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Abstract. We present a novel approach to obtain parameters of some Sigmoidal functions such as: Stevens, Gompertz, 
Logistics, Weibull, Brody, von Bertalaffy, & Ontogenetic. This approach extends the approach relies on iterative process 
to find “maximum” R2 and the traditional Ordinary Least Square (OLS) that can be implemented very easily. We 
demonstrate the approach in predicting IBE Webinar registrants. We also provide a new modification for the stopping rule 
based on Taylor approximation that can make the algorithm more robust as well as stop faster with little impact to the 
prediction. 
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INTRODUCTION 

This is the second part of our lesson learnt in managing a real event (IBE Webinar) professionally. To help our 
junior in marketing IBE Webinar, we are asked to provide daily estimate about how many people will register to a 
particular IBE Webinar at the maximum. This number is very important as our committee member will need to prepare 
all logistics for the event. 

Apparently, predicting event attendance is already widely studied. We found out numerous papers such as: Zhang 
et.al. (2015), King (2017), Sahin & Ucar (2020), and Nguyen et.al. (2021) on predicting various events (NBA, NFL, 
Social Event, etc.). Unfortunately, they do not fit our situation. Our webinar event is not the same as NBA, NFL, or 
Soccer matches where the teams have their own fans. Our speakers may be well known (or comes from well-known 
companies), but they do not have fan base. The closest that we can find is the paper by Suher (2008) in which he tries 
to predict various tickets from concerts using Weibull. 

While we simply have many unknowns in trying to predict our IBE Webinar, we realize that our situation is very 
similar to predicting Covid-19 (in which we had some experience – see our Data Science & Innovation web-page: 
http://dsi.ibe.petra.ac.id/covid19). We have built a closed-loop predictive monitoring BI system for one full year in 
which we get daily update and our parameter changes. Everyday there will be people registers to our IBE Webinar 
event, and if our committee is able to make it viral (either internal within our university community or better yet 
external), we will see an acceleration, and then a steady decline toward a plateau. Pretty much like predicting Covid-
19.  

When we research on Covid-19 prediction, we found out numerous articles using Bass, Gompertz, & Logistic 
diffusion models (pretty much like ours). Furthermore, to our surprise, we find out that even Michael Levitt, one of 
Nobel laureate from Stanford, also use Gompertz function (Levitt et.al., 2020). In fact, his paper made us realize that 
we could do much simpler in predicting the maximum potential attendance of IBE Webinar, and make a closed-loop 
predictive monitoring BI system to assist our junior committee. Together with our experience using Software 



 

 

Reliability Growth Modeling (SRGM) we also realize that using multiple Mathematical models actually can give us 
more confidence when it reaches a plateau (see Christian et.al. 2022). 

The rest of our paper is organized as follows. In the next section, we review and derive several linearization of 
sigmoid functions and pointed out that all have the origin from Stevens’ growth model (Stevens, 1951). We then 
outline a simple algorithm using two-step process to obtain parameters prediction for various Sigmoid models. We 
illustrate the calculation of our IBE webinar attendance and how we build our closed-loop, predictive-monitoring 
system. 

LITERATURE REVIEW 

Basic Deterministic Diffusion/Growth Modeling 

Stevens’s growth model is perhaps the oldest general form of deterministic diffusion (growth) modelling with 
three parameters. Mathematically, it can be written as follows: 

 
𝑁(𝑡) = 𝑚 − 𝑏𝑟 , 0 < 𝑟 < 1     (1) 

 
If we follow the approach in Levitt, et.al. (2020), we can pick 𝑚 > max{𝑁(𝑡)}, and rewrite the above equation 

as: 
𝑚 − 𝑁(𝑡) = 𝑏𝑟      (2) 

 
Taking natural logarithm on both side of the equation will produce the following linear equation: 
 

𝑌(𝑡) ≜ 𝑙𝑛 𝑚 − 𝑁(𝑡) = 𝑙𝑛(𝑏) + 𝑡 × 𝑙𝑛(𝑟)      (3) 
 
From Stevens growth model, we can generalize further and derive other deterministic diffusion (growth) models, 

and their linearization (as in next section). But, first, consider the following equation which is the generalized version 
of von Bertalanffy growth model: 

𝑁(𝑡) = 𝛼 1 − 𝑒 ( )( ) ( )       (4) 
 
From Equation (4), Figure 1 shows how other diffusion (growth) models are related to the generalized von 

Bertalanffy growth model (and their transformations). 
 

