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Abstract—This paper presents the application of the Auto-

Regressive Integrated Moving Average Exogenous (ARIMAX) 

model and compares its performance with Auto-Regressive 

Integrated Moving Average (ARIMA) and Seasonal Auto-

Regressive Integrated Moving Average (SARIMA) in 

forecasting daily, weekly, and monthly average solar PV output 

power. This study considers long-term hourly temporal-based 

solar PV output power for the Java-Bali region of Indonesia, as 

obtained from the Renewables.ninja solar PV model web-based 

tool. Using the Dash framework and Python, the study develops 

a web-based dashboard application that allows users to explore 

and analyse daily to monthly forecasting using these three 

methods. The testing results show that the time series methods 

are best suited for predicting monthly average output power, 

with the ARIMAX outperforming all other methods when 

applied to all cities/regencies in Central Java. It achieved the 

RMSE values of 10.74, 25.36, and 60.27 for daily, weekly, and 

monthly forecasting, respectively. 

Keywords—solar PV, time series, renewable energy, 

forecasting, output power  

I. INTRODUCTION 

Solar photovoltaics (PV) is a green technology with a 
strategic role to aid in the energy transition [1]. While there 
are challenges in maximising the theoretical potential of 
solar PV in a specific area due to uncontrollable factors such 
as solar irradiation, temperature, humidity, and other 
weather-related parameters [2], the benefits of solar PV 
output forecasting are inevitable for both the macro and 
micro perspectives. From the macro perspective, forecasting 
PV output allows stakeholders to better understand a 
country's needs and energy potential, especially where solar 
PV can be used more effectively [3].  

Solar PV output forecasting can be divided into two 
categories: short-term for operational needs and long-term 
for investment and planning decision-making. Short-term 
forecasting is useful for system operators in managing PV 
output fluctuations and estimating peak energy requirements 
during specific hours up to a few days and weeks. Long-
term annual forecasting can assist stakeholders in better 
planning and anticipating the electricity industry generation 
mix future.  

Solar energy has enormous potential for electricity 
generation, particularly in many tropical developing 
countries. However, progress on PV capacity deployment in 
some of these countries and jurisdictions, including 
Indonesia, remains slow [4]. Aside from the fact that 
regulations related to the use of solar PV have frequently 
changed and been uncertain in Indonesia, there is still a lack 
of use of solar historical data for operational or planning 

purposes, as well as studies regarding accurate estimates of 
PV output power based on long-term historical data, and 
across the spatial coverage of country or provinces.  

Developing an accurate forecasting model in terms of 
long-term solar PV forecasting is especially difficult [5]. This 
difficulty is due in part to the uncertainty of future solar output 
power attributes such as irradiance and ambient temperature. 
Despite this, several studies have been conducted to forecast 
solar PV output power or solar radiation.  

A study evaluated the Seasonal Auto-Regressive 
Integrated Moving Average Exogenous (SARIMAX) model 
for forecasting the PV output of a city in the Philippines [6]. 
The authors compared each season and one full year of 
forecasting to evaluate the SARIMAX model’s performance 
and identified significant input parameters for each season. 
Another forecasting study used Seasonal Auto-Regressive 
Integrated Moving Average (SARIMA) and Auto-
Regressive Integrated Moving Average (ARIMA) models to 
represent monthly and daily solar radiation, respectively, in 
Seoul, Korea [7]. The authors performed future trends of 
monthly solar irradiation based on 37-year data.  

Another study has compared SARIMA, SARIMAX, 
modified SARIMA, and an artificial neural network method 
for grid-connected PV generation output forecasting [8]. The 
comparison concludes the necessity and benefits of using 
exogenous factors in a time series model. Other studies 
compared several time series methods including artificial 
intelligence algorithms to forecast PV output power in a city 
in South Korea using 4.5-year operation data on an hourly 
basis from a 1.5 MW grid-connected PV power plant [9].  

While previous research on solar PV output forecasting 
using time series models provided planners and 
policymakers with useful insights into the potential impact 
of possible future PV output power on, for example, system 
security and possible generation mixes, there is no one-size-
fits-all for different goals and forecasting problems.  

