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Abstract. This study presents clustering-based assessments of solar attributes for locating potential solar photovoltaic (PV) power plant sites using 
k-means and density-based spatial clustering of applications with noise (DBSCAN) by examining the yearly average single-attribute and three-attribute 
clustering on a dataset of long-term hourly-based direct and diffuse irradiation, ambient temperature, and solar PV power output from 2005 to 2022. 
Three-attribute clustering enables stakeholders to better understand the characteristics of a cluster by collectively identifying three solar attributes 
and the magnitude of each attribute in an area or cluster. The presence of this information, which constitutes the clusters, suggests that these attributes 
have different effects on solar PV output power in different clusters. Although k-means is an effective method for investigating potential locations for 
PV power plant placements, DBSCAN offers users an alternative method for accomplishing a similar goal. In the case of three-attribute clustering of 
direct irradiation with k-means and DBSCAN, the 18-year mean value of clusters with the highest yearly average value is achieved at very similar 
values of 0.305 kW/m2 and 0.310 kW/m2, respectively. It turns out that only six years of direct irradiation had an annual mean value of less than 
0.305 kW/m2. This finding implies that in the long run, the solar resources in terms of direct irradiation will typically surpass 0.3 kW/m2/MW installed 
capacity over all areas suitable for PV power plants. While focusing on the Java-Bali region, Indonesia, the findings, and methods appear to be of 
broader interest to policymakers, particularly in developing countries where solar PV is considered an option for sustainable energy generation. 
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1. Introduction 

Solar photovoltaics (PV) are one of the most technologically and 
commercially promising renewable energy-based technologies 
driving the transition from heavy reliance on fossil fuels to the 
widespread use of green energy (Shubbak, 2019). Solar PV has 
shown the fastest growth in power capacity addition among other 
renewable energy-based technologies worldwide over the last 
decade from 2013–2022 (IRENA, 2023). Solar PV capacity is 
expected to exceed the capacity of coal by 2027, with utility-scale 
solar PV being the least expensive option among PV system 
configurations (IEA, 2023). Consequently, higher solar 
penetration is expected in studies on generation capacity 
planning scenarios, based on the opinions of electricity industry 
planners and policymakers.  

Africa and Asia have some of the highest solar PV power 
generation potential (Tlhalerwa, Mulalu, 2019; WEF, 2023). 
However, despite the excellent solar resources in many 
developing countries, particularly in Africa and Asia, the need 
to address numerous challenges and barriers other than 
technological issues affects investment decision-making 
(Sreenath et al., 2022; Laldjebaev et al., 2021), and the capacity 
addition of utility-scale solar PV in many of these countries and 
territories has been slow. Although databases containing global 
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solar attribute data are now freely accessible online, efforts to 
incorporate higher solar penetration into the power generation 
supply mix still necessitate selecting an appropriate dataset, 
followed by adequate assessment and specific evaluation up to 
a certain level based on needs. 

To date, many studies have been conducted to assess the 
technical potential of solar PV to make investment decisions. 
Such high-level studies frequently examine the temporal 
variability of solar resource datasets from various regions. In 
this regard, the solar PV output temporal dataset is critical; for 
example, assessing potential PV contributions in electricity 
industry generation capacity planning (Tanoto et al., 2020) or 
analyzing the reliability-cost trade-offs for electricity industry 
planning with high PV penetrations in emerging economies 
(Tanoto et al., 2021). Understanding the long-term temporal 
variability of solar PV modelling is crucial for system planners 
and operators who analyze system ramp-up and ramp-down 
capabilities, particularly at high solar penetration levels (Kumar 
et al., 2022; Tanoto et al., 2017). 

Clustering methodologies have been used to identify and 
classify similar solar attributes within a given temporal and/or 
spatial coverage (Gutierrez et al., 2022). Scholars have revealed 
a meaningful and manageable distribution of solar attributes 
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within a region or jurisdiction by clustering the solar attributes 
of that region, which can make the exploration of solar PV 
potential more efficient (Zagouras et al., 2014). Clustering 
methods have been used to evaluate PV system performance 
(Mahmoud, Gan, 2022; Tsafarakis et al., 2018), assess PV power 
output patterns (Munshi, Mohamed, 2016), study the energy 
trilemma of future electricity industry generation with high PV 
penetration (Tanoto et al., 2020), and forecast PV power output 
or solar resources (Azimi et al., 2016;  Wang et al., 2016; Cheng 
et al., 2016; Feng et al., 2019; Fu et al., 2019). Although clustering 
analysis is widely used in the study of solar PV potential, its 
application in assessing suitable PV power plant locations at 
specific geographical boundaries is limited. 

A combination of affinity propagation and a k-means 
clustering algorithm was used to select candidate sites for PV 
power plants, considering solar variability and geographic 
smoothing effects (Zagouras et al., 2014). The authors created and 
validated regions of coherent solar quality clustering maps for 
Lanai Island, Hawaii, based on 15 years of 30-minute temporal 
global horizontal irradiance (GHI) gridded data from satellite 
imagery. Although the study provided important insights into 
selecting locations for PV power plants, it mapped the GHI as the 
only factor for clustering analysis. 