 
FIGURE 1. Relationship among Sigmoid Functions that we consider in this paper 



 
 

RESEARCH METHOD 

Data Collection 

The data is collected from the daily registrations from the last IBE Webinar in 2021 (see Tamara et.al. 2022 for 
detail). We repeat the data here to make this paper self-contained. It should also be noted that we ran two email 
campaigns, on 11/15/2021 and on 11/20/2021. Hence, we mark the data with different color to indicate this fact. 

 
Table 1. Daily data from the last IBE Webinar in 2021 

Date Day (t) Registrants 
1st Cumulative 

Registrants N(t) 
2nd Cumulative 

Registrants N(t) 
11/15/2021 1 110 110   
11/16/2021 2 129 239   
11/17/2021 3 54 293   
11/18/2021 4 44 337   
11/19/2021 5 16 353   
11/20/2021   6 | 1 24 377 24 
11/21/2021   7 | 2 30 407 54 
11/22/2021   8 | 3 36 443 90 
11/23/2021   9 | 4 44 487 134 
11/24/2021 10 | 5 33 520 167 
11/25/2021 11 | 6 20 540 187 
11/26/2021 12 | 7 18 558 205 
11/27/2021 13 | 8 22 580   

Total 580 
 

Mathematical Model & Data Processing 

To provide prediction on how many registrants we would be able to capture from our email campaigns, we will 
use several Sigmoid functions (Stevens, Gompertz, Logistic, Weibull, von Bertalanffy, Brody, & Ontogenetic 
Growth). Instead of using non-linear least square (NLS), we design a curve-fitting algorithm that uses Ordinary Least 
Square (OLS). First, we demonstrate that all of these Sigmoid functions can be made linear using simple Algebraic 
manipulation. 

It is imperative to explain our rationale here as why we do not simply rely on NLS. Imagine that someday (like in 
day 5 in Table 1) we already know that there are 353 people registered for our IBE Webinar event, an NLS using data 
from day 1 to day 5 may provide a parameter m (asymptotic value of the numbers of people that will register) to be 
less than 353 (say m = 350). Obviously, this type of prediction does not settle well with many people. NLS has this 
characteristic. Let’s first state our lemma here to provide a foundation to the algorithm. 

Lemma 1: 
If we know the asymptotic value m, then all these Sigmoid Functions (Gompertz, Logistic, Weibull, Brody, von 

Bertalanffy, and Ontogenetic Growth) can be made linear in the following forms: 

Gompertz: 𝑁(𝑡) = 𝑚𝑒  to become: 𝑌(𝑡) ≜ 𝑙𝑛 𝑙𝑛
( )

= 𝑙𝑛(𝑏) − 𝑐𝑡              (5) 

Logistic: 𝑁(𝑡) =
( )

 to become: 𝑌(𝑡) ≜ 𝑙𝑛
( )

( )
= 𝑙𝑛 − 𝑟𝑡             (6) 

Weibull: 𝑁(𝑡) = 𝑚 1 − 𝑒  to become: 𝑌(𝑡) ≜ 𝑙𝑛 −𝑙𝑛 1 −
( )

= 𝑙𝑛(𝑏) + 𝑎 𝑙𝑛(𝑡)              (7) 

Brody: 𝑁(𝑡) = 𝑚(1 − 𝑏𝑒 ) to become: 𝑌(𝑡) ≜ 𝑙𝑛 1 −
( )

= 𝑙𝑛 𝑏 −  𝑘𝑡              (8) 

 von Bertalanffy (Essington et.al., 2001) with 𝑑 = : 𝑁(𝑡) = 𝑚 1 − 𝑒 ( )  to become: 



 

 

𝑌(𝑡) ≜ 𝑙𝑛 1 −
( )

= −𝑘𝑡 + 𝑘𝑡   (9) 

Ontogenetic Growth (von Bertalanffy with 𝑑 = ): 𝑁(𝑡) = 𝑚 1 − 𝑒 ( ) /
 to become: 

𝑌(𝑡) ≜ 𝑙𝑛 1 −
( )

= −𝑘𝑡 + 𝑘𝑡   (10)  

Proof: 
Straight forward Algebraic manipulation similar to Stevens’ model. Hence, they are omitted. □ 
Notice that the value of m in all equations (3) & (5) – (10) requires 𝑚 > max{𝑁(𝑡)}, otherwise the natural 

logarithm for the transformation is not defined. This will guarantee that our asymptotic value, m will be larger than 
the maximum known registrants to date. Hence, it will provide a reasonable parameter prediction for certain types of 
problems like predicting IBE Webinar registrations (or Covid-19 pandemic, or Software Reliability Growth Model). 