This study therefore evaluates the application of time 
series-based models of Auto-Regressive Integrated Moving 
Average Exogenous (ARIMAX) and compares the 
performance with ARIMA and SARIMA in forecasting PV 
output power based on the long-term hourly temporal-based 
solar PV model applied for the Java-Bali, Indonesia. 
Moreover, this study creates a web-based dashboard 
application using the Dash framework and Python that 
allows users to explore and analyse the forecasting results 
for all cities/regencies in the Java-Bali region. This study 
aims to compare the forecasting performance of the three 
models in terms of daily, weekly, and monthly average PV 
output power as well as the best-suited forecasting period.  
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The rest of this paper is structured as follows. Section 2 
presents the methodology, followed by a brief description of 
the system and implementation in Section 3. Section 4 
presents results and discussions, and finally, Section 5 
concludes this paper. 

II. METHODOLOGY 

A. The Dataset  

This study considers 2005–2016 long-term hourly-
temporal data of modelled solar PV output power across the 
gridded latitude and longitude of 0.05° x 0.05° or 5 km x 5 
km across the Java-Bali region, Indonesia, as obtained from 
the Renewables.ninja (RN) solar PV model web-based tool 
introduced in [10]. Considering a 1 MW peak PV capacity, 
the tool calculated PV output power for all locations while 
accounting for the effects of direct and diffuse irradiations, 
and ambient temperature. The main processes in this study 
are data preprocessing, modelling, and forecasting, and 
evaluation and visualisation.   

B. Data Preprocessing 

The first goal of conducting the data preprocessing is to 
obtain the area of all cities/regencies, as well as all data 
points within these boundaries. This study iterates all 
locations by conducting API requests at OpenRoute service 
API under the Reverse Geocoding. The required parameters 
include API key, and latitude and longitude. This procedure 
includes the removal of all data points that do not belong to 
any city/regency, such as those in the sea. This process ends 
up with 4,150 data points representing 4,150 locations.  

Subsequently, this study assigns one location or data 
point for every city/regency across the Java-Bali region. The 
assigned location is selected based on the highest capacity 
factor (CF) among all locations in each city/regency in each 
year. The CF is a ratio of the electrical energy produced by a 
PV capacity to the electrical energy that could have been 
produced in one year. Table 1 shows an example of data 
preprocessing results from 2005 to 2014 for Bogor Regency 
in West Java, highlighting one location with the highest 
yearly average CF for the corresponding year. 

TABLE I.  EXAMPLE OF DATA PREPROCESSING RESULTS FOR BOGOR, 
WEST JAVA 

Date 
Lat 

Lon 
Regency Province 

Output 

Power 
Year CF 

2005-01-

01, 11:00 

-6.75 

106.9 
Bogor West Java 626.566 2005 16.19 

2005-01-

02, 11:00 

-6.75 

106.9 
Bogor West Java 642.625 2005 16.19 

2005-01-

03, 12:00 

-6.75 

106.9 
Bogor West Java 500.715 2005 16.19 

2005-01-

04, 11:00 

-6.75 

106.9 
Bogor West Java 487.778 2005 16.19 

2005-01-

05, 12:00 

-6.75 

106.9 
Bogor West Java 369.951 2005 16.11 

.... …. …. …. …. …. …. 

2014-12-

27, 12:00 

-6.6 

107.2 
Bogor West Java 463.848 2014 16.54 

2014-12-

27, 12:00 

-6.6 

107.2 
Bogor West Java 494.045 2014 16.54 

2014-12-

27, 11:00 

-6.6 

107.2 
Bogor West Java 627.448 2014 16.54 

2014-12-

27, 12:00 

-6.6 

107.2 
Bogor West Java 686.127 2014 16.54 

2014-12-

27, 10:00 

-6.6 

107.2 
Bogor West Java 485.593 2014 16.54 

C. Modelling, Forecasting, and Evaluation   

Fig. 1 shows the modelling flowchart to determine the 
best parameters for all the time series models and 
forecasting frequency using the grid search method. 

 

 
Fig. 1. Modelling flowchart. 