A combination of analytical hierarchical Process (AHP) and 
density-based clustering (DBC) using a geographic information 
system (GIS) was used to select suitable sites for solar farms In 
Ghana (Agyekum et al., 2021). The authors identified three macro-
clusters with varying total suitable areas and mean annual GHI 
values. Although the methodology used in this study appears to 
be appropriate for developing countries interested in deploying 
additional solar PV capacity into their national energy mix, the 
authors only used the yearly average values of the GHI as a 
representative parameter of solar resources, while considering 
other GIS-related parameters such as natural and social hazards, 
land use coverage, major settlement areas, protected areas, 
economic sustainability, and infrastructure proximity. 

A combination of fuzzy c-means and an improved particle 
swarm optimization algorithm (IDPSO-FCM) was proposed to 
determine the applicable geographical regions of PV modules 
based on the regional clustering of environmental factors (Li et al., 
2022). The authors evaluated the consistency of the field 
reliability of the PV modules by considering the several workload 
and natural wear dimensions, such as solar radiation, 
precipitation, wind speed, temperature, relative humidity, and 
dust, along with cycling temperature and UV radiation. The 
authors used data from 2010 to 2019 to apply the methods to 31 
provinces in mainland China. Although this methodology may be 
useful for assessing suitable PV plant sites based on the field 
reliability in different climatic regions, the study did not explicitly 
define the temporal granularity of the required data. Furthermore, 
numerous factors were involved in the analysis, including those 
related to the degradation of module performance, which are 
difficult to determine in developing countries.     

Previously, a similar regional clustering analysis study was 
conducted to predict the field reliability and service lifetime of PV 
modules in 31 Chinese provincial regions (Liu et al., 2020). The 
authors predicted the average annual power degradation of PV 
modules in different cluster regions by focusing on the 
comprehensive influence of various factors on the field reliability 
of PV modules. The clustering model described in (Li et al., 2022) 
is based on various workloads and natural wear factors. 

Pakistan's solar energy potential in terms of solar farm size 
was evaluated in three stages: solar mapping, zone evaluation, 
and regional clustering. (Amjad, 2020). The authors used QGIS 
and R to perform solar mapping and zone evaluation using the 

Energy Sector Management Assistance Program (ESMAP) 
dataset for solar irradiance, whereas the density-based spatial 
clustering of applications with noise (DBSCAN) package in R 
software was used for clustering. The authors have demonstrated 
that the methodology is adaptable to any spatial setting. 
However, the study only analyzed yearly direct normal irradiance 
(DNI) and did not specify the data duration.  

Another study used the First-Generation Original Anatolian 
Honeybees' Investment Decision Support methodology 
(1GOAHIDSM) to develop a framework for selecting and 
clustering site-selection factors for PV installations (Saracoglu et 
al., 2018). The authors established the framework by merging 
grey systems theory with fuzzy logic theory. 

A dynamic hierarchical clustering algorithm was used to 
characterize and evaluate the long-term spatiotemporal GHI 
variability (Salguero et al., 2022). The authors used three-stage 
methods using hierarchical cluster analysis to address the 
drawbacks of static clustering modelling of the GHI dataset, using 
Spanish territory as a case study, 22-year period data, and 
numerous observations from an online satellite database. The 
authors also examined and evaluated the temporal variation in 
monthly and annual average clusters. Although the proposed 
methodology appears to be applicable to the evaluation of solar 
attributes in other jurisdictions, the focus of this study is on long-
term GHI data clustering.  

Although previous clustering studies have provided useful 
insights into possible approaches for selecting suitable locations 
for solar PV plant deployment, contributions involving long-term 
temporal periods and different solar attributes to explore PV 
power output variability are generally minor. There is a scarcity 
of literature that discusses long-term multi-attribute clustering of 
solar energy resources for potential solar PV plant site selection.  

The detection of variations in annual and monthly clustering 
results can be extremely useful for planners and policymakers in 
formulating appropriate strategies, leading to the optimal 
allocation of investments in solar PV power plant deployment 
within the study area because of the potential impact of PV 
integration into the grid. This research contributes to enhancing 
the existing clustering studies on solar PV power plant site 
selection by incorporating three solar attributes that influence 
solar PV plant power output. This research uses hourly temporal-
based direct irradiation, diffuse irradiation, and ambient 
temperature as clustering factors rather than GHI or DNI values 
alone.  

The primary goal of this research is to present an early-stage 
methodology for evaluating potential solar PV generation sites 
that can be used by planners and policymakers in developing 
countries or jurisdictions aiming to add more solar PV capacity to 
their electricity generation portfolios. This paper focuses on the 
long-term variability of direct and diffuse irradiation as well as 
temperature, which affects the PV power output across a large 
spatial boundary. While focusing on the Java-Bali region of 
Indonesia, all datasets used in this study are freely available 
online for cases from other countries and jurisdictions. 

2. Case study and dataset  

This study considers all areas of the Java-Bali region in 
Indonesia as a case study. The Java-Bali region has the largest 
interconnected electricity grid in Indonesia. It is also the 
country’s economic powerhouse, with more than 60% of the 
total population and consumes approximately 70% of the total 
national electricity generation. As shown in Fig. 1 (Wikipedia, 
2023), the region contains several provinces, from west to east, 



Y.Tanoto et al  Int. J. Renew. Energy Dev 2024, 13(2), 351-361 

| 353 

 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

including Banten, Jakarta, West Java, Central Java, Yogyakarta, 
East Java, and Bali. This study uses long-term hourly temporal-
based datasets of the solar PV output model from 2005–2022 
obtained through API access on the Renewables Ninja (RN) 
website (Renewables.ninja, 2023;  Pfenninger, Staffell, 2016) for 
clustering analysis.  

