeIDS: Enhancing Intrusion Detection Systems with Deep Learning-Based Missing Data Imputation					
Unggul Pamenang, Muhammad	HCMA.8	72	Indoor Building Room Navigation Using Augmented Reality and SLAM Method (Case Study: Politeknik Negeri Malang)					
			V					
V, Sharmila	PTRN2.2	222	Detecting GastroIntestinal Cancer from Wireless Capsule Endoscopy Images					
v, Shamma	1 11(112,2		using Efficient Net Model					
Vapiwala, Fatima	HCMA.5	57	Assessing Digitized Self-Regulation Strategies In Workplace E-Learning					
Vinarti, Retno	PTRN2.1	217	Semi-Automatic Ontology Generation for Infectious Disease Domain from					
			Text Data					
			W					
Wahyuwidayat, Raditia	PTRN2.9	261	Non-Compliance Level of Motor Vehicle Taxpayer Classification					
Wangsaputra, Aero	CBSI1.2	271	Design and Analysis of Fiber to the Building for Smart Building in Student Center Universitas Indonesia					
Wicaksana W, M Sadewa	IMPS.3	88	Modified 3D U-Net For Brain Tumor Segmentation					
Widyanti, Ari	PTRN1.5	193	The Road to Acceptance: A Theory of Planned Behavior Analysis of Indonesian Public Intentions Towards Autonomous Vehicles					
Widyatmanti, Wirastuti	IPPR.1	123	Spatial Prediction of Flood Probability in Juwana Watershed Using Logistic Regression and Decision Tree Algorithm					
Wikantyasa, I Made	SWEN.3	13	C K Metric and Architecture Smells Relations: Towards Software Quality Assurance					
Willay, Thommy	PTRN1.3	182	Electric Power Consumption Prediction from Scarce Dataset with Entropy- Based Subset Selection Regression Tree (e-ss RT)					
	PTRN1.8	211	Understanding Human Daily Activity Pattern Inside a Structure Via Power Consumption Modeling					
Winarno, Winarno	IMPS.8	117	Anemia Detection Using Convolutional Neural Network Based on Palpebral Conjunctiva Images					
Woodman, Roger	PTRN1.5	193	The Road to Acceptance: A Theory of Planned Behavior Analysis of Indonesian Public Intentions Towards Autonomous Vehicles					
			Y					
Yatijan, Marcella	IMPS.8	117	Anemia Detection Using Convolutional Neural Network Based on Palpebral					
	1111 0.0	±±/	Conjunctiva Images					
Yokobori, Shoji	PTRN2.8	255	Blood Alcohol Concentration Screening at Emergency Room: Designing a Classification Model Using Machine Learning					

Yuhana, Umi	IMPS.1	77	Classification of Illustrated Question for Indonesian National Assessment with Deep Learning
Yuliana, Oviliani	HCMA.6	62	Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance
Yuniarti, Anny	IPPR.3	135	Enhancement Techniques on Deep Learning-based Mammography Classification for Breast Cancer Detection
Yurina, Valentina	IPPR.6	153	Optimization of Feature Weighting for Epitope Classification in B-Cell and SARS Using TVIWACRI-PSO-ELM
Yusuf, Ahmad	IMPS.6	105	Convolutional Neural Network (CNN) EfficientNet-B0 Model Architecture for Paddy Diseases Classification
			Z
Zhou, Pei	CBSI2.4	313	Unmasking the Threat: Detecting Cloaking Attacks in Facial Recognition

Gamification of Learning Management System Improves Students' Engagement, Active Learning and Performance

Oviliani Yenty Yuliana School of Business and Management Petra Christian University Surabaya, Indonesia oviliani@petra.ac.id Yonathan Palumian School of Business and Management Petra Christian University Surabaya, Indonesia ypalumian@petra.ac.id

Abstract-Many researchers have implemented gamification elements, i.e., badges, leaderboards, points, and levels, to enhance active learning. Few researchers use game elements and activities in LMS (LMS gamification). This research aims to test whether performance is different between students taking LMS gamification and LMS non-gamification. In addition, we want to analyze the effect of student engagement and game activity on student performance. We used independent sample t-tests and regression to analyze the data. Active learning and student engagement in the LMS gamification significantly impact academic performance, with gamification leading to notable differences in achievement compared to students in LMS non-gamification. By incorporating gamified activities and promoting student engagement, LMS can provide access to resources, personalized learning experiences, and collaboration opportunities, resulting in a deeper understanding of subjects and higher levels of achievement. The combination of gamification and student engagement within LMS shows excellent potential for transforming education and facilitating long-term student success.