Furthermore, carefully examining equations (3) & (5) – (9), ones will notice that the linearization suggests that we 
can iterate over m value that gives the best correlation coefficient, 𝜌 (or coefficient of determination, 𝑅 ) between 
𝑌(𝑡) and t. Unfortunately, we could not prove that correlation coefficient (or coefficient of determination) is concave 
over m. In fact, we can create a counter example that we continue to increase m and getting better 𝜌 or 𝑅 , e.g., readers 
can easily verify themselves with several data points that are linear or convex – in these scenarios, the value of 𝑅  
will continue to increase as we increase m – see Table 2 in which 𝑌(𝑡) ≜ 𝑙𝑛 𝑚 − 𝑁(𝑡) . Therefore, Levitt et.al. 
(2020) suggested to stop when correlation is satisfactory high without giving too much detail. We think this stopping 
condition can be further improved.  

 
Table 2. Linear data points in which 𝑅 → 1 (monotonically) as 𝑚 → ∞ for Stevens’ model 
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Second, it is important to point out that all Sigmoid functions in Lemma 1 have an asymptotic value m. If we let 

𝑚 → ∞, then practically the transformed variable 𝑌(𝑡) will be a horizontal line (regardless how the data points actually 
look like). Hence, there is no variation. 

In experimental labs statistics, we know that we can accept multiple measures as the same when its variation is 
low. The most common measure for this is coefficient of variation (CV). In fact, it is generally accepted that CV less 
than 5% should be a good enough measure. If needed, we can further tighten this by proposing a CV less than 2.5% 
(or any acceptable value). Unfortunately, the value of Y(t) can be negative in some transformations. To make it 
dimensionless, we choose to modify coefficient of variation by replacing the average of Y(t) with ln(m) to make it 
dimensionless. Hence, we can have the following Lemma 2 and 3. 

 
Lemma 2: 

The first term of Taylor series for modified coefficient of variation, 𝑚𝐶𝑉(𝑚) =
( ( ))

 ( )
 is monotonically 

decreasing with respect to m for all transformations in (3) & (5) – (10). 
Proof: 
We will use the Taylor approximation of variance of a function that is twice differentiable to prove our lemma 

(see: [09]) for Stevens model. We leave the rest as an exercise to our readers. The first two terms approximation for 
variance of a function of random variable x is given by: 

𝑉𝐴𝑅 𝑓(𝑥) ≈ (𝜇) 𝜎 − (𝜇) 𝜎    (11) 

where: 𝜇 = 𝐸[𝑥] = the expected value of x. Notice that for a given data points {𝑥 }, 𝜇 and 𝑉𝐴𝑅(𝑥) = 𝜎  are just 
two constant values that are positive. In our case: 𝑥 = 𝑁(𝑡) and 𝑓(𝑥) = 𝑌(𝑁(𝑡)). 

For Stevens, 𝑌(𝑡) ≜ 𝑙𝑛 𝑚 − 𝑁(𝑡) , we have the first term of Taylor series for 𝑉𝐴𝑅 𝑌(𝑡)  as: 

𝑉𝐴𝑅 𝑌(𝑡) ≈ −
( )

𝜎 =
( )

       (12) 

Substituting Equation (11) above to our definition of 𝑚𝐶𝑉(𝑚) we have: 

𝑚𝐶𝑉(𝑚) ≈
( )

( )
=

( ) ( )
   (13) 

And taking the derivative with respect to m yields: 
( )

= −
( ) ( )

( )( )
< 0   (14) 

since (𝑚 − 𝜇) > 0 (recall we choose 𝑚 > max{𝑁(𝑡)}). Hence, 𝑚𝐶𝑉(𝑚) is monotonically decreasing function 

with respect to m. □ 
Lemma 3: 
If 𝑚 > 𝜇 + 𝜎, then the first two-terms of Taylor series for 𝑚𝐶𝑉(𝑚) is monotonically decreasing. 
Proof: 
For Stevens, 𝑌(𝑡) ≜ 𝑙𝑛 𝑚 − 𝑁(𝑡) , we have: 

𝑉𝐴𝑅 𝑌(𝑡) ≈ −
( )

𝜎 − −
( )

𝜎 =
( )

−
( )

          (15) 

Substituting Equation (14) above to our definition of 𝑚𝐶𝑉(𝑚) we have: 

𝑚𝐶𝑉(𝑚) ≈
( )

( )
=

( ) ( )
−

( ) ( )
   (16) 

Therefore,  



 

 