This modelling takes one city/regency from each 
province in the Java-Bali region as a sample. In comparison 
to other cities/regencies in that province, each selected 
city/regency has the highest average CF. Data on daily 
output power, like those shown in Table 1, are further 
grouped into weekly and monthly average PV output power 
for this regency. The process for the selected sample of 
city/regency continues by conducting a grid search method 
for ARIMAX, SARIMA, and ARIMA with respect to daily, 
weekly, and monthly output power data to obtain the best 
parameters for each model, i.e., the model with the lowest 
RMSE.   

The parameters used in ARIMAX are p (autoregressive), 
d (integrated), q (moving average), and exogenous variable. 
Meanwhile, the parameters used in SARIMA are p 
(autoregressive), d (order of differencing), q (moving 
average), P (seasonal autoregressive), D (order of seasonal 
differencing), Q (seasonal moving average), S (seasonal 
period length), and for ARIMA are p (autoregressive), d 
(integrated), and q (moving average). 
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Subsequently, the forecasting parameters obtained for 
the sample city/regency can be used to forecast solar PV 
output power along with the desired forecasting periods for 
other cities/regencies within the same province as the 
sample city/regency. Alternatively, users can also proceed 
directly with the modelling and forecasting for any city. This 
study applies RMSE (Root Mean Square Error) and MAE 
(Mean Absolute Error) to measure the accuracy of 
prediction results. The correlation between variables is 
determined using the coefficient of determination R-squared 
(R2).  

D. Visualisation  

The Solar PV Data Visualization dashboard is created 
using the web-based Dash framework. It has four main 
pages, namely: ‘about’ page, ‘explanatory’ page, ‘time 
series analysis’ page, and ‘prediction’ page.  

Every page designed in this study has its own items and 
functionalities. The explanatory page contains the general 
overview of the data along with related items, including the 
data frequency. The time series analysis page contains a 
time series analysis of selected data, displays patterns of data 
movement, and stationary tests, including the 
autocorrelation and partial autocorrelation function plot 
during the selected period. Meanwhile, the following lists 
are available items and functionality on the prediction page. 

• Button–Info: Button to display the description of the 
time series analysis page and available items.   

• Slider–Range Year: Provides 10-year selection 
options from the dataset that filter the forecasting 
results that will be displayed. 

• Dropdown–Select Regency: Provides a selection of 
108 cities/regencies for forecasting.  

• Dropdown–Select Attribute: Provides 4 attributes to 
be selected for predictions, i.e., direct irradiation, 
diffuse irradiation, temperature, and PV output 
power.  

• Dropdown–Select Frequency: Provides a selection of 
daily, weekly, and monthly forecasting periods. 

• Dropdown–Select Method: Provides a selection of 
time series models that can be selected to conduct 
forecasting. 

• Button–Predict: Button for conducting forecasting. 

• Line Chart–Actual vs Predicted Data: Displays 
forecasted data and actual data with a trend line 
chart. 

• Table–Evaluation Metrics: Displays forecasting 
evaluation results based on MAE, MSE, RMSE, and 
R2. 

• Card–Average Predicted: Displays the average value 
of forecasted data.  

• Card–Average Real Data: Displays the average value 
of actual data. 

• Table–Location and Capacity Factor per Year: 
Displays list of points of location used every year for 
the selected city/regency with the CF. 

• Table–Location per Year: Displays points of 
locations used each year for a selected city/regency 
in a map form. 

Fig. 2 depicts the visualisation design of the prediction 
page on the Solar PV Data Visualization dashboard. 

 

 

Fig. 2. Visualisation design of the prediction page. 

III. SYSTEM IMPLEMENTATION 

The forecasting system is completely built with Python 
3.10.9 and Microsoft Visual Studio Code as the software 
code editor. The Dash framework is used to create a 
website-based dashboard application. It enables the 
development of web-based applications entirely in Python. 
This study also uses the Bootstrap framework to enhance the 
user interface. Several  

Python libraries are used in the programming codes, 
including scikit-learn, pandas, matplotlib, seaborn, plotly 
dash, and statmodels. Scikit-learn provides functions for 
data preprocessing, such as normalisation, category 
encoding, and data grouping, other than functions for 
dividing data into training and testing sets, as well as metrics 
for evaluating results. Pandas provides functions for efficient 
data manipulation and analysis using a dataframe, which 
aids in data preprocessing such as cleaning, sorting, 
merging, and handling duplicate data. Pandas also supports 
reading and writing data from a variety of file formats, 
including CSV, Excel, and JSON. It can also be combined 
with Matplotlib, a visualisation library that generates graphs 
to aid in hyperparameter tuning, and with Seaborn, which 
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offers the ability to view the relationship between attributes. 
Plotly dash library offers the ability to generate visually 
appealing graphs and data visualisations. Statmodels 
provides a time series algorithm and functions for analysing 
time series data, such as determining data stationarity.  