Keywords—e-learning, LMS, gamification, engagement, student active learning, performance

I. INTRODUCTION

E-learning is growing along with advances in information and communication technology. Moodle is one of the opensource and widely used e-learning platforms to facilitate flexible and collaborative learning. It is also known as a Learning Management System (LMS). LMS allows educational institutions and organizations to effectively manage, organize, and provide online learning content. The COVID-19 pandemic led to a substantial surge in e-learning adoption due to physical constraints and widespread school closures across the globe [1]. Numerous primary and tertiary educational institutions have transitioned to online learning to ensure uninterrupted educational processes. To improve the LMS user experience, Moodle provides the facility to add new features called plugins. In 2022, more than 2,000 opensource plugins [2] were in the Moodle Plugin directory. The XP feature stands out as the leading choice for gamification within the LMS, having been adopted by approximately 10,000 websites and utilized by about 1.6 million learners through the plugin [3].

LMS remains highly pertinent for educating the Internetsavvy generation (Gen Z) who pursue higher education at universities [4,5,6]. Gen Z is considered capable of multitasking simultaneously, such as social media activities on cell phones, browsing with PCs, and listening to music. In addition, they have a close relationship with cyberspace and almost all activities in cyberspace. The generation embraces innovation as a part of life, and they have a more positive view of how innovation impacts their lives than any other generation. Gen Z learns faster and easier if they can use a smartphone or tablet. They are best suited to today's learning strategies. They lean on learning in a more open environment, anticipating momentary gratification, and appreciating a fun and flexible learning environment [7,8]. They like having control over their development and are comfortable taking advantage of innovation in the classroom. Gen Z inspires us to implement LMS gamification.

We have been teaching Management Information Systems (MIS) courses to School of Business and Management students who are Gen Z. MIS provides knowledge regarding applying digital technology concepts, especially information systems, in organizations and businesses to foster competitive advantage. Based on experience, students often encounter challenges comprehending certain concepts or technical terminology taught in MIS. However, when they work, MIS becomes very useful to support their work. We applied LMS gamification in one of the MIS classes, as done by [9,10], to enhance the motivation and engagement of students.

Most researchers [11–16] employed game elements plugins provided by developers in the Moodle community, such as badges, leaderboards, points, and levels, to integrate game-like experiences into the learning process. They have utilized game elements alongside conventional activities like Quizzes, Assignments, and Discussion Forums. So far, only a few researchers explored the potential of game activities in LMS, such as Crossword [1,6,7,14], Cryptex [7], Hangman [7,14,17], and Snakes and Ladders [7]. Researchers used non-Moodle Snakes and Ladders as a game activity [18,19]. Most analyses used questionnaires to survey students' perceptions and satisfaction with game elements [6,16,20-22]. Other researchers [4,5,15] analyzed further using the paired samples test to investigate student engagement differences using game elements. Research involving game activities and game elements is still rare. Researchers [7] only analyzed the paired sample test. They did not explore the relationship between student engagement and active learning in LMS gamification.

This study utilized the concept of gamification, which refers to incorporating not only game elements but also game activities within a learning environment to enhance the motivation and engagement of MIS students. The study will address the following research questions as our contribution: 1) Is there a difference in MIS student performance between classes that implement gamification (LMS gamification) and those that follow traditional teaching methods (LMS nongamification)? 2) Is there a relationship between student engagement and active learning to MIS student performance at LMS gamification?

The analysis results show that the study highlights the positive impact of gamification and student engagement on LMS gamification on student performance. Gamification's interactive and immersive nature fosters deeper engagement and enhances critical thinking skills. Gamification provides immediate feedback and rewards, reinforcing positive learning behaviors and a growth mindset. Consequently, students exposed to gamified LMS experiences demonstrate improved performance, achieve higher academic results, and exhibit enthusiasm for their studies.