( )
= −

( ) ( )

( )( )
+

( ) ( )

( )( )
=

( ) ( ) ( ) ( )

( )( )
=

( ) ( ) ( ) ( )

( )( )
< 0     (17) 

Clearly Equation (17) is less than 0 if 𝑚 > 𝜇 + 𝜎. □ 
Therefore, we can use this simple but practical rule as our stopping criteria. In Table 2, we illustrate the values of 

both CV and mCV. It should be clear that if we are given a series of data which are linear {8, 16, 24, 32, 40, 56}, then 
using 𝑚𝐶𝑉(𝑌(𝑡)) < 𝛼 = 5%, we can say that practically there is no point to go beyond m = 110 for Stevens’ 
transformation. Hence, we can stop increasing the value of m until more evidence from new data comes in. This 1st 
step effort to find the best m can be illustrated in Figure 2. 

One can think our approach as follows: we try to increase the value of asymptotic m as much as possible so that 
the line becomes as linear as possible (maximize R2), but we do not want to displace the line too much. The new 
proposal using mCV and 𝛼 is an attempt to help the effort so that we do not push the line upward too far. 

 
Figure 2. Impact of increasing m values on Y(t) and t 

 
Once we decide on the asymptotic value m, we can simply run an ordinary least square (OLS) since all Sigmoid 

functions have been transformed into a linear equation using (3) & (5) – (10). Hence, our algorithm can be written as 
a two-stage process as follows: 

Curve Fitting Algorithm for Linearized Sigmoid Functions 
Stage 1:  
 Step 1: Initialize 𝑅 = 0, 𝑚 = max{𝑁(𝑡)} + 1 

 Step 2: Transform N(t) to Y(t) following equations (3) – (8) 
 Step 3: Calculate 𝑅  between Y(t) and t. 
 Step 4: If 𝑅 > 𝑅  or 𝑚𝐶𝑉(𝑌(𝑡)) < 𝛼, then STOP (go to Stage 2 – we found m) 
 Else, set 𝑅 = 𝑅  and 𝑚 = 𝑚 + ∆𝑚, go to Step 2. 
Stage 2: Run OLS according to equations (3) – (9) using m from Stage 1. 
Please note that in the above algorithm, we can replace 𝑚𝐶𝑉(𝑌(𝑡)) with its first order Taylor series approximation 

to guarantee the stopping rule. Now, we are ready to apply the above algorithm to the IBE Webinar registrants. 
 
FINDINGS and DISCUSSION 
We apply the above algorithm to the first 5 days of IBE Webinar data above with 𝑚 = 355 and ∆𝑚 = 5. The 

step-by-step algorithms for Stage 1 above are illustrated for Stevens and Gompertz models in the Tables 3a and Table 



 
3b. The optimal asymptotic value, m, for all Sigmoid models & other parameters are summarized in table 4. Notice 
how the CV and mCV behaves for Gompertz (CV is negative because the mean is negative). 

 
 
Table 3a. Stage 1 calculation for Stevens model for Campaign 1 
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Table 3b. Stage 1 calculation for Gompertz model for Campaign 1 
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-

0.8408 
0.1772 

0 0.9786 390 Y(t) 0.2356 
-

0.7140 
-

1.2519 
-

1.9237 
-

2.3058 
-

0.8438 
0.1686 

0 0.9744 395 Y(t) 0.2456 
-

0.6883 
-

1.2083 
-

1.8401 
-

2.1855 
-

0.8485 
0.1611 

0 0.9704 400 Y(t) 0.2554 
-

0.6636 
-

1.1670 
-

1.7639 
-

2.0795 
-

0.8546 
0.1546 



 

 

 
Table 4. Final result from Stage 1 & Stage 2 for all Models for Campaign 1 

Model 
Campaign 1 Parameters 

mCV 
m b, t0, N0 

c, r, a, 
k 

Stevens 375 493.3799 0.5351 16.71% 
Gompertz 365 2.7867 0.8829 23.70% 
Logistic 360 48.5757 1.1487 30.96% 
Weibull 360 0.3703 1.4511 17.11% 
Brody 375 1.3157 0.6252 16.71% 
von 

Bertalanffy 
370 -0.5052 0.7611 20.39% 

Ontogenetic 380 0.6165 0.5449 14.53% 
Average 369    
StDev 8    

 
Notice that from the value of mCV in table 6 above (all values > 15%), we can see that for all models, the algorithm 

is terminated because R2 is reaching the maximum value. 
To better understand the stopping rule that we propose, we illustrate the calculation for Stevens’ model as in Table 

5 below for 7 days in doing campaign 2. Notice that for Stevens model with 𝛼 = 5% (or 𝛼 = 10%) our algorithm 
produces 𝑚 = 310 (or 𝑚 = 220), while the maximum R2 is obtained when 𝑚 = 325. Obviously, other parameters 
(b & r) of Stevens model will also be different for different values of m. 