The dataset includes hourly temporal-based solar attributes of 
direct irradiation, diffuse irradiation, and ambient temperature 
based on NASA MERRA2 satellite images, in addition to 
modelled hourly solar PV output data.  This study calculated the 
solar PV plant output at each location using a 1 MW solar PV 
capacity to obtain modelled solar PV output data as well as the 
three solar attributes. This study employed gridded rectangular 
geographical coordinates of 0.05° latitude and longitude, or 5 km 
× 5 km, around the Java-Bali region, as shown in Fig. 1 (in red). 
In one year, there were 8,760 hours of data for each attribute at 
each location. Data preprocessing was performed to reduce the 
size of the dataset. The data preprocessing steps are as follows.  

1) Exclude any data before 9 a.m. and after 3 p.m. in all 
locations.  

2) Exclude locations outside the Java-Bali land border, such 
as the sea.  

3) Calculate the annual average values of each attribute at 
each location based on the hourly data obtained in Steps 
1 and 2. 

Following data preprocessing, 4,510 locations along the Java-Bali 
land border were identified, each with a single solar attribute 
value (direct irradiation, diffuse irradiation, temperature, and 
solar PV output). 

3. Methods 

This study uses k-means and DBSCAN clustering to obtain areas 
with different clustering attributes and compare the results 
between the two methods. This study applies single-attribute 
and three-attribute clustering approaches under the two 
methods to examine solar attributes individually and 
collectively, using both clustering techniques in terms of the 
yearly average values of hourly temporal-based direct 
irradiation, diffuse irradiation, and temperature.  

Moreover, this study performs single-attribute clustering on 
the solar PV power output dataset obtained from a solar PV 
output model within the same study area and compares the 

results with those obtained from three-attribute clustering. The 
clustering approach is demonstrated using a 2005–2022 long-
term dataset of gridded hourly temporal-based direct and 
diffuse irradiation, ambient temperature, and solar PV output for 
the Java-Bali region of Indonesia.  
 
3.1 The methodological framework 

This study develops a framework for assessing potential solar 
PV plant sites in the Java-Bali region of Indonesia by clustering 
areas based on three solar attributes, as described in Section 2, 
either individually or together, in one analysis. The framework 
employs the k-means and DBSCAN clustering techniques to 
obtain clusters. In this study, the clustering results of the solar 
attributes were obtained using these two techniques, the 
clustering results of the solar PV output, and the clustering 
results of the three attributes clustered together. Fig. 2 depicts 
the conceptual framework of the study.  

3.2 K-means and DBSCAN clustering 

K-means is one of the unsupervised machine learning (ML) 
algorithms for data clustering. K-Means divides the data into k 
groups or clusters. The algorithm is intended to group data with 
a high degree of similarity and separate data with significant 
differences.  
The data are clustered using k-means technique according to 
the following steps:  

1) Select the number of clusters (k), which indicates the 
number of clusters initiated at the start of the clustering 
process.  

2) Determine the centroids by selecting k random points 
from the data or using the k-means++ algorithm (Arthur 
and Vassilvitskii, 2007) to select the initial values to avoid 
changing centroids owing to random picking. 

3) All data points (or locations) are grouped to the closest 
centroids by calculating the distance of each data point to 
the centroid. Each data point is grouped into clusters with 
the closest centre using the Euclidean distance formula 
(Faizah, 2020).  

4) Recalculate the centroids of newly formed clusters (cluster 
centres updation).  

5) Repeat steps 3 and 4, or re-assign data points, until the 
computation reaches the maximum number of iterations. 

Fig. 3 (Guidotti, 2019) shows the visual description of the 
clustering steps with k-means, given the number of clusters (k) 
equal to 2. DBSCAN is also an unsupervised ML algorithm for 
data clustering. The DBSCAN algorithm aims to group data 
based on spatial density, which enables the grouping of data 
with high density in the same area while ignoring data with low 

 
Fig. 1 Map of Indonesia (top) and the Java-Bali region (down). 

 

 
Fig. 2 Framework for assessing solar attributes clustering. 
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density or as ‘noise’ (Ester et al., 2023). The algorithm employs 
parameters such as core points, border points, noise points, and 
direct density-reachable and density-connected points. 

Brief definitions of these parameters are provided below. 
• Core points are those inside a cluster with a specific 

number of neighbours within a predetermined radius, also 
known as epsilons (Eps). The minimum number of 
neighbours within the Eps radius is known as MinPts. The 
core points have the same number or more MinPts within 
the Eps radius.  

• Border points have fewer MinPts than neighbours in the 
Eps radius. These points are on the border of the cluster 
and therefore remain within the Eps radius of the cluster.  

• The noise points have insufficient MinPts in the Eps and 
are outside the Eps radius of the other core points. This 
indicates that these points are not associated with any 
group. 

Fig. 4 (Farahnakian et al., 2023) depicts the visual description of 
the DBSCAN clustering process with MinPts equals 3. It 
particularly shows a formed cluster, noise points, border points, 
Eps, and MinPts of a DBSCAN process. 