II. LITERATURE REVIEW

A. LevelUp plugin

LevelUp plugin enhances the educational journey of students through gamification [3,7,21,23]. It enables learners to accumulate experience points as they actively participate in their courses, fostering greater engagement and involvement. Motivating students to advance to higher levels and acknowledging their achievements upon reaching each milestone provides a sense of reward and encouragement. The LevelUp plugin offers various features, including a leaderboard that harnesses a friendly and motivating sense of competition, granting access to course content upon attaining specific levels and the ability to substitute experiential points with enticing images, thereby rendering the learning process even more captivating for the students. Five components of game mechanics are widely employed within the educational environment to enhance students' active involvement and overall engagement in online learning.

- Experience points (XP). Students have two avenues to accumulate XP: they would receive points automatically upon quiz completion and grant additional points for specific actions undertaken within LMS. These actions encompass logging into the system, engaging in forum discussions, and accessing reading materials. The quantity of XP awarded for each activity was contingent upon the level of effort required. For instance, posting to a forum garnered more XP than simply logging into the system.
- Levels. To establish the number of levels, utilize an exponential algorithm that dynamically determines the levels based on the XP needed to reach each level.
- **Badges**. There are two categories of badges. To inspire and incentivize students, devise a series of activities that students need to fulfill to acquire the badges. These activities included engaging in forum discussions, posing thoughtful questions, and displaying diligence in their efforts. Secondly, they were awarded a badge upon completing specific quests to gauge and acknowledge students' accomplishments.
- Leaderboards. To visualize student performance on a leaderboard system in each activity compared to their classmates. The system ranks students based on their XP, with the highest achievers at the top of the leaderboard. This feature enabled students to assess their progress and performance by comparing themselves to their peers within the same class.

• **Progress bars.** Recognizing the significant impact of providing feedback on student learning, utilize progress bars to visually represent the distance remaining for students to reach the next level. This approach aimed to enhance their understanding of their progress and encourage further engagement.

B. Game Activities

Game activities are a Moodle plugin to support gamification in LMS [2,7]. In this study, the following game activities were used: Crossword, Cryptex, Hangman and Snakes and Ladders. Each game will be explained as follows.

- Crossword [1,6,7,14]. This game generates a randomized Crossword puzzle by selecting words randomly from a glossary or quiz short answer questions. The teacher can specify the maximum number of columns, rows, or words in the puzzle. Students can verify the correctness of their answers by clicking the 'Check Crossword' button. Each Crossword is generated dynamically, ensuring a unique student experience.
- **Cryptex** [7]. This game functions similarly to a Crossword but with an added element of intrigue-the answers are concealed within a randomly generated Cryptex.
- **Hangman** [7,14,17]. This game randomly uses glossary or quiz short-answer questions to construct a Hangman puzzle. The teacher can customize the game by specifying the number of words included, deciding whether to reveal the first or last letter, and displaying the question or answer as the game progresses.
- Snakes and Ladders [7]. To navigate the traditional Snakes and Ladders board, students must randomly respond to questions drawn from either a glossary or quiz short answer questions. When a correct answer is provided, the dice are rolled, revealing a random number determining how many squares their game piece moves forward. If the game piece lands at the bottom of the ladder and the answer is correct, it climbs to the top. However, if the game piece lands at a snake's head and the answer is incorrect, it slides down to the tail.

III. RESEARCH METHODOLOGY

We conducted a study in the fourth semester of the Business Management program at MIS course. During the 2022/2023 Even Semester, 194 students enrolled in the MIS course were divided into five classes, approximately 39 students per class. Until now, the LMS has been used solely for sharing lecture materials and conducting traditional MIS exams without any gamification elements. However, this semester, we intend to explore active learning by incorporating gamified e-quizzes in LMS, which we call LMS gamification. Non randomly selected class, B1 MIS, participated in LMS gamification to achieve this. In contrast, the remaining four classes participated in traditional LMS without gamified e-quizzes, which we call LMS nongamification. Implementing LMS gamification aims to enhance student engagement, active learning, and the performance of B1 MIS.

as

Research activities within sixteen weeks, including preparatory, intervention, and assessment activities. In the first week, we trained and introduced gamified platforms and gamification concepts to B1 MIS students. Intervention or teaching and learning activities occurred from the second to the fifteenth week. Each week, the class begins with a 120minute onsite presentation of MIS material. Followed by online gamified e-quiz learning activities at LMS for 30 minutes. The gamification quiz platform is LMS because it is open-source and easy to use. The game activity randomly took questions from the question bank, and each test scored 100 points. All formative assessments aim to evaluate students' understanding of the topics they have studied. All MIS students took the midterm and final exams using the LMS quiz in the eighth and sixteenth weeks.