The system implementation uses the following hardware 
configuration for coding and testing the application: 
Processor: Intel(R) Core (TM) i7-8750H CPU @ 2.20GHz; 
Memory: 24 GB; Graphic Card: Nvidia GeForce GTX 1050 
Ti-4GB; Hard Disk: 1TB; Solid-state Drive: 128GB; 
Operating system: Windows 10, 64-bit operating system, 
x64-based processor. 

IV. RESULTS AND DISCUSSIONS 

The search for the best parameters for ARIMAX models 
for daily, weekly, and monthly forecasting periods while 
considering p (autoregressive), d (integrated), q (moving 
average), and one exogenous variable as parameters. Direct 
irradiation is chosen as the exogenous variable for 
ARIMAX modelling because it has the highest correlation 
with PV output power, i.e., 0.94, compared to other solar 
attributes.  

Applying the hyperparameter tuning and model fitting 
to Wonogiri Regency in Central Java, Table 2 and Table 3 
summarises the results of the best parameters and 
evaluation metrics obtained from the hyperparameter tuning 
for the ARIMAX models with direct irradiation as the 
exogenous variable and ARIMA models, respectively. 

TABLE II.  SUMMARY OF THE RESULTS OF THE BEST PARAMETERS 

OBTAINED FROM THE HYPERPARAMETER TUNING FOR ARIMAX (WITH 

DIRECT)  MODELS IN WONOGIRI REGENCY 

Data Frequency 

Period 

Parameter 

(p, d, q) 

Error Evaluation 

RMSE MAE R2 

Daily (18, 0, 20) 61.12 6.29 0.79 

Weekly (15, 0, 16) 22.97 3.84 0.86 

Monthly (12, 0, 12) 9.21 2.52 0.93 

TABLE III.  SUMMARY OF THE RESULTS OF THE BEST PARAMETERS 

OBTAINED FROM THE HYPERPARAMETER TUNING FOR ARIMA  MODELS 

IN WONOGIRI REGENCY 

Data Frequency 

Period 

Parameter 

(p, d, q) 

Error Evaluation 

RMSE MAE R2 

Daily (20, 0, 19) 106.85 9.07 0.38 

Weekly (15, 0, 14) 51.34 6.32 0.31 

Monthly (12, 0, 1) 23.17 4.43 0.41 

 

As in Table 2, given the monthly forecasting period as 
an example, the model employs 12 autoregressive lags, as 
indicated by the p parameter value. The model considers the 
value of the current data’s linear relationship with the values 
in the previous 12 periods or the previous 12 months. This 
model performs no differencing, as evidenced by the 
parameter value d, which is 0. Because the data used is 
stationary, there is no need to repeat the differencing 
process. The q parameter value indicates that this model 
employs a 12-lag moving average. To forecast the current 
value, the model considers the influence of 12 residual 
values or previous forecasting errors. A similar analysis of 

the model description can be carried out for weekly and 
daily forecasting periods in the ARIMAX modelling, as well 
as in the ARIMA modelling.  

Table 4 summarises the best parameters and evaluation 
metrics obtained from the hyperparameter tuning for the 
SARIMA models considering daily, weekly, and monthly 
forecasting. The monthly forecasting period provides the 
SARIMA with the model's seasonal component of S, P, D, 
and Q. The S parameter represents the seasonal period in 
the time series data used. The seasonal pattern therefore can 
be interpreted as repeating itself every 12 months. The P 
value indicates that the model considers the impact of 
values from the previous 3 seasons. The D parameter 
indicates that no seasonal differencing was performed 
because the data used is seasonally stationary. From the Q 
value, it is revealed that the model considers the influence 
of 7 previous seasonal residual values when forecasting the 
current value. 