3.3 Davies-Bouldin index and Silhouette score 

The Davies–Bouldin (DB) index (Davies, Bouldin, 1979) is a 
validation metric for clustering models and other unsupervised 
machine learning algorithms. The index was calculated by 
measuring the average similarity of each cluster and comparing 
it with the most similar cluster. In the DB index, similarity is 
defined as the ratio of inter-cluster and intra-cluster distances. 
This index assigns a better score (i.e., closer to zero) to well-
separated clusters with less dispersion. This study searched for 
the best clustering results for each year mainly based on the DB 
index.  

The Silhouette score (SS) is an evaluation metric used in 
cluster analysis and other unsupervised machine learning 
algorithms. The SS assesses the quality of clustering by 
comparing the data in one cluster with those in other clusters. The 
Silhouette score ranges from −1 to 1, with 1 indicating better-
defined and separated clusters (Shahapure, Nicholas, 2020).  

A value approaching 1 indicates that the data in the formed 
clusters approach each other within the cluster and are distinct 
or well separated from the other clusters. A value close to zero 
indicates that the data in that cluster are nearly identical to those 
in other clusters. A value close to −1 indicates that data in one 
cluster cannot be in that cluster and must be in another cluster.    

 
3.4 Single-attribute and three-attribute clustering  

Single-attribute and three-attribute clustering analyses were 
performed independently for each year from 2005–2022 using 
both k-means and DBSCAN techniques. In single-attribute 
clustering, the steps presented in Fig. 3 and Fig. 4 are used to 
cluster direct irradiation, diffuse irradiation, temperature, and 
PV output separately.  

The analysis begins by retrieving the pre-processed datasets, 
which include the yearly average values of direct irradiation, 
diffuse irradiation, temperature, and PV output data for all 
locations. The region for the retrieved dataset is then specified, as 
shown in Fig. 5, followed by hyper-parameter search and 
clustering analysis using k-means and DBSCAN. Finally, the 
Silhouette score and Davies-Bouldin index are used to estimate 
the optimal cluster number.Three-attribute clustering seeks to 
generate cluster areas that contain direct irradiation, diffuse 
irradiation, and temperature in a single clustering process. The 
stages for three-attribute clustering are the same as for single-
attribute clustering, with the addition of a step to normalise the 
data using the Minmax Scaler (Scikit-learn, 2023) before 
clustering. Due to the significant discrepancy in the magnitude of 
values between the irradiation and temperature datasets, data 
normalisation is required to scale the values of irradiations and 
temperature.   

 
3.5 Hyper-parameters 

Hyper-parameters have values that cannot be estimated directly 
from the training process and must therefore be specified before 
training (Yang, Shami, 2020). Hyper-parameters are frequently 
used in machine learning applications to develop specific 
models or algorithms (Howland, 2006). The k-means clustering 
has one hyperparameter, the number of clusters k (Sinaga, 
Yang, 2020), while the DBSCAN algorithm has two parameters: 
Eps and MinPts (Wiharto et al., 2021).  

This study searches for the k-means hyper-parameter by 
trying k-values in succession, starting from 2 up to 20 and 
evaluating the clustering performance using the DB index. If the 
current DB index is higher than the previous index, the current 
k is saved and used in the clustering analysis; otherwise, the 
previous k is stored and used along with the corresponding DB 

 
Fig. 3 Example of k-means clustering process with k = 2. 

 

 
Fig. 4 Example of DBSCAN clustering process with MinPts = 3. 

 

 
Fig. 5 A defined Java-Bali region of the retrieved dataset. 
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index. For verification purposes, the SS was then calculated 
based on the best clustering result for each year.  

In DBSCAN, MinPts is searched from 2 to 100, while Eps is 
searched from 0.001 to 1, with 0.001 increments in all clusters 
except for solar PV output clustering, which is up to 10. 
Appropriate MinPts and Eps values were selected by testing 
them using the DB index. The MinPts and Eps values with lower 
DB indexes were saved and used in the clustering stage. 

4. Results and Discussions 

4.1 K-means clustering results 

The analyses using k-means presented the clustering results 
obtained from three-attribute clustering and single-attribute 
clustering while considering the optimal k values, that is, the 
optimal number of clusters applied to the dataset. Table 1 
presents the optimal number of clusters k for k-means clustering 
from 2005–2022.  

Except for the three-attribute clustering in 2018 and 2019, 
the DB index was relatively low each year (i.e., less than one). 
This indicated a relatively high dispersion of data points 
between clusters, implying that the similarity between clusters 
was generally low. In other words, the established k-means 
clusters had high intra-cluster similarity, but low inter-cluster 
similarity. In all years, a SS greater than zero indicates good 
inter-cluster dispersion of the data points. This indicates that the 
clusters were well separated and distinct. Small DB and SS 
standard deviations across all years indicate that each year’s 
clustering results were consistent in terms of high intra-and low 
inter-cluster similarity, density, and dispersion. 

Meanwhile, Fig. 6 to Fig 11 shows the results of the three-
attribute clustering using the k-means technique. Using the pre-
processed datasets of direct irradiation, diffuse irradiation, and 
temperature, k-means clustering generated areas or clusters 
with data points displaying a range of values for these attributes. 
As shown in Fig. 6, the three-attribute clustering in 2019 using 
k-means divided the Java-Bali region into four clusters, each 
with three attributes and their own range of values. 