Quantitative methods design, i.e., independent samples t-

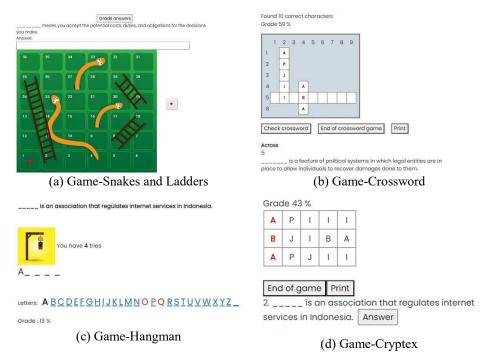


Fig. 1. The selected LMS game activities for the project

In this study, we set the p-value to be smaller or equal to 0.05 on the independent sample t-test to conclude there is a significant difference between student performance at LMS gamification and LMS non-gamification. In addition, we also set the p-value smaller or equal to 0.05 in the regression to conclude there is a significant relationship between student engagement and active learning to student performance at LMS gamification.

IV. RESULTS AND DISCUSSION

A. Results and Findings

Independent Samples Test for Means

The first data analysis conducted in this study was the test of the mean difference in students' performance between two student groups of LMS gamification and LMS nongamification.

According to the independent samples test for means, 38 students who received the gamification treatment in class as part of their learning had a final exam score mean of 72.11. In comparison, the 156 students whose classes had no game activity had a score mean of 62.28, with a difference of 9.83.

The independent samples t-test results in Table I show a significant difference in student performance between the two groups of segmented students, i.e., LMS gamification and LMS non-gamification (p-value <0.05).

test and regression, were conducted in this study. We

collected quantitative MIS data from the midterm and final

exams for all MIS students to calculate the final score of MIS

independent samples t-test analysis on the student's

performance for both LMS gamification and LMS non-

gamification. For LMS gamification, we also collected

activity completion as the student engagement and game

activity scores as active learning. Then, we conducted a

regression analysis. The independent variables in this

analysis were student engagement and student engagement.

Regarding gamified instructions, we used four LMS game

activities, namely (a) Snakes and Ladders, (b) Crossword, (c)

Hangman, and (d) Cryptex, as shown in Figure 1,

respectively. The dependent variable studied was students'

performance following LMS gamification.

students' performance. Then, we conducted an

TABLE I. COMPARED MEANS (INDEPENDENT SAMPLES T-TEST)

Group	Mean	Std. Deviation	t- value	Mean difference	p- value
LMS gamification (n 38)	72.11	13.701	3.244	9.83	0.001
LMS non- gamificaation (n 156)	62.28	17.397	3.244	9.85	0.001

Multiple Linear Regression

The second data analysis conducted in this study was the multiple linear regression test. The independent variables or predictors in this stage are engagement and game activity. At the same time, performance has a role as the dependent variable or target variable. The number of observations in this stage is 38 students from the LMS gamification. Figure 2

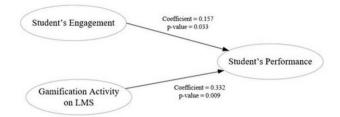


Fig. 2. Regression Model

We executed a data normality test before performing tests on the suggested regression model. Utilizing IBM SPSS 26 software and the Kolmogorov-Smirnov test, the result showed that the data distribution in the observations of this study followed a normal distribution. This finding is supported by the Asymptotic significance value of 0.2, which exceeds the threshold of 0.05 typically used for normality testing.

TABLE II. REGRESSION RESULTS

Influence Path	Coefficient	t-statistics	p-value	Pemark
Student's Engagement → Student's Performance	0.157	2.220	0.033	Proposed hypothesis supported
Game Activity on LMS → Student's Performance	0.332	2.760	0.009	Proposed hypothesis supported
Intercept (Constant)	31.857	3.548	0.001	-

Based on Table II, the regression analysis results in an equation in the following.

Performance=0.157 *engagement*+0.332 *activity*+31.857+ ε

According to the findings in Table II and the formulated equation, students' engagement positively influences students' performance among the 38 students in LMS gamification. It reflects that the more active students are in accessing information and actively using the LMS, the better their performance will be. In addition, gamification activities embedded in the LMS can positively impact better student performance, as seen from the overall final score.