TABLE IV.  SUMMARY OF THE RESULTS OF THE BEST PARAMETERS 

OBTAINED FROM THE HYPERPARAMETER TUNING FOR SARIMA  

MODELS IN WONOGIRI REGENCY 

Data Frequency 

Period 

Parameter 

(p, d, q) x 

(P, D, Q, S) 

Error Evaluation 

RMSE MAE R2 

Daily 
(17, 0, 19) x 

(2, 0, 2, 20) 
106.80 81.95 0.38 

Weekly 
(15, 0, 15) x 

(0, 0, 2, 20) 
50.97 39.73 0.32 

Monthly 
(11, 0, 10) x 

(3, 0, 6, 12) 
24.17 18.63 0.49 

 

Fig. 3 shows the PV monthly average output power 
versus the monthly forecasted output power plot of an 
ARIMAX model (12, 0, 12) for Wonogiri Regency, as 
presented in Table 2. Meanwhile, Fig. 4 shows the PV 
weekly average output power versus the weekly forecasted 
output plot of an ARIMAX model (15, 0, 16) from Table 2. 

 

 
Fig. 3. PV monthly average output vs forecasted results of ARIMAX model 

(12, 0, 12) for Wonogiri Regency 

 

 
Fig. 4. PV weekly average output vs forecasted results of ARIMAX model 

(15, 0, 16) for Wonogiri Regency. 
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From Table 2 to Table 4, it can be seen that the 
ARIMAX outperform the ARIMA and SARIMA across all 
forecasting periods. This is evidenced by ARIMAX 
producing the lowest RMSE and MAE than the other two, as 
well as R2 values that are closer to one, particularly for the 
monthly forecasting.  

Based on forecasting results for all cities/regencies in 
Central Java, the ARIMAX model has shown the best 
performance for all forecasting periods. The model has an 
average RMSE of 10.74, an average MAE of 7.21, and an 
average R2 of 0.9 for the monthly forecasting period.  

Table 5 presents the results of monthly forecasting for 
other sample cities across the Java-Bali region using 
ARIMAX. All models obtain considerably low RMSE like 
that obtained in Table 2 for monthly forecasting. The results 
indicate that the monthly forecasting using the ARIMAX 
model is the best among other time series models. 
Meanwhile, Fig. 5 shows the visualisation of the prediction 
page, as described in Section 2, for Badung Regency’s 
ARIMAX (10, 0, 12) monthly forecasting from 2005–2016. 

TABLE V.  RESULTS OF ARIMAX MODELS OF MONTHLY FORECASTING 

IN OTHER SAMPLE CITIES IN THE JAVA-BALI REGION 

Province 
Sample 

City/Regency 
Parameter RMSE 

Jakarta East Jakarta (9, 0, 12) 10.15 

West Java Garut (11, 0, 11) 10.82 

Banten Lebak (8, 0, 12) 8.99 

Yogyakarta Gunung Kidul (11, 0, 12) 12.01 

East Java Banyuwangi (12, 0, 12) 10.65 

Bali Badung (10, 0, 12) 6.94 

 

 
Fig. 5. Visualisation of the prediction page for Badung Regency’s 

ARIMAX (10, 0, 12) monthly forecasting from 2005–2016. 

V. CONCLUSIONS 

This paper presents the use of time series methods to 
forecast daily to monthly average values of solar PV output 
power models and predictions based on the 2005–2016 long-
term hourly temporal-based PV output model obtained from 
Renewables.ninja. Given the Java-Bali region as a case 
study, it is revealed that ARIMAX outperforms ARIMA and 
SARIMA in all forecasting windows. Furthermore, given 
the lowest RMSE and MAE and the highest R-squared 
values, the ARIMAX model is best suited for predicting 
monthly average data. While this study considers the Java-
Bali region of Indonesia as a case study, the methodology 
presented in this paper has a broader relevance to stakeholders 
conducting similar studies in other countries or jurisdictions. 
Future work could improve the dashboard and expand its 
capability by including the demand dataset as well as the use 
of machine learning or deep learning algorithms to enhance 
the analysis and improve results. 
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