Fig. 6 on the top shows the yearly average range of values 
in terms of the maximum, minimum, and mean among clusters, 
with the highest yearly average values of direct irradiation (in 
kW/m2) in each year. The figure shows the 2005–2022 yearly 
average range of direct irradiation for every location assigned 
by a specific cluster. The highest range of values was obtained 
in 2019, particularly for cluster 2. Among the clusters with the 
highest value over the 18-year period, the figure also highlights 
fluctuations in terms of the highest yearly average of direct 
irradiation values from 2005–2022, with the lowest value obtained 
in the 2010-cluster 3 at 0.230 kW/m2 and the highest one in the 
2019-cluster at 0.399 kW/m2.  

In other words, there was a 0.169 kW/m2 difference between 
the highest and lowest maximum of the yearly average direct 
irradiation value over the 18-year period. The down-side of Fig 6 
shows the corresponding area with the highest annual average 
direct irradiation values in 2019 (in red). The area mostly includes 
the eastern and southern parts of East Java Province, Bali 
Province, and some islands in the north. Areas with the highest 
direct irradiation are potential locations for PV plants because 
they have the greatest potential for solar PV output power.   

Like Fig 6, Fig 7 depicts the clustering results of direct 
irradiation obtained from the three-attribute clustering in terms 
of the yearly average range of values among clusters with the 
minimum values and the mapping areas of clusters in the Java-
Bali region in 2010. The figure on the top shows the annual 
average range of direct irradiation from 2005–2022 for each 
location among the clusters with minimum values. The lowest 
minimum value of yearly average direct irradiation over the 18-
year period was obtained in 2010, particularly in Cluster 5. The 
down-side of Fig 7 shows the corresponding area of Cluster 5 
(orange), with a direct irradiation range of 0.122–0.161 kW/m2, 
as shown in Fig 7 on the top. The area primarily depicts the 
western and northern parts of Java, with a small portion in the 
south comprising West Java, Jakarta, and Banten. 

Table 1 
Number of optimal clusters and evaluation metrics of k-means three-
attribute and single-attribute clustering in 2005–2022 

Year Three-attribute clustering: 
direct irradiation, diffuse 
irradiation, temperature 

Single-attribute 
clustering: 

Solar PV output 

Number 
of k 

clusters 

Evaluation 
metrics 

Number 
of k 

clusters 

Evaluation 
metrics 

DB SS DB SS 

2022 
2021 
2020 
2019 
2018 
2017 
2016 
2015 
2014 
2013 
2012 
2011 
2010 
2009 
2008 
2007 
2006 
2005 

3 
5 
6 
4 
2 
2 
4 
4 
2 
3 
4 
5 
6 
5 
4 
4 
5 
2 

0.91 
0.81 
0.76 
0.73 
1.03 
1.04 
0.75 
0.76 
0.75 
0.88 
0.73 
0.82 
0.84 
0.78 
0.69 
0.7 

0.75 
0.79 

0.41 
0.46 
0.47 
0.48 
0.4 
0.4 

0.44 
0.47 
0.52 
0.4 

0.47 
0.44 
0.42 
0.48 
0.5 

0.49 
0.46 
0.49 

2 
2 
2 
3 
2 
2 
3 
2 
2 
5 
4 
2 
2 
2 
2 
2 
2 
3 

0.49 
0.49 
0.51 
0.47 
0.55 
0.53 
0.53 
0.49 
0.51 
0.5 

0.49 
0.57 
0.46 
0.47 
0.57 
0.48 
0.52 
0.46 

0.64 
0.64 
0.62 
0.6 

0.59 
0.61 
0.58 
0.63 
0.62 
0.55 
0.57 
0.58 
0.65 
0.65 
0.58 
0.64 
0.62 
0.63 

 

 

 
Fig. 6 Clustering results of direct irradiation obtained from the k-
means three-attribute clustering: (Top) the years and clusters 
showing a range of values among clusters with the highest value of 
yearly average direct irradiation in each year; and (Down) the 2019 
Java-Bali’s clustering map showing the corresponding area (in Red). 
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Fig. 8 and Fig. 9 depict the clustering results of diffuse 
irradiation obtained from three-attribute clustering, with figures 
on the top depicting the maximum-mean-minimum ranges of the 
yearly average numerical results of clusters with the maximum 
values (in Fig. 8) and with the minimum values (in Fig. 9), and 

figures on the down-side visualising areas according to diffuse 
irradiation clusters in a corresponding year.  

Fig. 8 shows that, over the 18-year period, the mean values 
of yearly average diffuse irradiation have mostly ranged 
between 0.32 kW/m2 and 0.35 kW/m2, except for 2010, which 
was slightly higher than this range. This finding indicates a 
relatively consistent annual weather situation in the Java-Bali 
region over the 18-year period, particularly in terms of cloud 
distribution across the region.  