B. Discussion

One significant benefit of LMS is its ability to enhance the efficiency and effectiveness of educational processes. The first finding of this study is that students with LMS gamification have better score achievement on their final exam than LMS non-gamification. In other words, this research has consistently demonstrated a notable disparity in performance between students who receive gamification on LMS and those who do not. Incorporating gamified elements in the learning process creates a motivating environment that enhances student participation and knowledge retention. Gamification stimulates intrinsic motivation, encouraging students to pursue learning goals actively, persist through challenges, and seek mastery of the subject matter. The interactive and immersive nature of gamification fosters deeper engagement, promoting higher levels of cognitive processing and critical thinking skills. Additionally, gamification's immediate feedback and rewards provide continuous reinforcement, reinforcing positive learning behaviors and promoting a growth mindset. As a result, students exposed to gamified LMS experiences demonstrate improved performance, increased academic achievement, and a greater enthusiasm for their studies, setting them toward long-term success.

Secondly, according to our findings in this study, providing extra activities such as gamification can promote students' ability to catch the material through fun activities. The statistical calculation of regression analysis undertaken in this study found that gamification substantially impacts student performance over activity completion (engagement). In other words, implementing gamification in LMS can have a transformative effect on student performance. Gamification enhances student engagement and motivation bv incorporating game-like elements such as Snakes and Ladders, Crosswords, Hangman, and Cryptex into the active learning process. Crosswords, Hangman, and Cryptex are suitable for weekly activities. However, Snakes and Ladders require more questions and are better suited for repeating exercises over several weeks. Game activities create a sense of challenge, competition, and achievement, which drives students to actively participate and excel in their studies. Gamification too cultivates a positive learning environment by making the learning encounter more agreeable and immersive. In expansion, gamification advances ceaseless input and rewards advance, ingrains a sense of achievement, and empowers understudies to endeavor for continuous change. As a result, understudies are more likely to remain centered, hold data superior, and perform at higher levels scholastically.

In addition to gamification, the student's engagement on the LMS platform profoundly impacts their overall academic performance. Even though the student's engagement indicates a lower coefficient of impact on the student's academic performance, it still has a significant effect. When students actively participate and interact with the LMS platform, they benefit from increased access to course and interactive learning materials resources for communication and discussion. Engaging with these features promotes a deeper understanding of the subject, encourages critical thinking, and fosters active learning. Finally, the LMS allows for personalized learning experiences, as students can track their progress on LevelUp, receive immediate feedback, and access supplementary materials tailored to their needs. Through active engagement in the LMS, students are more likely to stay motivated, develop a sense of ownership over their learning, and ultimately achieve higher performance levels in their academic endeavors.

V. CONCLUSION

To sum up, this study consistently demonstrates a notable difference in performance between students' LMS gamification and LMS non-gamification. The interactive and immersive nature of gamification promotes deeper engagement. It enhances the critical thinking skills of students who are assigned game activities as part of their learning process in the class. The immediate feedback and rewards associated with gamification reinforce positive learning behaviors and cultivate a growth mindset. Consequently, students exposed to gamified LMS experiences exhibit improved performance, achieve higher academic results, and display tremendous enthusiasm for their studies.

Finally, the findings of this study underscore the significant impact of active learning in gamification and student engagement on LMS on student performance. Incorporating gamified elements in the learning process has consistently demonstrated a notable disparity in achievement between students' LMS gamification and LMS nongamification. Additionally, while the coefficient of effects may be lower, student engagement on the LMS platform still significantly impacts academic performance. Active participation and interaction with the LMS provide students with increased access to resources, personalized learning experiences, and opportunities for collaboration, leading to a deeper understanding of the subject matter and higher levels of achievement. The combination of gamification and student engagement within LMS holds immense potential for transforming the educational landscape and facilitating students' long-term success.

Regarding the limitations, this study did not employ all plugins game activities in active learning. For advanced investigations, Hidden Picture, Millionaire, and Sudoku could be incorporated as game variations to enhance student engagement and motivation. In addition, during the analysis and writing of this paper, we did not distribute questionnaires to explore further student interest and involvement in LMS Gamification. Conducting mixed-method research would be beneficial in examining the impact of engagement and game activity on student performance.

ACKNOWLEDGMENT

This Learning and Research Grant is fully funded by the Excellence Learning & Teaching Center, Petra Christian University, number 0002/KOTRAK/ELTC/UKP/2023.