The complete results of all Sigmoid models for Campaign 2 are given in Table 6 below (we listed some models if 
the algorithm stops at different values of 𝛼) as well as its prediction for day 8 (the day that the IBE Webinar event 
takes place). If we take simple average from all predictions (that are not marked – these are the result if we implement 
𝛼 = 5%), we have the value of 578 registrants with standard deviation of 12 registrants. Notice how close the 
predictions for day 8 with the actual data that we have in table 2 above (recall that we had 580 registrants). 

 
Table 5. Stage 1 calculation for Stevens’ model for Campaign 2 with 𝛼 = 5%, 10%, max R2 

9 
0.99

35 
m 

D
ay (t) 

1 2 3 4 5 6 7 
mC

V Ind
ex 

R2 
N(

t) 
24 54 90 134 167 187 205 

0 
0.89

40 
2
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Y(

t) 
5.22

57 
5.04

99 
4.78

75 
4.33

07 
3.76

12 
3.13

55 
1.60

94 
0.11

07 

0 
0.93

49 
2

15 
Y(

t) 
5.25

23 
5.08

14 
4.82

83 
4.39

44 
3.87

12 
3.33

22 
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26 
0.10

39 
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0.95
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20 
Y(
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81 
5.11

20 
4.86

75 
4.45

43 
3.97

03 
3.49

65 
2.70

81 
0.09

80 
   …           

0 
0.99
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3
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84 
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06 
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07 
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52 
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04 
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3
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40 
 
Table 6. Several Sigmoid functions parameters and prediction for day 8 



 

Model 
Campaign 2 Parameters 

mCV 
Prediction 

for day 8 m b, t0, N0 c, r, a, k 
Stevens with α = 10% 220 387.8998 0.6552 9.80% 560 
Stevens with α = 5% 310 354.6102 0.8394 4.90% 576 
Stevens with max R2 325 365.2464 0.8514 4.52% 578 
Gompertz 235 3.7518 0.4716 13.80% 569 
Logistic 215 0.1248 0.8158 24.28% 568 
Weibull 280 0.0858 1.4235 16.35% 580 
Brody with α = 10% 210 1.7632 0.4228 9.80% 560 
Brody with α = 5% 310 1.1439 0.1751 4.90% 576 
Brody with max R2 325 1.1238 0.1609 4.52% 578 
von Bertalanffy 250 -0.5801 0.3633 10.56% 572 
Ontogenetic with α = 

10% 
230 0.8954 0.3853 9.92% 572 

Ontogenetic with max 
R2 

285 0.4374 0.2337 6.68% 601 

Average all Models with 
α = 5% or max R2 

270    578 

StDev all Models with α 
= 5% or max R2 

37    12 

 
From Table 6, we can see that our asymptotic parameter (m) for the 2nd campaign has higher variation (as measured 

by standard deviation) across models (37 registrants) compare to variation across models for the 1st campaign (see 
Table 4 – the standard deviation is 8 registrants).  This means that our data tells us that there are more uncertainties in 
the 2nd campaign since data may not reach to a plateau yet, but we have to end the registration since our IBE Webinar 
event happens on day 8 of the 2nd campaign. 

 

CONCLUSION, LIMITATION, & FURTHER RESEARCH 

It is important to understand that the application of Sigmoid functions is enormous, e.g., software growth reliability 
model, predicting product life cycle, tumor growth, fishery, etc. We propose a novel yet simple approach to get 
parameters of several Sigmoid functions in two stages. We enhance the stopping criteria so that we don’t have to run 
into cases that R2 increasing indefinitely. We also illustrate the proposal with real life experience when we help to 
manage our IBE Webinar registration successfully.  

While we are able to prove some conditions, we have not been able to demonstrate how our stopping criteria 
(mCV) is related to R2. We still treat them as two unrelated variables in our algorithm. This is worth investigating 
further.  

In this particular case, we know exactly when we have the 2nd campaign. However, in real life, we don’t know 
when a second (or nth) wave started by looking at data, e.g., Covid-19 pandemic prediction for 2nd wave, imperfect 
debugging in software reliability growth model, etc. are examples of this problem. We believe this area is worth 
studying further. 
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