The highest annual average value of diffuse irradiation over 
the 18-year period was obtained in 2010, as shown in Fig. 8 on 
the top, with values ranging from 0.347 kW/m2 to 0.36 kW/m2. 
Located in the same area as the lowest range of the annual 
average direct irradiation value (see Fig. 7, down), this finding 
confirms a crucial relationship between direct and diffuse 
irradiation in a specific area or cluster, in terms of the typical 
opposite direction of these two attributes. While the western 
and northern parts of West Java, with a small portion in the 
south, received the lowest annual average direct irradiation in 
2010, the same area received the highest annual average diffuse 
irradiation. This typical relationship between direct and diffuse 
irradiation across the Java-Bali region is confirmed in this study 
for most of the other years. 

In comparison with the results shown in Fig. 6, Fig. 9 shows 
another example of this relationship. While the eastern and 
southern parts of East Java and Bali had the highest range of 
annual average direct irradiation, the same cluster had the 
lowest range of annual average diffuse irradiation, ranging from 
0.26 kW/m2 to 0.292 kW/m2. A high diffuse irradiation for a 
specific area indicates a lower potential of PV output power in 
that specific area compared with another area with low diffuse 
irradiation, making that area less favourable for PV plant 
placement. 

Fig. 10 and Fig. 11 on the top show the clustering results of 
the yearly average ambient temperature from to 2005–2022 

 
Fig. 7 Clustering results of direct irradiation obtained from the 
k-means three-attribute clustering: (Left) the years and clusters 
showing a range of values among clusters with the lowest value 
of yearly average direct irradiation in each year; and (Right) the 
2010 Java-Bali’s clustering map showing the corresponding area 
(in Orange). 

 

 

 
Fig. 8 Clustering results of diffuse irradiation obtained from the k-
means three-attribute clustering: (Top) the years and clusters 
showing a range of values among clusters with the highest value of 
yearly average diffuse irradiation in each year; and (Down) the 
2010 Java-Bali’s clustering map showing the corresponding area 
(in Orange). 

 

 
Fig. 9 Clustering results of diffuse irradiation obtained from the k-
means three-attribute clustering: (Top) the years and clusters 
showing a range of values among clusters with the lowest value of 
yearly average diffuse irradiation in each year; and (Down) the 
Java-Bali’s clustering map in 2010 showing the corresponding 
area (in Red). 
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across all locations in the Java-Bali region, considering clusters 
with the highest and lowest yearly average temperature values, 
respectively. The figures on the down-side depict the cluster 
mapping for the corresponding years. The Java–Bali region, 
which is located near the equator, has a relatively high maximum 
annual average temperature during the day. From 2005–2022, the 
maximum annual average temperature reached 32 °C in 2019, 
and over this 18-year period, the temperature exceeded 30 °C, 

except in 2022 and 2010. The ambient temperature impacts the 
efficiency of a PV system.  

While the rated efficiency of a PV module is commonly tested 
at 25 °C, higher ambient temperatures reduce the efficiency. 
Thus, policymakers and planners in the Java–Bali region can 
better estimate the potential of PV energy generation in different 
clusters by considering and comparing temperature attributes 
across clusters. Fig. 10 shows a 2019 map of the Java–Bali region 
with the highest yearly average temperature (cluster 4 in purple), 
ranging from 29.09 °C to 32.0 °C. The area encompasses the 
northern and western parts of the East Java Province (see Fig. 10, 
purple), indicating that the PV modules installed in that area may 
have lower efficiency. In 2010, the southern and eastern parts of 
West Java province had the lowest range of yearly average 
temperature in terms of minimum and mean values, reaching 24.3 
°C and 26.3 °C, respectively (see Fig. 11, blue). 

Fig. 12 depicts the single-attribute clustering results for solar 
PV output power in terms of yearly average values from 2005–
2022. Fig. 12 shows the cluster with the highest output each year 
on the top, and the cluster with the lowest output on the down-
side. Notably, the results in Fig. 12 follow a pattern like those 
shown in Fig. 6 and Fig. 7.  

The results in Fig 12 indicate that the yearly average PV 
outputs in the Java-Bali region are substantially dependent on 
and proportional to direct irradiation. Meanwhile, minor 
changes in annual average diffuse irradiance and temperature 
appear to have minimal effect. Fig. 12 shows the historical range 
of the yearly average PV output power over the 18-year period, 
planners and policymakers could arguably anticipate a similar 
future range of potential PV output power for high-level planning, 
given the 375–530 kW/MW PV capacity, considering the lowest 
and highest yearly average output power between 2005 and 2022. 
In addition, the historical range of the yearly average PV output 
power shown in Fig. 12 implies the potential impact of PV plant 

 

 
Fig. 10 Clustering results of ambient temperature obtained from the 
k-means three-attribute clustering: (Top) the years and clusters 
showing the range of values among clusters with the highest value 
of yearly average temperature in each year; and (Down) the Java-
Bali’s clustering map in 2010 showing the corresponding area (in 
Purple). 

 

 
Fig. 11 Clustering results of ambient temperature obtained from the 
k-means three-attribute clustering: (Top) the years and clusters 
showing a range of values among clusters with the lowest value of 
yearly average temperature in each year; and (Down) the Java-Bali’s 
clustering map in 2010 showing the corresponding area (in Blue). 

 

 
Fig. 12 Clustering results of solar PV output obtained from the k-
means single-attribute clustering: (Top) the years and clusters 
displaying a range of yearly average output values among clusters 
with the highest PV outputs in each year; and (Down) the years 
and clusters showing a range of yearly average output values 
among clusters with the lowest PV outputs. 
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output on the annual ramp-up and ramp-down requirements of 
the system in the Java–Bali region. 