REFERENCES

- F. A. Nieto-Escamez and M. D. Roldán-Tapia, "Gamification as online teaching strategy during COVID-19: A mini-review," Front. Psychol., vol. 12, p. 648552, 2021.
- [2] M. Dougiamas, "The Moodle Story." 2023, [Online]. Available: https://moodle.com/about/the-moodle-story/.
- [3] F. Massart, "Level Up XP-Gamification," 2023, [Online]. Available: https://moodle.org/plugins/block xp.
- [4] P. Gupta and P. Goyal, "Is game-based pedagogy just a fad? A selfdetermination theory approach to gamification in higher education," Int. J. Educ. Manag., vol. 36, no. 3, pp. 341–356, 2022.
- [5] A. Bernik, D. Radoevi, and J. Dvorski, "Gamification after Almost A Decade: Is It Still Relevant? A Case of Non-stem Hybrid E-learning University Course," J. Comput. Sci., vol. 16, no. 5, pp. 626–631, 2020.

- [6] P. J. Lawrance, A. Moreira, and C. Santos, "The Gamification to improve learners' learning in Higher Education," Internet Latent Corpus J., vol. 11, no. 2, pp. 8–22, 2021.
- [7] L. R. Begosso, L. C. Begosso, D. S. da Cunha, J. V. Pinto, L. Lemos, and M. Nunes, "The Use of Gamification for Teaching Algorithms.," in FedCSIS (Communication Papers), 2018, pp. 225–231.
- [8] E. P. Werth and L. Werth, "Effective training for millennial students," Adult Learn., vol. 22, no. 3, pp. 12–19, 2011.
- [9] P. Vranešić, K. Aleksić-Maslać, and B. Sinković, "Influence of gamification reward system on student motivation," in 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2019, pp. 766–772.
- [10] R. Raju, S. Bhat, S. Bhat, R. D'Souza, and A. B. Singh, "Effective usage of gamification techniques to boost student engagement," J. Eng. Educ. Transform., vol. 34, pp. 713–717, 2021.
- [11] I. Bouchrika, N. Harrati, V. Wanick, and G. Wills, "Exploring the impact of gamification on student engagement and involvement with e-learning systems," Interact. Learn. Environ., vol. 29, no. 8, pp. 1244–1257, 2021.
- [12] S. Felszeghy et al., "Using online game-based platforms to improve student performance and engagement in histology teaching," BMC Med. Educ., vol. 19, pp. 1–11, 2019.
- [13] K. Puritat, "Enhanced Knowledge and Engagement of Students Through the Gamification Concept of Game Elements.," Int. J. Eng. Pedagog., vol. 9, no. 5, 2019.
- [14] T. Buhagiar and C. Leo, "Does Gamification Improve Academic Performance?.," J. Instr. Pedagog., vol. 20, 2018.
- [15] H. F. Hasan, M. Nat, and V. Z. Vanduhe, "Gamified collaborative environment in Moodle," IEEE Access, vol. 7, pp. 89833–89844, 2019.
- [16] D. Zhao et al., "An innovative multi-layer gamification framework for improved STEM learning experience," IEEE Access, vol. 10, pp. 3879–3889, 2021.
- [17] R. Turner, "The Gamification of EAP," 2012.
- [18] H. D. Ariessanti, A. Trisetyo, W. Suparta, and E. Abudurahman, "Concept of gamification in adaptation of snake ladder online representation education covid-19," in 2020 International Conference on Information Technology Systems and Innovation (ICITSI), 2020, pp. 435–442.
- [19] D. Andrews et al., "The Service Transformation Game: Snakes and Ladders to Advanced Services," 2018.
- [20] P. W. Handayani, S. R. Raharjo, and P. H. Putra, "Active Student Learning through Gamification in a Learning Management System," Electron. J. e-Learning, vol. 19, no. 6, pp. pp601-613, 2021.
- [21] C. Poondej and T. Lerdpornkulrat, "Gamification in e-learning: A Moodle implementation and its effect on student engagement and performance," Interact. Technol. Smart Educ., vol. 17, no. 1, pp. 56– 66, 2020.
- [22] M. Gachkova, E. Somova, and S. Gaftandzhieva, "Gamification of courses in the e-learning environment," in IOP conference series: Materials science and engineering, 2020, vol. 878, no. 1, p. 12035.
- [23] Z. Mahmud, P. J. Weber, and J. P. Moening, "Gamification of engineering courses," 2017.