Fig. 13 depicts the maps of the PV output power clustering 
corresponding to the results shown in Fig. 12. The years with the 
highest range in the annual average PV output were 2019, 2018, 
and 2006. The southern parts of Java, from west to east, and Bali 
appear to have greater potential than the northern part of the 
island. The northern part of Java had the lowest annual average 
PV output power in 2010, 2022, and 2016.  

Fig. 13–15 show the single-attribute clustering results of direct 
irradiation, diffuse irradiation, and temperature, and the 
corresponding clusters of PV output power. In this context, 
planners and policymakers can further analyse and compare the 
clustering of each solar attribute year after year, learn the 
potential impact of the attributes on PV plant output power over 
a broad spatial coverage, and thus gain some insights into future 
generation planning decision-making.  

As expected, the lowest range of yearly average diffuse 
irradiation, that is, in Cluster 1, ranging from 0.260–0.287 kW/m2 
(in blue), appeared to reduce the conversion effectiveness of 

direct irradiation values (in green) into PV output power in those 
areas. The affected areas are presented in the corresponding PV 
output clusters. Cluster 2 (red), particularly in the eastern and 
southern parts of East Java and Bali, is not a cluster with the 
highest yearly average PV output power. 

As shown in Fig. 15, the southern part of Java Island and Bali 
are better locations for solar PV power generation than the 
northern part of Java, as resulted in the single-attribute clustering 
of solar PV output power. However, more detailed results from 
the three-attribute clustering suggest the most suitable locations 
across the region as the eastern and southern parts of East Java, 
the southern part of West Java, and Bali, owing to the 
comparatively highest range of annual average direct irradiation 
and the lowest range of diffuse irradiation, as well as moderate 
temperature ranges in comparison to other areas.  

Therefore, implementing three-attribute clustering enables 
stakeholders to better understand the characteristics of a cluster 
by collectively presenting and identifying all attributes in an area 
or cluster. The presence of all three attributes, which compose 
the clusters, indicates that these attributes have different impacts 
on the solar PV output power in different clusters. 

4.2 DBSCAN clustering results 

DBSCAN analysis, like k-means three-attribute clustering, 
considers direct irradiation, diffuse irradiation, and temperature 
altogether in the clustering. Fig. 16 shows the range of yearly 
average direct irradiation over the 18-year period, focusing on 
clusters with the highest yearly average direct irradiation.  

The clustering result shows a pattern similarity between 
DBSCAN and k-means, as shown in Fig. 6. DBSCAN also 
produced relatively similar areas or clusters as k-means, with the 
eastern and southern parts of East Java and Bali having the 
highest annual average values in 2019 (red). The presence of so-
called noise clusters in the DBSCAN algorithm distinguishes 

     
Fig. 13 Solar PV output clustering map that corresponds to the 
results shown in Figure 9: year and cluster with the highest range 
of yearly average PV output (2019-3). 

 

 
Fig. 14 Solar PV output clustering map that corresponds to the 
results shown in Figure 12: year and cluster with the lowest range 
of yearly average PV outputs (2010-1). 

 

 
Fig. 15 K-means single-attribute clustering results of direct 
irradiation, diffuse irradiation, and temperature, and the 

corresponding clusters of PV output power in 2019. 

 

 

 

Fig. 16 Clustering results of direct irradiation obtained from the 
DBSCAN three-attribute clustering: (Top) the years and clusters 
showing a range of values among clusters with the highest value 
of yearly average direct irradiation in each year; and (Down) the 
2019 Java-Bali’s clustering map showing the corresponding area 

(in red). 
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DBSCAN from k-means clustering. In 2019, noise clusters (purple) 
were visible in a few locations across Java. These clusters 
represent areas with less data density and thus separate 
neighbouring clusters. Here, the areas in purple separate other 
areas in red, orange, and blue.   

The DBSCAN three-attribute clustering results for diffuse 
irradiation are shown in Fig. 17. The highest range of annual 
average diffuse irradiation is obtained in 2022 in Cluster 2. The 
top of Fig. 17 shows the corresponding area (in red) which 
includes Banten, Jakarta, the western parts of West Java, and 
its southern portion. While DBSCAN, like k-means, identified 
the western and northern parts of Java Island as having higher 
diffuse irradiation, the algorithm demonstrated a more year-to-
year dynamic in terms of the range of clusters, with the highest 
yearly average diffuse irradiation. Owing to the nature of 
DBSCAN in clustering high-density data points, including the 
presence of noise clusters, some differences exist in the cluster 
size compared with k-means. 

Finally, Fig. 18 shows the clustering results of the 
temperature obtained from DBSCAN three-attribute clustering. 
The top side of Fig 18 shows the highest range of yearly average 
temperatures among the clusters, with the maximum values of 
temperature in each year. Meanwhile, the down-side of Fig. 18 
depicts a map of the Java–Bali region showing an area of the 
temperature cluster in the northern and north-western parts of 
East Java, that is, Cluster 5 shown in orange. Like diffuse 
irradiation, DBSCAN clustering produced a smaller area for the 
temperature cluster compared to that in k-means (see Fig. 10).   

Clustering results reported in Section 4.1 (k-means) and 
Section 4.2 (DBSCAN) also help stakeholders understand the 
long-term potential of solar resources in the Java-Bali region. In 
this context, the 18-year mean value of the annual range of values 
of solar attributes produced from the clustering analyses can be 
recognised and used as one of the bases for electricity industry 
planning studies as well as a more extensive assessment of 
technological potential. 

In the case of three-attribute clustering of direct irradiation 
with k-means and DBSCAN, the 18-year mean value of clusters 
with the highest yearly average value is achieved at very similar 
values of 0.305 kW/m2 and 0.310 kW/m2, respectively. It turns 
out that only six years of direct irradiation had an annual mean 
value of less than 0.305 kW/m2. This finding implies that in the 
long run, the solar resources in terms of direct irradiation will 
typically surpass 0.3 kW/m2/MW PV installed capacity over all 
areas suitable for solar PV power plant placement.   

The results presented above, whether obtained from single- 
or three-attribute clustering, show that using k-means and 
DBSCAN methods allows planners and policymakers to further 
explore and study potential locations for placing solar PV plants 
across a large area or region. Although k-means appears to be 
an effective method for clustering the yearly average solar 
attributes, DBSCAN provides the user with an alternative 
method for achieving a similar goal.  

The implementation of three-attribute clustering enables 
stakeholders to better understand the characteristics of a cluster 
by collectively identifying three solar attributes as well as the 
magnitude of each attribute in an area or cluster. The presence of 
all three attributes, as well as their magnitudes, which compose 
the clusters, indicates that these attributes have different impacts 
on the solar PV output power in different clusters. This research 
recognizes that planners and policymakers must make careful 
decisions on the appropriate location of solar PV power plants. 
Nevertheless, this research does not consider factors such as local 
ecosystems and technical information other than solar attributes.   

5. Conclusion 

This study presented the methodology and application of k-
means and DBSCAN clustering techniques to investigate the 
potential of solar PV plant sites in the Java–Bali region of 
Indonesia using a satellite-based dataset of solar attributes. The 
analyses considered hourly temporal-based solar attributes, 

 

 
 Fig. 17 Clustering results of diffuse irradiation obtained from the 
DBSCAN three-attribute clustering: (Top) the years and clusters 

showing a range of values among clusters with the highest value of 
yearly average direct irradiation in each year; and (Down) the 

2019 Java-Bali’s clustering map showing the corresponding area 
(in Red). 

 

 
Fig. 18 Clustering results of direct irradiation obtained from the 
DBSCAN three-attribute clustering: (Top) the years and clusters 
showing a range of values among clusters with the highest value 
of yearly average direct irradiation in each year; and (Down) the 
2019 Java-Bali’s clustering map showing the corresponding area 

(red). 
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such as direct irradiation, diffuse irradiation, and ambient 
temperature from 2005–2022. This study employed three-
attribute clustering to obtain clusters containing the yearly 
average data ranges of the three solar attributes combined and 
single-attribute clustering to obtain clusters containing the 
yearly average data ranges for each attribute. The latter method 
was used to cluster the solar PV output power. 

Based on the Davies–Bouldin index and Silhouette score 
evaluation metrics, the results show that both k-means and 
DBSCAN methods can be used to create clusters of yearly 
average solar attribute(s) across the Java–Bali region, including 
three-attribute clustering. The combinations of the three 
attributes in the clusters as well as their magnitudes were 
proportionally correlated with the solar PV output power in the 
corresponding clusters in the case of three-attribute clustering. 
Although k-means appears to be an effective method for 
clustering the yearly average solar attributes, DBSCAN provides 
the user with an alternative method for achieving a similar goal. 
Owing to the nature of DBSCAN in clustering high-density data 
points, including its ability to illustrate the presence of noise 
clusters, DBSCAN clustering produced different cluster sizes, 
especially smaller cluster areas compared to k-means, and 
demonstrated a more year-to-year dynamic in terms of the 
ranges of values in clusters. 

Considering the 18-year period of the dataset, the single-
attribute clustering results showed that the southern part of Java 
Island and Bali are better locations for solar PV power 
generation than the northern part of Java. More detailed results 
from the three-attribute clustering suggest the most suitable 
locations across the region as the eastern and southern parts of 
East Java, the southern part of West Java, and Bali, owing to the 
comparatively highest range of annual average direct irradiation 
and the lowest range of diffuse irradiation, as well as moderate 
temperature ranges in comparison to other areas.  

In addition to obtaining clusters of solar attributes and PV 
output power for the Java–Bali region, the analyses in this study 
provide insights for planners and policymakers in planning the 
variable renewable energy electricity industry, particularly high-
penetration solar PV, and especially regarding the long-term 
historical performance of solar resources and the potential impact 
of hourly temporal-based solar attributes and output power on 
system reliability and flexibility. Although the Java-Bali region of 
Indonesia was used as a case study, the method and findings 
appear to have broader relevance to stakeholders involved in 
solar PV-based electricity generation planning and policy-making 
communities considering their options for a more sustainable 
energy future.  

As this study does not consider factors other than the three 
solar attributes that may influence the selection of PV location 
candidates, future work should seek to improve the 
methodology by incorporating these factors into the analysis 
and adding the methodology around daily to yearly forecasting 
of solar PV output power over a wide spatial coverage of the 
solar PV investment decision-making framework. 
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